Tutorial: Foundations of Non-truthful Mechanism Design

Part II: Non-truthful Sample Complexity Tutor: Jason Hartline

Part III: Simplicity, Robustness, the Revelation Gap

Schedule:

Part II: 10-10:45am (http://ec20.sigecom.org/tech/tutorial)
Part III: 11-11:45am (http://ec20.sigecom.org/tech/tutorial)

Protocol:

During session, panelest will answer clarifying questions in chat.

In post-session Q/A, "raise hand" to ask question.

Tutorial Cochairs

Brendan Lucier

Sigal Oren

Panelists

Yiding Feng

Yingkai Li

Foundations of Non-truthful Mechanism Design http://jasonhartline.com/tutorial-non-truthful/

Jason Hartline

Northwestern University
hartline@northwestern.edu

EC Tutorial 2020

Context: The Revelation Principle

Mechanism Design: identify mechanism that has good equilibrium.

Revelation principle: if exists mechanism with good equilibrium, then exists mechanism with good truthtelling equilibrium. [Myerson '81]

Proof: truthful mechanism can simulate equilibrium strategies in non-truthful mechanism.

Consequence: literature focuses on truthful mechanisms.

Issues:

- practical mechanisms are not truthful.
- not without loss for simple or prior-independent mechanisms.
- non-trivial to undo the revelation principle.

Goal: theory for non-truthful mechanism design.

Example: Bad Welfare for Winner-pays-bid Mechanisms

Proposition (e.g., Lucier, Borodin '10)

winner-pays-bid highest-bids-win mechanisms can have very bad equilibria.

Example (Single-minded Combinatorial Auction)

Preferences:

- m items.
- m+2 agents.
- agents $i \in \{1, ..., m\}$ values bundle $S_i = \{i\}$ at $v_i = 1$.
- agents $h \in \{m+1, m+2\}$ values bundle $\mathsf{S}_h = \{1, \dots, m\}$ at $\mathsf{v}_h = 1$.

A Nash equilibrium:

- ullet agents $h \in \{m+1, m+2\}$ bid $b_h = 1$ (one wins, one loses)
- agents $i \in \{1, \dots, m\}$ bid $b_i = 0$ (all lose)
- all agent utilities = 0 for bids ≤ 1 .

Nash welfare = 1; optimal welfare = m. Goal for Part II: OPT $-\epsilon$

Sample Complexity in Mechanism Design

Story: Use past bid data to improve mechanism.

Definition (Truthful Sample Complexity)

Number of samples $N(\epsilon)$ from value distribution sufficient to identify truthful mechanism with expected performance at least OPT $-\epsilon$.

Observation: if designer ran truthful mechanism, can reoptimize truthful mechanism from truthful data.

Practical Issue: > 99% of mechanisms in real life are non-truthful.

- past bid data is non-truthful.
- need to design non-truthful auction.

Main Challenges:

- inference of values from bids requires strong assumptions on value distribution and mechanism.
- non-trivial to design Bayes-Nash equilibria in non-truthful mechanisms

Part II

Non-truthful Sample Complexity

- Counterfactual Inference
- 2 Inference for I.i.d. Position Auctions
- 3 General Reduction to I.i.d. Position Auctions

Running Example

Running Example: three agents, highest-bids-win, winner-pays-bid

- Auction A: one unit.
- Auction B: two units.
- Auction C: mix 0.5A + 0.5B.

Qstn Given equilibrium bid data for C, estimate revenues of A and B?

Equilibrium and Inference

Assumption: bids are in equilibrium, i.e, in best response to competing bid distribution.

Econometrics Observation

competing bid distribution is in observed data.

Approach:

- given bid distribution, solve for bid strategy.
- invert bid strategy to get agent's value from bid.

Bid Inversion

Example: How should agent 1 bid in Auction C?

• What's expected utility w. value v and bid b?

$$\begin{aligned} \textbf{E}[\text{utility}(v,b)] &= (v-b) \times \textbf{Pr}[1 \text{ wins w. bid b}] \\ &\approx (v-b) \times b = v \, b - b^2 \end{aligned}$$

- to maximize: take derivative $\frac{d}{db}$, set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: Infer that agent with bid b has value v = 2b

Recall: Bids uniform on [0,1]

Conclusion 2: Values are uniform on [0, 2].

