## Tutorial: Foundations of Non-truthful Mechanism Design

Part II: Non-truthful Sample Complexity Tutor: Jason Hartline

Part III: Simplicity, Robustness, the Revelation Gap

#### Schedule:

Part II: 10-10:45am (http://ec20.sigecom.org/tech/tutorial)
Part III: 11-11:45am (http://ec20.sigecom.org/tech/tutorial)

#### Protocol:

During session, panelest will answer clarifying questions in chat.

In post-session Q/A, "raise hand" to ask question.

#### **Tutorial Cochairs**



Brendan Lucier



Sigal Oren

#### **Panelists**



Yiding Feng



Yingkai Li

# Foundations of Non-truthful Mechanism Design http://jasonhartline.com/tutorial-non-truthful/

Jason Hartline

Northwestern University
hartline@northwestern.edu

EC Tutorial 2020

## Context: The Revelation Principle

Mechanism Design: identify mechanism that has good equilibrium.

**Revelation principle:** if exists mechanism with good equilibrium, then exists mechanism with good truthtelling equilibrium. [Myerson '81]

**Proof:** truthful mechanism can simulate equilibrium strategies in non-truthful mechanism.

**Consequence:** literature focuses on truthful mechanisms.

#### Issues:

- practical mechanisms are not truthful.
- not without loss for simple or prior-independent mechanisms.
- non-trivial to undo the revelation principle.

**Goal:** theory for non-truthful mechanism design.

## Example: Bad Welfare for Winner-pays-bid Mechanisms

Proposition (e.g., Lucier, Borodin '10)

winner-pays-bid highest-bids-win mechanisms can have very bad equilibria.

## Example (Single-minded Combinatorial Auction)

#### Preferences:

- m items.
- m+2 agents.
- agents  $i \in \{1, ..., m\}$  values bundle  $S_i = \{i\}$  at  $v_i = 1$ .
- agents  $h \in \{m+1, m+2\}$  values bundle  $\mathsf{S}_h = \{1, \dots, m\}$  at  $\mathsf{v}_h = 1$ .

#### A Nash equilibrium:

- ullet agents  $h \in \{m+1, m+2\}$  bid  $b_h = 1$  (one wins, one loses)
- agents  $i \in \{1, \dots, m\}$  bid  $b_i = 0$  (all lose)
- all agent utilities = 0 for bids  $\leq 1$ .

Nash welfare = 1; optimal welfare = m. Goal for Part II: OPT  $-\epsilon$ 

## Sample Complexity in Mechanism Design

**Story:** Use past bid data to improve mechanism.

## Definition (Truthful Sample Complexity)

Number of samples  $N(\epsilon)$  from value distribution sufficient to identify truthful mechanism with expected performance at least OPT  $-\epsilon$ .

**Observation:** if designer ran truthful mechanism, can reoptimize truthful mechanism from truthful data.

**Practical Issue:** > 99% of mechanisms in real life are non-truthful.

- past bid data is non-truthful.
- need to design non-truthful auction.

#### Main Challenges:

- inference of values from bids requires strong assumptions on value distribution and mechanism.
- non-trivial to design Bayes-Nash equilibria in non-truthful mechanisms

## Part II

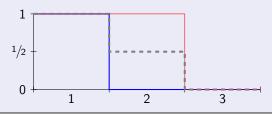
## Non-truthful Sample Complexity

- Counterfactual Inference
- 2 Inference for I.i.d. Position Auctions
- 3 General Reduction to I.i.d. Position Auctions

## Running Example

Running Example: three agents, highest-bids-win, winner-pays-bid

- Auction A: one unit.
- Auction B: two units.
- Auction C: mix 0.5A + 0.5B.



Qstn Given equilibrium bid data for C, estimate revenues of A and B?

## Equilibrium and Inference

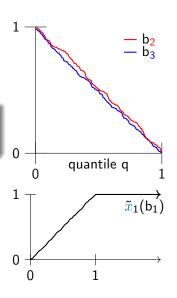
**Assumption:** bids are in equilibrium, i.e, in best response to competing bid distribution.

#### **Econometrics Observation**

competing bid distribution is in observed data.

