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Context: The Revelation Principle

Mechanism Design: identify mechanism that has good equilibrium.

Revelation principle: if exists mechanism with good equilibrium,
then exists mechanism with good truthtelling equilibrium. [Myerson ’81]

Proof: truthful mechanism can simulate equilibrium strategies in
non-truthful mechanism.

Consequence: literature focuses on truthful mechanisms.

Issues:

practical mechanisms are not truthful.

not without loss for simple or prior-independent mechanisms.

non-trivial to undo the revelation principle.

Goal: theory for non-truthful mechanism design.
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Example: Bad Welfare for Winner-pays-bid Mechanisms

Proposition (e.g., Lucier, Borodin ’10)

winner-pays-bid highest-bids-win mechanisms can have very bad equilibria.

Example (Single-minded Combinatorial Auction)

Preferences:

m items.

m + 2 agents.

agents i ∈ {1, . . . ,m} values bundle Si = {i} at vi = 1.

agents h ∈ {m + 1,m + 2} values bundle Sh = {1, . . . ,m} at vh = 1.

A Nash equilibrium:

agents h ∈ {m + 1,m + 2} bid bh = 1 (one wins, one loses)

agents i ∈ {1, . . . ,m} bid bi = 0 (all lose)

all agent utilities = 0 for bids ≤ 1.

Nash welfare = 1; optimal welfare = m. Goal for Part II: OPT− ε
Jason Hartline (Northwestern U.) Non-truthful Mechanism Design EC Tutorial 2020 4 / 32



Sample Complexity in Mechanism Design

Story: Use past bid data to improve mechanism.

Definition (Truthful Sample Complexity)

Number of samples N(ε) from value distribution sufficient to identify
truthful mechanism with expected performance at least OPT− ε.

Observation: if designer ran truthful mechanism, can reoptimize truthful
mechanism from truthful data.
Practical Issue: > 99% of mechanisms in real life are non-truthful.

past bid data is non-truthful.

need to design non-truthful auction.

Main Challenges:

inference of values from bids requires strong assumptions on value
distribution and mechanism.

non-trivial to design Bayes-Nash equilibria in non-truthful mechanisms
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Part II

Non-truthful Sample Complexity

1 Counterfactual Inference

2 Inference for I.i.d. Position Auctions

3 General Reduction to I.i.d. Position Auctions
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Running Example

Running Example: three agents, highest-bids-win, winner-pays-bid

Auction A: one unit.

Auction B: two units.

Auction C: mix 0.5A + 0.5B.

1

1/2

0
1 2 3

Qstn?Given equilibrium bid data for C, estimate revenues of A and B?
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Equilibrium and Inference

Assumption: bids are in equilibrium,
i.e, in best response to competing bid
distribution.

Econometrics Observation

competing bid distribution is in
observed data.

Approach:

1 given bid distribution, solve for bid
strategy.

2 invert bid strategy to get agent’s
value from bid.

0 1

0

1

quantile q

b2
b3

0 1
0

1
x̃1(b1)
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Bid Inversion

Example: How should agent 1 bid in Auction C?

What’s expected utility w. value v and bid b?

E[utility(v, b)] = (v − b)× Pr[1 wins w. bid b]

0 1
0

1

v1b1

x̃1(b1)

≈ (v − b)× b = v b− b2

to maximize: take derivative d
db , set to zero, solve

optimal to bid b = v/2 (bid half your value!)

Conclusion 1: Infer that agent with bid b has value v = 2 b
Recall: Bids uniform on [0, 1]

0 1
0

1

quantile q

b2b3
Conclusion 2: Values are uniform on [0, 2].
Revenue:

value order statistics evenly divide interval:
E
[
v(1)
]

= 3/2; E
[
v(2)
]

= 1; E
[
v(3)
]

= 1/2

revenue equivalence:
Rev[A] = E

[
v(2)
]

= 1; Rev[B] = E
[
2 v(3)

]
= 1;

Rev[C ] = 1/2Rev[A] + 1/2Rev[B] = 1
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Section 2

Inference for I.i.d. Position Auctions

References:

1 Guerre, Perrigne, Vuong (2000) “Optimal nonparametric estimation
of first-price auctions”

2 Chawla, Hartline, Nekipelov (2017) “Mechanism Redesign”
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I.i.d. Position Auctions

Definition (I.i.d. Winner-pays-bid Position Auction)

m positions with weights w1 ≥ · · · ≥ wm; m agents with iid values vj ∼ F
1 Agents submit bids.

2 Agents assigned to positions in decreasing order of bid.

3 Agent in position j wins with probability wj .

4 Winners pay their bids.

Goal

From bids in position auction C, estimate revenue of position auction B.
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Quantile Space, Revenue Curves, Expected Revenue

Definition (Inv. Demand Curve)

v(q) = F−1(1− q) is the value of
an agent with quantile q ∈ [0, 1].

Definition (Revenue Curve)

R(q̂) = q̂ v(q̂) is revenue from
posting price with sale prob. q̂.