Revenue:

• value order statistics evenly divide interval: $\mathbf{E}[v_{(1)}] = 3/2$; $\mathbf{E}[v_{(2)}] = 1$; $\mathbf{E}[v_{(3)}] = 1/2$

Section 2

Inference for I.i.d. Position Auctions

References:

- Guerre, Perrigne, Vuong (2000) "Optimal nonparametric estimation of first-price auctions"
- 2 Chawla, Hartline, Nekipelov (2017) "Mechanism Redesign"

Li.d. Position Auctions

Definition (I.i.d. Winner-pays-bid Position Auction)

m positions with weights $w_1 \ge \cdots \ge w_m$; m agents with iid values $v_j \sim F$

- Agents submit bids.
- 2 Agents assigned to positions in decreasing order of bid.
- **3** Agent in position j wins with probability w_j .
- Winners pay their bids.

Goal

From bids in position auction C, estimate revenue of position auction B.

Quantile Space, Revenue Curves, Expected Revenue

Definition (Inv. Demand Curve)

 $v(\mathbf{q}) = F^{-1}(1-\mathbf{q})$ is the value of an agent with quantile $\mathbf{q} \in [0,1]$.

Definition (Revenue Curve)

 $R(\hat{\mathbf{q}}) = \hat{\mathbf{q}} v(\hat{\mathbf{q}})$ is revenue from posting price with sale prob. $\hat{\mathbf{q}}$.

Example (Uniform Distribution)

Def: Quantile allocation rule: y(q) = x(v(q))

Thm: Expected revenue of alloc. y for agent w. R is: $-\int_0^1 R(\hat{\mathbf{q}}) \, y'(\hat{\mathbf{q}}) \, d\hat{\mathbf{q}}$

Pf: view y as cdf of critical quantile \hat{q} with density: -y'.

Classical Revenue Inference, Revisited

Inference Equation: for winner-pays-bid auction C:

$$\hat{\mathbf{v}}(\mathbf{q}) = \hat{\mathbf{b}}_{C}(\mathbf{q}) + \frac{\mathbf{y}_{C}(\mathbf{q}) \, \hat{\mathbf{b}}_{C}'(\mathbf{q})}{\mathbf{y}_{C}'(\mathbf{q})}$$

Notes:

- allocation rule y_C and derivative y'_C known. (from auction defn)
- estimated bid function \hat{b}_C obverved; derivative \hat{b}_C' estimated.

Auction Theory: expected revenue of auction B:

$$\hat{R}_B = -\int_0^1 \hat{v}(q) \, q \, y_B'(q) \, dq$$

Estimators: for *N* samples from *b*

- empirical \hat{b}_C has rate \sqrt{N} .
- standard \hat{b}'_C estimator has rate worse than \sqrt{N} .
- \Rightarrow revenue \hat{R}_B estimator has rate worse than \sqrt{N} .

Direct Approach [Chawla, Hartline, Nekipelov '17]

Inference Equation: for winner-pays-bid auction C:

$$\hat{\mathbf{v}}(\mathbf{q}) = \hat{\mathbf{b}}_{C}(\mathbf{q}) + \frac{\mathbf{y}_{C}(\mathbf{q}) \hat{\mathbf{b}}_{C}'(\mathbf{q})}{\mathbf{y}_{C}'(\mathbf{q})}$$

Auction Theory: expected revenue of auction *b*:

$$\hat{R}_B = \int_0^1 \hat{\mathbf{v}}(\mathbf{q}) \, \mathbf{q} \, y_B'(\mathbf{q}) \, d\mathbf{q}$$

Step 1: Combine:

$$\hat{R}_B = \int_0^1 \left(\hat{b}_C(q) + \frac{y_C(q) \, \hat{b}'_C(q)}{y'_C(q)} \right) q \, y'_B(q) \, dq$$

Step 2: Simplify with integration by parts (Define $W_{C,B}$):

$$\hat{R}_B = \int_0^1 W_{C,B}(q) \, \hat{b}_C(q) \, dq$$

Step 3: bound
$$\mathbf{E}\left[|R_B - \hat{R}_B|\right] = \mathbf{E}\left[|\int_0^1 W_{C,B}(\mathbf{q}) \left(b_B(\mathbf{q}) - \hat{b}_B(\mathbf{q})\right) d\mathbf{q}|\right]$$

Step 4: estimator for N sorted bids is $\hat{R}_B = \sum_i W_{C,B}(\frac{i}{N+1}) \hat{b}_{i,C}$

Section 3

General Reduction to I.i.d. Position Auctions

References:

- Chawla, Hartline (2013) "Auctions with unique equilibria"
- Chawla, Hartline, Nekipelov (2017) "Mechanism Redesign"
- Hartline, Taggart (2019) "Sample Complexity for Non-truthful Mechanisms"

Definitions for Non-truthful Sample Complexity

Definition (Independent Single-Dimensional Environment)

- n agents, values $v_i \sim F_i$, $F = F_1 \times \cdots \times F_n$.
- feasible allocations $\mathbf{x} = (\mathsf{x}_1, \dots, \mathsf{x}_n) \in \mathcal{X} \subset [0,1]^n$

Definition (Batched Environment)

An batched environment for n populations and m stages is Cartesian product with nm agents. Cf. online environment.

