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Author's Note

This text is suitable for advanced undergraduate or graduatcourses; it has been developed
at Northwestern U. as the primary text for such a course sinc2008.

This text provides a look at select topics in economic mechasm design through the lens
of approximation. It reviews the classical economic theorgf mechanism design wherein a
Bayesian designer looks to nd the mechanism with optimal pormance in expectation over
the distribution from which the preferences of the participnts are drawn. It then adds to
this theory practical constraints such as simplicity, tratability, and robustness. The central
guestion addressed is whether these practical mechanismie good approximations of the
optimal ones. The resulting theory of approximation in mecinism design is based on results
that come mostly from the theoretical computer science litature. The results presented
are the ones that are most directly compatible with the clagsal (Bayesian) economic theory
and are not representative of the entirety of the literature

{ Jason D. Hartline



Chapter 1

Approximation and Mechanism
Design

Our world is an interconnected collection of economic and iwgutational systems wherein

individuals optimize to achieve their own, perhaps sel shgoals subject to basic laws of
the system. Some of these systems perform well, e.g., the ioaal residency matching

program which assigns medical students to residency progma in hospitals, e.g., auctions
for online advertising on Internet search engines; and sornéthese systems perform poorly,
e.g., nancial markets during the 2008 meltdown, e.g., grldcked transportation networks.

The success and failure of these systems depends on the bksis governing the system.
Financial regulation can prevent disastrous market meltdens, congestion protocols can
prevent gridlock in transportation networks, and market aud auction design can lead to
mechanisms for exchanging goods or services that are goodaemms of revenue or social
bene t.

The two sources for economic considerations are the preferes for individuals and the
performance of the system. For instance, bidders in an auati would like to maximize their
gains from buying; whereas, the performance of the systemutm (i.e., from the perspective
of the seller) be measured in terms of the revenue it generatd_ikewise, the two sources for
computational considerations are the individuals who musiptimize their strategies, and the
system which must enforce its governing rules. For instanckidders in the auction must g-
ure out how to bid, and the auctioneer must calculate the wirgr and payments from the bids
received. While these calculations may seem easy when aoging a painting, they both be-
come quite challenging when, e.g., the Federal Communiaais Commission (FCC) auctions
cell phone spectrum for which individual lots have a high-dgee of complementarities.

These economic and computational systems are complex. Thmase of individual strate-
gies is complex and the space of possible rules for the sysiermomplex. Optimizing among
strategies or system rules in complex environments shouldad to complex strategies and
system rules, yet the individuals' strategies or system res that are successful in practice
are often remarkably simple. This simplicity may be a resulof computational tractability
or due to desired robustness, especially when these desadierdo not signi cantly sacri ce
performance.



This text focuses on a combined computational and economibeory for the study and
design of mechanisms. A central theme in will be a tradeo beten optimality and other
desirable properties such as simplicity, robustness, contptional tractability, and practi-
cality. This tradeo will be quanti ed by a theory for approx imation which measures the
loss of a simple, robust, and practical approximation in coparison to the complicated and
delicate optimal mechanism. The theory provided does not oessarily suggest mechanisms
that should be deployed in practice, instead, it pinpointsaient features of good mechanisms
that should be a starting point for the practitioner.

In this chapter we will explore mechanism design for routingnd congestion control in
computer networks as an example. Our study of this example Wmotivate a number of
guestions that will be addressed in subsequent chapters difet test. We will conclude the
chapter with a formal discussion of approximation and the glosophy that underpins its
relevance to the theory of mechanism design.

1.1 Example: Congestion Control and Routing in Com-
puter Networks

We will discuss novel mechanisms for congestion control anouting in computer networks
to give a preliminary illustration of the interplay between strategic incentives and approxi-
mation in mechanism design.

Consider a hypothetical computer network where network usgreside at computers and
these computers are connected together through a network mfuters. Any pair of routers
in this network may be connected by a network link and if such aetwork link exists then
each router can route a message directly through the otheruter. We will assume that
the network is completely connected, i.e., there is a path oketwork links between all pairs
of users. The network links have limited capacity; meaningat most a xed number of
messages can be sent across the link in any given intervaliofi¢. Given this limited capacity
the network links are a resource that may be over demanded. Tenable the sending of
messages between users in the network we will need mechasigar congestion control i.e.,
determining which messages to route when a network link is @vdemanded, andouting,
i.e., determining which path in the network each message shid take.

There are many complex aspects of this congestion controlgtlem: dynamic demands,
complex networks, and strategic user behavior. Let us ignothe rst two issues at rst and
focus on the latter: strategic user behavior. Consider a gta version of this routing problem
over a single network link with unit capacity: each user wigks to send a message across the
link, but the link only has capacity for one message. How shahe routing protocol select
which message to route?

There is nothing special about the fact that the resource thathe users (henceforth:
agents) are vying for is a network link; we will therefore cashe problem as a more general
single-item resource allocation problem. An implicit assaption in this problem is that it
is better to allocate the item to some agents over others. Fanstance, we can model the
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agents as having value that each gains for receiving the iteand it would be better if the
item went to an agent that valued it highly.