Example (Uniform Distribution)

0
0 1

1

q

v(q)

v(q̂)

q̂
0

0 1q

R(q)

v(q̂) q̂

q̂

Def: Quantile allocation rule: y(q) = x(v(q))

Thm: Expected revenue of alloc. y for agent w. R is: −
∫ 1
0 R(q̂) y′(q̂) d q̂

Pf: view y as cdf of critical quantile q̂ with density: −y′.
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Classical Revenue Inference, Revisited

Inference Equation: for winner-pays-bid auction C:

v̂(q) = b̂C (q) +
yC (q) b̂′C (q)

y ′C (q)

Notes:

allocation rule yC and derivative y ′C known. (from auction defn)

estimated bid function b̂C obverved; derivative b̂′C estimated.

Auction Theory: expected revenue of auction B:

R̂B = −
∫ 1

0
v̂(q) q y ′B(q) dq

Estimators: for N samples from b

empirical b̂C has rate
√
N.

standard b̂′C estimator has rate worse than
√
N.

⇒ revenue R̂B estimator has rate worse than
√
N.
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Direct Approach [Chawla, Hartline, Nekipelov ’17]

Inference Equation: for winner-pays-bid auction C:

v̂(q) = b̂C (q) +
yC (q) b̂′C (q)

y ′C (q)

Auction Theory: expected revenue of auction b:

R̂B =

∫ 1

0
v̂(q) q y ′B(q) dq

Step 1: Combine:

R̂B =
∫ 1
0

(
b̂C (q) +

yC (q) b̂
′
C (q)

y ′
C (q)

)
q y ′B(q) dq

Step 2: Simplify with integration by parts (Define WC ,B):

R̂B =
∫ 1
0 WC ,B(q) b̂C (q) dq

Step 3: bound E
[
|RB − R̂B |

]
= E

[
|
∫ 1
0 WC ,B(q) (bB(q)− b̂B(q)) dq|

]
Step 4: estimator for N sorted bids is R̂B =

∑
i WC ,B( i

N+1) b̂i ,C
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Section 3

General Reduction to I.i.d. Position Auctions

References:

1 Chawla, Hartline (2013) “Auctions with unique equilibria”

2 Chawla, Hartline, Nekipelov (2017) “Mechanism Redesign”

3 Hartline, Taggart (2019) “Sample Complexity for Non-truthful
Mechanisms”
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Definitions for Non-truthful Sample Complexity

Definition (Independent Single-Dimensional Environment)

n agents, values vi ∼ F i , F = F 1 × · · · × F n.

feasible allocations x = (x1, . . . , xn) ∈ X ⊂ [0, 1]n

Definition (Batched Environment)

An batched environment for n populations and m stages is Cartesian
product with nm agents. Cf. online environment.

Definition (I.i.d. Winner-pays-bid Position Auction)

m positions with weights w1 ≥ · · · ≥ wm; m agents with iid values vj ∼ F
1 Agents submit bids.

2 Agents assigned to positions in decreasing order of bid.

3 Agent in position j wins with probability wj .

4 Winners pay their bids.
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Theorems for Non-truthful Sample Complexity

Theorem (Chawla, Hartline ’13)

i.i.d. winner-pays-bid position auction: BNE is unique, symmetric, efficient.

Theorem (Chawla, Hartline, Nekipelov ’17)

For i.i.d. position auctions B and C and values in [0, 1]:

ε error in welfare/revenue estimate of auction B with
N(ε) = Õ(m4/ε2) samples from BNE bids from auction C.

Theorem (Hartline, Taggart ’19)

Batched non-iid single-dimensional mechanism design (1− ε)-approx.
reduces to i.i.d. position auction with batch size M(ε) = n/ε3.

Corollary (Batch, Sample Complexity)

ε revenue/welfare loss w. batch, sample size M(ε)=n4/ε3, N(ε)= Õ(n16/ε14)
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Batch ⇒ IID Position Auction

Theorem (Hartline, Taggart ’16,’19)

Batched non-iid single-dimensional mechanism design (1− ε)-approx.
reduces to i.i.d. position auction with batch size M(ε) = n/ε3.

Main idea:

batched env. is m i.i.d. single-dimensional auctions with n agents.

convert to n position auctions on m i.i.d. agents.

Definition (Surrogate Ranking Mechanism)

population i ∈ [n]; stage j ∈ [m]; surrogate values {Φ1
i ≥ · · · ≥ Φm

i }i∈[n].
1 solicit bids: {bj

i}
j∈[m]
i∈[n] ;

2 compute ranks of each agent ij among population i bids {bj
i}j∈[m]: rji .

3 maximize surrogate welfare in each stage j : xj =argmaxx∈X
∑

i Φ
rji
i xi

4 charge winners their bids.

Note: Optimal surrogate values are expected order statistics.
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Part III

Simplicity, Robustness, & the Revelation Gap

4 Revelation Gap

5 Implementation Theory
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Prior-independent Mechanism Design

Motivation: understand mechanisms that are robust to variation in
distribution of preferences.
Cf. [Wilson ’87] [Bergemann, Morris ’05] [Carroll ’15]

Prior-independent Mechanism Design

min
M∈MECH

max
F∈DIST

Ev∼F [OPTF (v)]

Ev∼F [M(v)]

Notation

MECH: family of mechanisms.