Definition (I.i.d. Winner-pays-bid Position Auction)

m positions with weights $w_1 \geq \cdots \geq w_m$; m agents with iid values $v_j \sim F$

- Agents submit bids.
- Agents assigned to positions in decreasing order of bid.
- **3** Agent in position j wins with probability w_i .
- Winners pay their bids.

Theorems for Non-truthful Sample Complexity

Theorem (Chawla, Hartline '13)

i.i.d. winner-pays-bid position auction: BNE is unique, symmetric, efficient.

Theorem (Chawla, Hartline, Nekipelov '17)

For i.i.d. position auctions B and C and values in [0,1]: ϵ error in welfare/revenue estimate of auction B with $N(\epsilon) = \tilde{O}(m^4/\epsilon^2)$ samples from BNE bids from auction C.

Theorem (Hartline, Taggart '19)

Batched non-iid single-dimensional mechanism design $(1 - \epsilon)$ -approx. reduces to i.i.d. position auction with batch size $M(\epsilon) = n/\epsilon^3$.

Corollary (Batch, Sample Complexity)

 ϵ revenue/welfare loss w. batch, sample size $M(\epsilon) = n^4/\epsilon^3$, $N(\epsilon) = \tilde{O}(n^{16}/\epsilon^{14})$

Batch ⇒ IID Position Auction

Theorem (Hartline, Taggart '16,'19)

Batched non-iid single-dimensional mechanism design $(1 - \epsilon)$ -approx. reduces to i.i.d. position auction with batch size $M(\epsilon) = n/\epsilon^3$.

Main idea:

- batched env. is m i.i.d. single-dimensional auctions with n agents.
- ullet convert to n position auctions on m i.i.d. agents.

Definition (Surrogate Ranking Mechanism)

population $i \in [n]$; stage $j \in [m]$; surrogate values $\{\Phi_i^1 \ge \cdots \ge \Phi_i^m\}_{i \in [n]}$.

- solicit bids: $\{b_i^j\}_{i\in[n]}^{j\in[m]}$;
- ② compute ranks of each agent ij among population i bids $\{b_i^j\}^{j \in [m]}$: r_i^j .
- **3** maximize surrogate welfare in each stage j: $\mathbf{x}^j = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_i \Phi_i^{\mathbf{r}_i^j} \times_i$
- charge winners their bids.

Note Optimal surrogate values are expected order statistics.

Part III

Simplicity, Robustness, & the Revelation Gap

- Revelation Gap
- 5 Implementation Theory

Prior-independent Mechanism Design

Motivation: understand mechanisms that are robust to variation in distribution of preferences.

Cf. [Wilson '87] [Bergemann, Morris '05] [Carroll '15]

Prior-independent Mechanism Design

$$\min_{\substack{\mathcal{M} \in \mathsf{MECH} \ F \in \mathsf{DIST}}} \max_{\substack{\mathbf{E}_{\mathbf{v} \sim F}[\mathsf{OPT}_F(\mathbf{v})] \\ \mathbf{E}_{\mathbf{v} \sim F}[\mathcal{M}(\mathbf{v})]}}$$

Notation

- MECH: family of mechanisms.
- DIST: family of type distributions.
- $\mathbf{v} = (v_1, \dots, v_n)$: profile of private types.
- OPT_F : optimal mechanism for type distribution F.
- $\mathcal{M}(\mathbf{v})$: welfare/revenue of mechanism on private types \mathbf{v} .

Revelation Principle vs. Prior-independence

Mechanism Design: identify mechanism that has good equilibrium.

Revelation principle: if exists mechanism with good equilibrium, then exists mechanism with good truthtelling equilibrium. [Myerson '81]

Observation: the construction of the revelation principle breaks prior-independence.

Question: are non-truthful mechanisms better than truthful mechanisms for prior-independent mechanism design?

Section 4

Revelation Gap

References:

- Feng, Hartline (2018) "An End-to-End Argument in Mechanism Design (Prior-Independent Auctions for Budgeted Agents)"
- Feng, Hartline, Li (202?) "A Revelation Gap for Pricing from Samples"
- ullet Hartline (202?) "Mechanism Design and Approximation" Chapter 5

Pricing from Samples

Model: Pricing from Samples

- single item, single buyer.
- buyer has private valuation $v \sim F$.
- F is monotone hazard rate (MHR), i.e., $\frac{f(z)}{1-F(z)}$ is non-decreasing.
- seller has access to a single sample $s \sim F$.