#### Approach:

- given bid distribution, solve for bid strategy.
- invert bid strategy to get agent's value from bid.

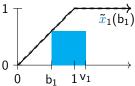


#### **Bid Inversion**

#### **Example:** How should agent 1 bid in Auction C?

• What's expected utility w. value v and bid b?

$$\begin{aligned} \textbf{E}[\text{utility}(v,b)] &= (v-b) \times \textbf{Pr}[1 \text{ wins w. bid b}] \\ &\approx (v-b) \times b = v \, b - b^2 \end{aligned}$$



- to maximize: take derivative  $\frac{d}{db}$ , set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

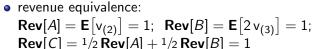
**Conclusion 1:** Infer that agent with bid b has value v = 2b

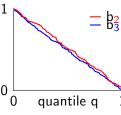
**Recall:** Bids uniform on [0,1]

**Conclusion 2:** Values are uniform on [0, 2].

#### Revenue:

• value order statistics evenly divide interval:  $\mathbf{E}[v_{(1)}] = 3/2$ ;  $\mathbf{E}[v_{(2)}] = 1$ ;  $\mathbf{E}[v_{(3)}] = 1/2$ 





#### Section 2

#### Inference for I.i.d. Position Auctions

#### References:

- Guerre, Perrigne, Vuong (2000) "Optimal nonparametric estimation of first-price auctions"
- 2 Chawla, Hartline, Nekipelov (2017) "Mechanism Redesign"

#### Li.d. Position Auctions

#### Definition (I.i.d. Winner-pays-bid Position Auction)

m positions with weights  $w_1 \ge \cdots \ge w_m$ ; m agents with iid values  $v_j \sim F$ 

- Agents submit bids.
- 2 Agents assigned to positions in decreasing order of bid.
- **3** Agent in position j wins with probability  $w_j$ .
- Winners pay their bids.

#### Goal

From bids in position auction C, estimate revenue of position auction B.

## Quantile Space, Revenue Curves, Expected Revenue

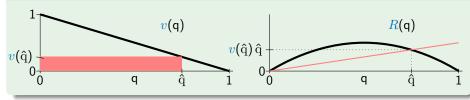
## Definition (Inv. Demand Curve)

 $v(\mathbf{q}) = F^{-1}(1-\mathbf{q})$  is the value of an agent with quantile  $\mathbf{q} \in [0,1]$ .

## Definition (Revenue Curve)

 $R(\hat{\mathbf{q}}) = \hat{\mathbf{q}} v(\hat{\mathbf{q}})$  is revenue from posting price with sale prob.  $\hat{\mathbf{q}}$ .

## Example (Uniform Distribution)



Def: Quantile allocation rule: y(q) = x(v(q))

Thm: Expected revenue of alloc. y for agent w. R is:  $-\int_0^1 R(\hat{\mathbf{q}}) \, y'(\hat{\mathbf{q}}) \, d\hat{\mathbf{q}}$ 

Pf: view y as cdf of critical quantile  $\hat{q}$  with density: -y'.

## Classical Revenue Inference, Revisited

## **Inference Equation:** for winner-pays-bid auction C:

$$\hat{\mathbf{v}}(\mathbf{q}) = \hat{\mathbf{b}}_{C}(\mathbf{q}) + \frac{\mathbf{y}_{C}(\mathbf{q}) \, \hat{\mathbf{b}}_{C}'(\mathbf{q})}{\mathbf{y}_{C}'(\mathbf{q})}$$

#### Notes:

- allocation rule  $y_C$  and derivative  $y'_C$  known. (from auction defn)
- estimated bid function  $\hat{b}_C$  obverved; derivative  $\hat{b}_C'$  estimated.

## **Auction Theory:** expected revenue of auction B:

$$\hat{R}_B = -\int_0^1 \hat{v}(q) \, q \, y_B'(q) \, dq$$

**Estimators:** for *N* samples from *b* 

- empirical  $\hat{b}_C$  has rate  $\sqrt{N}$ .
- standard  $\hat{b}'_C$  estimator has rate worse than  $\sqrt{N}$ .
- $\Rightarrow$  revenue  $\hat{R}_B$  estimator has rate worse than  $\sqrt{N}$ .