DIST: family of type distributions.

v = (v1, . . . , vn): profile of private types.

OPTF : optimal mechanism for type distribution F .

M(v): welfare/revenue of mechanism on private types v.
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Revelation Principle vs. Prior-independence

Mechanism Design: identify mechanism that has good equilibrium.

Revelation principle: if exists mechanism with good equilibrium,
then exists mechanism with good truthtelling equilibrium. [Myerson ’81]

Observation: the construction of the revelation principle breaks
prior-independence.

Question: are non-truthful mechanisms better than truthful mechanisms
for prior-independent mechanism design?
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Section 4

Revelation Gap

References:

1 Feng, Hartline (2018) “An End-to-End Argument in Mechanism
Design (Prior-Independent Auctions for Budgeted Agents)”

2 Feng, Hartline, Li (202?) “A Revelation Gap for Pricing from
Samples”

3 Hartline (202?) “Mechanism Design and Approximation” Chapter 5
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Pricing from Samples

Model: Pricing from Samples

single item, single buyer.

buyer has private valuation v ∼ F .

F is monotone hazard rate (MHR), i.e., f(z)
1−F (z) is non-decreasing.

seller has access to a single sample s ∼ F .

Goal: approximate the optimal revenue (when F is known)
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Revelation Gap for MHR distribution

Theorem (Allouah, Besbes ’19)

For monotone hazard rate distributions, the prior-independent approx. of
truthful pricing from a sample is between 1.543 and 1.575.

Theorem

For monotone hazard rate distributions, the prior-independent approx. of
(non-truthful) pricing from a sample is between 1.073 and 1.296.

Corollary

For monotone hazard rate distributions, the revelation gap for pricing from
a sample is between 1.19 and 1.47.
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Revelation Gap for MHR distribution

Theorem (Lower Bound)

For uniform distributions (including pointmasses), the prior-independent
approximation of pricing from a sample is at least 1.07.

Theorem (Upper Bound)

For monotone hazard rate distributions, exists non-truthful mechanism
with prior-independent approximation ratio at most 1.296.

Definition (Sample Pricing Mechanism)

1 Let the agent decide to participate or not.

2 A participating agent receives the item and pays α · s.

Buyer behavior

Participates if v ≥ α · w , where w = Es∼F [s].
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Proof Sketch

Theorem (Upper Bound)

For monotone hazard rate distributions, exists non-truthful mechanism
with prior-independent approximation ratio at most 1.296.

Proof sketch:
1 Lower bound probability of participating in two cases:

qw q∗ q

R̂

R α · w

q∗ q

R̂

R α · w

Case 1: αw ≥ v(q̂?) Case 2: αw ≤ v(q̂?)

2 Best α = 0.78 gives approximation at most 1.39.
(1.296 approx follows from better analysis using curvature)
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Section 5

Implementation Theory

References:

1 Jackson (2001) “A crash course in implementation theory”

2 Caillaud, Robert (2005) “Implementation of the revenue-maximizing
auction by an ignorant seller”
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Mechanism Design for an Ignorant Seller [cf. Jackson ’01]

Proposition (Informal)

Anything commonly known by the agents, the mechanism can be assumed
to know.

Definition (Report-the-prior Mechainsm)

1 Solicit prior.

2 “shoot agents if they disagree”.

3 Run optimal mechanism for reported prior.

Discussion:

1 possesses an optimal equilibrium.

2 possesses other equilibria (but there are tricks for removing them).

3 begs the question.
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Revenue Maximization with a Prior [Myerson ’81]

Consider selling a single-item to agents with values v ∼ F .

Definition (Ascending Virtual Price Mechanism)

Given monotone virtual value function φ = (φ1, . . . , φn)

1 raise a virtual price φ from 0
(where agent i ’s price is v̂i = φ−1i (φ))

2 when one bidder remains, sell at her price.

Theorem

For any distribution F , there are φ for which the ascending virtual price
mechanism is revenue optimal.
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Mechanism Design for an Ignorant Seller [Caillaud, Robert ’05]

Definition (Belief Free Ascending Mechanism, BFA)

1 run ascending mechanism w. uniform price φ until one agent remains.

2 remaining agent i can offer to increase the price to p ≥ φ.

3 a random agent j is allowed to challenge at price q > p.

4 if no challenge: i pays p; if challenge: i pays ∆

5 if i accepts challenge: i pays p to seller and q − p to challenger

6 if i rejects challenge: challenger j pays p − φ to seller.

Thm: BFA admits a revenue-optimal equilibrium.

Proof.

The following is an equilibrium:

Agents remain in ascending auction until, for i : φ−1i (φ) > vi .

Remaining agent i offers p = φ−1i (φ).

If p < φ−1i (φ) then challenger j challenges q = φ−1i (φ)

Agent i accepts challenges q ≤ vi .
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Conclusion

Conclusion

Strange non-truthful mechanisms for ignorant sellers.

Need to consider prior-independent non-truthful carefully.

Directions

single-agent sample-based pricing [e.g., Feng, Hartline, Li]

e.g., restrict to single-round, winner-pays-bid mechanisms.
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