Goal: approximate the optimal revenue (when F is known)

Revelation Gap for MHR distribution

Theorem (Allouah, Besbes '19)

For monotone hazard rate distributions, the prior-independent approx. of truthful pricing from a sample is between 1.543 and 1.575.

Theorem

For monotone hazard rate distributions, the prior-independent approx. of (non-truthful) pricing from a sample is between 1.073 and 1.296.

Corollary

For monotone hazard rate distributions, the revelation gap for pricing from a sample is between 1.19 and 1.47.

Revelation Gap for MHR distribution

Theorem (Lower Bound)

For uniform distributions (including pointmasses), the prior-independent approximation of pricing from a sample is at least 1.07.

Theorem (Upper Bound)

For monotone hazard rate distributions, exists non-truthful mechanism with prior-independent approximation ratio at most 1.296.

Definition (Sample Pricing Mechanism)

- 1 Let the agent decide to participate or not.
- ② A participating agent receives the item and pays $\alpha \cdot s$.

Buyer behavior

Participates if $v \ge \alpha \cdot w$, where $w = \mathbf{E}_{s \sim F}[s]$.

Proof Sketch

Theorem (Upper Bound)

For monotone hazard rate distributions, exists non-truthful mechanism with prior-independent approximation ratio at most 1.296.

Proof sketch:

Lower bound probability of participating in two cases:

Case 1: $\alpha w \geq v(\hat{\mathbf{q}}^*)$

Case 2: $\alpha w \leq v(\hat{\mathbf{q}}^*)$

2 Best $\alpha=0.78$ gives approximation at most 1.39. (1.296 approx follows from better analysis using curvature)

Section 5

Implementation Theory

References:

- Jackson (2001) "A crash course in implementation theory"
- ② Caillaud, Robert (2005) "Implementation of the revenue-maximizing auction by an ignorant seller"

Mechanism Design for an Ignorant Seller [cf. Jackson '01]

Proposition (Informal)

Anything commonly known by the agents, the mechanism can be assumed to know.

Definition (Report-the-prior Mechainsm)

- Solicit prior.
- "shoot agents if they disagree".
- 3 Run optimal mechanism for reported prior.

Discussion:

- possesses an optimal equilibrium.
- 2 possesses other equilibria (but there are tricks for removing them).
- begs the question.

Revenue Maximization with a Prior [Myerson '81]

Consider selling a single-item to agents with values $\mathbf{v} \sim \mathbf{\emph{F}}$.

Definition (Ascending Virtual Price Mechanism)

Given monotone virtual value function $\phi = (\phi_1, \dots, \phi_n)$

- raise a virtual price ϕ from 0 (where agent i's price is $\hat{\mathbf{v}}_i = \phi_i^{-1}(\phi)$)
- 2 when one bidder remains, sell at her price.

Theorem

For any distribution \mathbf{F} , there are ϕ for which the ascending virtual price mechanism is revenue optimal.

Mechanism Design for an Ignorant Seller [Caillaud, Robert '05]

Definition (Belief Free Ascending Mechanism, BFA)

- $oldsymbol{0}$ run ascending mechanism w. uniform price ϕ until one agent remains.
- **2** remaining agent *i* can offer to increase the price to $p \ge \phi$.
- 3 a random agent j is allowed to challenge at price q > p.
- if no challenge: i pays p; if challenge: i pays Δ
- \odot if *i* accepts challenge: *i* pays *p* to seller and q p to challenger
- **o** if *i* rejects challenge: challenger *j* pays $p \phi$ to seller.

Thm: BFA admits a revenue-optimal equilibrium.

Proof.

The following is an equilibrium:

- Agents remain in ascending auction until, for $i: \phi_i^{-1}(\phi) > v_i$.
- Remaining agent *i* offers $p = \phi_i^{-1}(\phi)$.
- If $p < \phi_i^{-1}(\phi)$ then challenger j challenges $q = \phi_i^{-1}(\phi)$
- Agent i accepts challenges q < v_i.

Conclusion

Conclusion

- Strange non-truthful mechanisms for ignorant sellers.
- Need to consider prior-independent non-truthful carefully.

Directions

- single-agent sample-based pricing [e.g., Feng, Hartline, Li]
- e.g., restrict to single-round, winner-pays-bid mechanisms.

Tutorial: Foundations of Non-truthful Mechanism Design

Part I: Equilibrium Analysis

- Single-dimensional Environments
- 2 Revenue Equivalence and Applications
- 3 Robust Analysis of Equilibria

Part II: Non-truthful Sample Complexity

- Counterfactual Estimation
- 2 Inference for I.i.d. Position Auctions
- General Reduction to I.i.d. Position Auctions

Part III: Simplicity, Robustness, & the Revelation Gap

- Revelation Gap
- 2 Implementation Theory