## Direct Approach [Chawla, Hartline, Nekipelov '17]

## **Inference Equation:** for winner-pays-bid auction C:

$$\hat{\mathbf{v}}(\mathbf{q}) = \hat{\mathbf{b}}_{C}(\mathbf{q}) + \frac{\mathbf{y}_{C}(\mathbf{q}) \hat{\mathbf{b}}_{C}'(\mathbf{q})}{\mathbf{y}_{C}'(\mathbf{q})}$$

#### **Auction Theory:** expected revenue of auction *b*:

$$\hat{R}_B = \int_0^1 \hat{\mathbf{v}}(\mathbf{q}) \, \mathbf{q} \, y_B'(\mathbf{q}) \, d\mathbf{q}$$

Step 1: Combine:

$$\hat{R}_B = \int_0^1 \left( \hat{b}_C(q) + \frac{y_C(q) \, \hat{b}'_C(q)}{y'_C(q)} \right) q \, y'_B(q) \, dq$$

**Step 2:** Simplify with integration by parts (Define  $W_{C,B}$ ):

$$\hat{R}_B = \int_0^1 W_{C,B}(q) \, \hat{b}_C(q) \, dq$$

**Step 3:** bound 
$$\mathbf{E}\left[|R_B - \hat{R}_B|\right] = \mathbf{E}\left[|\int_0^1 W_{C,B}(\mathbf{q}) \left(b_B(\mathbf{q}) - \hat{b}_B(\mathbf{q})\right) d\mathbf{q}|\right]$$

**Step 4:** estimator for N sorted bids is  $\hat{R}_B = \sum_i W_{C,B}(\frac{i}{N+1}) \hat{b}_{i,C}$ 

#### Section 3

#### General Reduction to I.i.d. Position Auctions

#### References:

- Chawla, Hartline (2013) "Auctions with unique equilibria"
- Chawla, Hartline, Nekipelov (2017) "Mechanism Redesign"
- Hartline, Taggart (2019) "Sample Complexity for Non-truthful Mechanisms"

## Definitions for Non-truthful Sample Complexity

## Definition (Independent Single-Dimensional Environment)

- n agents, values  $v_i \sim F_i$ ,  $F = F_1 \times \cdots \times F_n$ .
- feasible allocations  $\mathbf{x} = (\mathsf{x}_1, \dots, \mathsf{x}_n) \in \mathcal{X} \subset [0,1]^n$

#### Definition (Batched Environment)

An batched environment for n populations and m stages is Cartesian product with nm agents. Cf. online environment.

#### Definition (I.i.d. Winner-pays-bid Position Auction)

m positions with weights  $w_1 \geq \cdots \geq w_m$ ; m agents with iid values  $v_j \sim F$ 

- Agents submit bids.
- Agents assigned to positions in decreasing order of bid.
- **3** Agent in position j wins with probability  $w_i$ .
- Winners pay their bids.

## Theorems for Non-truthful Sample Complexity

## Theorem (Chawla, Hartline '13)

i.i.d. winner-pays-bid position auction: BNE is unique, symmetric, efficient.

## Theorem (Chawla, Hartline, Nekipelov '17)

For i.i.d. position auctions B and C and values in [0,1]:  $\epsilon$  error in welfare/revenue estimate of auction B with  $N(\epsilon) = \tilde{O}(m^4/\epsilon^2)$  samples from BNE bids from auction C.

## Theorem (Hartline, Taggart '19)

Batched non-iid single-dimensional mechanism design  $(1 - \epsilon)$ -approx. reduces to i.i.d. position auction with batch size  $M(\epsilon) = n/\epsilon^3$ .

## Corollary (Batch, Sample Complexity)

 $\epsilon$  revenue/welfare loss w. batch, sample size  $M(\epsilon) = n^4/\epsilon^3$ ,  $N(\epsilon) = \tilde{O}(n^{16}/\epsilon^{14})$ 

#### Batch ⇒ IID Position Auction

## Theorem (Hartline, Taggart '16,'19)

Batched non-iid single-dimensional mechanism design  $(1 - \epsilon)$ -approx. reduces to i.i.d. position auction with batch size  $M(\epsilon) = n/\epsilon^3$ .

#### Main idea:

- batched env. is m i.i.d. single-dimensional auctions with n agents.
- ullet convert to n position auctions on m i.i.d. agents.

## Definition (Surrogate Ranking Mechanism)

population  $i \in [n]$ ; stage  $j \in [m]$ ; surrogate values  $\{\Phi_i^1 \ge \cdots \ge \Phi_i^m\}_{i \in [n]}$ .

- solicit bids:  $\{b_i^j\}_{i\in[n]}^{j\in[m]}$ ;
- ② compute ranks of each agent ij among population i bids  $\{b_i^j\}^{j \in [m]}$ :  $r_i^j$ .
- **3** maximize surrogate welfare in each stage j:  $\mathbf{x}^j = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_i \Phi_i^{\mathbf{r}_i^j} \times_i$
- charge winners their bids.

Note Optimal surrogate values are expected order statistics.

#### Part III

## Simplicity, Robustness, & the Revelation Gap

- Revelation Gap
- 5 Implementation Theory

## Prior-independent Mechanism Design

**Motivation:** understand mechanisms that are robust to variation in distribution of preferences.

Cf. [Wilson '87] [Bergemann, Morris '05] [Carroll '15]

#### Prior-independent Mechanism Design

$$\min_{\substack{\mathcal{M} \in \mathsf{MECH} \ F \in \mathsf{DIST}}} \max_{\substack{\mathbf{E}_{\mathbf{v} \sim F}[\mathsf{OPT}_F(\mathbf{v})] \\ \mathbf{E}_{\mathbf{v} \sim F}[\mathcal{M}(\mathbf{v})]}}$$

#### Notation

- MECH: family of mechanisms.
- DIST: family of type distributions.
- $\mathbf{v} = (v_1, \dots, v_n)$ : profile of private types.
- $\mathsf{OPT}_F$ : optimal mechanism for type distribution F.
- $\mathcal{M}(\mathbf{v})$ : welfare/revenue of mechanism on private types  $\mathbf{v}$ .

## Revelation Principle vs. Prior-independence

Mechanism Design: identify mechanism that has good equilibrium.

**Revelation principle:** if exists mechanism with good equilibrium, then exists mechanism with good truthtelling equilibrium. [Myerson '81]

**Observation:** the construction of the revelation principle breaks prior-independence.

**Question:** are non-truthful mechanisms better than truthful mechanisms for prior-independent mechanism design?

#### Section 4

## Revelation Gap

#### References:

- Feng, Hartline (2018) "An End-to-End Argument in Mechanism Design (Prior-Independent Auctions for Budgeted Agents)"
- Feng, Hartline, Li (202?) "A Revelation Gap for Pricing from Samples"
- ullet Hartline (202?) "Mechanism Design and Approximation" Chapter 5

## **Pricing from Samples**

Model: Pricing from Samples

- single item, single buyer.
- buyer has private valuation  $v \sim F$ .
- F is monotone hazard rate (MHR), i.e.,  $\frac{f(z)}{1-F(z)}$  is non-decreasing.
- seller has access to a single sample  $s \sim F$ .

**Goal:** approximate the optimal revenue (when F is known)

## Revelation Gap for MHR distribution

## Theorem (Allouah, Besbes '19)

For monotone hazard rate distributions, the prior-independent approx. of truthful pricing from a sample is between 1.543 and 1.575.

#### **Theorem**

For monotone hazard rate distributions, the prior-independent approx. of (non-truthful) pricing from a sample is between 1.073 and 1.296.

#### Corollary

For monotone hazard rate distributions, the revelation gap for pricing from a sample is between 1.19 and 1.47.

## Revelation Gap for MHR distribution

## Theorem (Lower Bound)

For uniform distributions (including pointmasses), the prior-independent approximation of pricing from a sample is at least 1.07.

## Theorem (Upper Bound)

For monotone hazard rate distributions, exists non-truthful mechanism with prior-independent approximation ratio at most 1.296.

## Definition (Sample Pricing Mechanism)

- 1 Let the agent decide to participate or not.
- ② A participating agent receives the item and pays  $\alpha \cdot s$ .

#### Buyer behavior

Participates if  $v \ge \alpha \cdot w$ , where  $w = \mathbf{E}_{s \sim F}[s]$ .

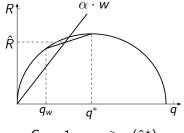
#### **Proof Sketch**

#### Theorem (Upper Bound)

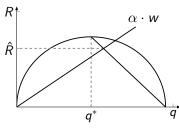
For monotone hazard rate distributions, exists non-truthful mechanism with prior-independent approximation ratio at most 1.296.

#### Proof sketch:

Lower bound probability of participating in two cases:



Case 1:  $\alpha w \geq v(\hat{\mathbf{q}}^*)$ 



Case 2:  $\alpha w \leq v(\hat{\mathbf{q}}^*)$ 

2 Best  $\alpha=0.78$  gives approximation at most 1.39. (1.296 approx follows from better analysis using curvature)

#### Section 5

## Implementation Theory

#### References:

- Jackson (2001) "A crash course in implementation theory"
- ② Caillaud, Robert (2005) "Implementation of the revenue-maximizing auction by an ignorant seller"

## Mechanism Design for an Ignorant Seller [cf. Jackson '01]

## Proposition (Informal)

Anything commonly known by the agents, the mechanism can be assumed to know.

#### Definition (Report-the-prior Mechainsm)

- Solicit prior.
- "shoot agents if they disagree".
- 3 Run optimal mechanism for reported prior.

#### Discussion:

- possesses an optimal equilibrium.
- 2 possesses other equilibria (but there are tricks for removing them).
- begs the question.

## Revenue Maximization with a Prior [Myerson '81]

Consider selling a single-item to agents with values  $\mathbf{v} \sim \mathbf{\emph{F}}$ .

#### Definition (Ascending Virtual Price Mechanism)

Given monotone virtual value function  $\phi = (\phi_1, \dots, \phi_n)$ 

- raise a virtual price  $\phi$  from 0 (where agent i's price is  $\hat{\mathbf{v}}_i = \phi_i^{-1}(\phi)$ )
- 2 when one bidder remains, sell at her price.

#### **Theorem**

For any distribution  $\mathbf{F}$ , there are  $\phi$  for which the ascending virtual price mechanism is revenue optimal.

## Mechanism Design for an Ignorant Seller [Caillaud, Robert '05]

## Definition (Belief Free Ascending Mechanism, BFA)

- $oldsymbol{0}$  run ascending mechanism w. uniform price  $\phi$  until one agent remains.
- **2** remaining agent *i* can offer to increase the price to  $p \ge \phi$ .
- 3 a random agent j is allowed to challenge at price q > p.
- if no challenge: i pays p; if challenge: i pays  $\Delta$
- $\odot$  if *i* accepts challenge: *i* pays *p* to seller and q p to challenger
- **o** if *i* rejects challenge: challenger *j* pays  $p \phi$  to seller.

Thm: BFA admits a revenue-optimal equilibrium.

#### Proof.

#### The following is an equilibrium:

- Agents remain in ascending auction until, for  $i: \phi_i^{-1}(\phi) > v_i$ .
- Remaining agent *i* offers  $p = \phi_i^{-1}(\phi)$ .
- If  $p < \phi_i^{-1}(\phi)$  then challenger j challenges  $q = \phi_i^{-1}(\phi)$
- Agent i accepts challenges q < v<sub>i</sub>.

#### Conclusion

#### Conclusion

- Strange non-truthful mechanisms for ignorant sellers.
- Need to consider prior-independent non-truthful carefully.

#### Directions

- single-agent sample-based pricing [e.g., Feng, Hartline, Li]
- e.g., restrict to single-round, winner-pays-bid mechanisms.

# Tutorial: Foundations of Non-truthful Mechanism Design

#### Part I: Equilibrium Analysis

- Single-dimensional Environments
- 2 Revenue Equivalence and Applications
- 3 Robust Analysis of Equilibria

#### Part II: Non-truthful Sample Complexity

- Counterfactual Estimation
- 2 Inference for I.i.d. Position Auctions
- General Reduction to I.i.d. Position Auctions

#### Part III: Simplicity, Robustness, & the Revelation Gap

- Revelation Gap
- 2 Implementation Theory