De nition 1.1.  The single-item allocationproblem is given by
a single indivisibleitem available,
n strategic agentscompeting for the item, and
each agent has avalue v; for receiving the item.

The objective is to maximize thesocial surplus i.e., the value of the agent that receives the
item.

The social surplus is maximized if the item is allocated to &mt with the highest value,
denotedv(;,. If the values of the agent are publicly known, this would be aimple allocation
protocol to implement. Of course, e.g., in our routing apptiation, it is rather unlikely that
values are publicly known. A more likely situation is that eah agent's value is known
privately to that agent and unknown to all other parties. A mechanism that wants to make
use of this private information must then solicit it. Consier the following mechanism as a
rst attempt at an single-item allocation mechanism.

1. Ask agents to report their values. \ agenti reportsh)
2. Select the agent with highest report. X i =argmax; y)

3. Allocate the item to agenti .

Suppose you were one of the agents and your value was $10 fa item; how would you
bid? What should we expect to happen if we ran this mechanism® should be pretty clear
that there is no reason your bid should be at all related to yauvalue; in fact, you should
always bid the highest number you can think of. The winner ishe agent who thinks of
and reports the highest number. Clearly, we will not be ableot say nice things about this
mechanism. There are two natural ways to try to address thisnpredictability. First, we
can accept that the bids are meaningless, ignore them (or neten solicit them), and pick
the winner randomly. Second, we could attempt to penalize ¢hagents for bidding a high
amount, for instance, with a monetary payment.

Mechanism 1.1 (Lottery).
1. Select a uniformly random agent.

2. Allocate the item to this agent.



The social surplusof a mechanism is total value it generates. In this routing exmple
the social surplus is the valug of the message routed. It issyato calculate the expected
surplus of the lottery. It is % i Vi. This surplus is a bit disappointing in contrast to the
surplus available in the case where the values of the messageere publicly known, i.e.,
Vg = max;Vv;. In fact, by setting v; = 1; vy = (for i 6 1); and letting go to zero we
can observe that the surplus of the lottery approacheg,,=n; therefore, its worst-case is at
best ann-approximation to the optimal surplusv,. Of course, the lottery always obtains
at least annth of v(;); therefore, its worst-case approximation factor is exagtin. It is fairly
easy to observe, though we will not discuss the details hetbat this approximation factor
is the best possible by any mechanism without payments.

Theorem 1.2. The surplus of the lottery mechanism is an-approximation to the highest
agent value.

If instead it is possible to charge payments, such paymentd, made proportionally to
the agents' bids, could discourage low-valued agents fromaking high bids. This sort of
dynamic allocation and pricing mechanism is referred to asiauction.

De nition 1.3  (Single-item Auction). A seller has a single item to sell to a number of
interested buyers, each buyer has a value for receiving tteam. A single-item auction solicits
bids, picks a winner, and determines payments.

A natural allocation and pricing rule that is used, e.g., in gvernment procurement auc-
tions, is the rst-price auction .

Mechanism 1.2 (First-price Auction).
1. Ask agents to report their values.)( agenti reports y)
2. Select the agent with highest report) ( i = argmax; i)
3. Allocate the item to ageni .
4. Charge this agent her bidh .

To get some appreciation for the strategic elements of the st price auction note that
an agent who wins wants to pay as little as possible, so biddjra low amount is desirable.
Of course, if they bid too low, then they probably will not win Strategically, this agent
must gure out how to balance this tradeo . Of course, since gents may not report their
true values, the agent with the highest bid may not be the ageémwith the highest-valued
message. See Figure 1.1.

We will be able to analyze the rst-price auction and we will @ so in Chapter 2. However,
for two reasons, there is little hope of generalizing it beyal the single-network-link special
case (i.e., to large asymmetric computer networks) which @ur eventual goal. First, calcu-
lating equilibrium strategies in general asymmetric envinments is not easy; consequently,
there would be little reason to believe that agents would pjaby the equilibrium. Second,
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Figure 1.1: An in-class experiment: 21 student were endowedth values from U[0; 4], they
were told that the numbers wereU|[0; 4], they were asked to submit bids for a 2-agent 1-
item rst-price auction. The bids of the students were colleted and randomly paired for
each auction; the winner was paid the di erence between hisade and his bid in dollars.
Winning bids are shown as \" and losing bids are shown as \". The grey area denotes
strategies that are not dominated. The lineb = v=2 denotes the equilibrium strategy in
theory. In economic experiments, just like our in class expgment, bidders tend to overbid
the equilibrium strategy. A few students knew the equilibum strategy in advance of the
in-class experiment.

it would be a challenge to show that the equilibrium is any gab Therefore, we turn to
auctions that are strategically simpler.

The English auction is a stylized version of the ascendingipe auction popularized
by Hollywood movies; art, antiques, and estate-sale auctichouses such as Sotheby's and
Christie's; and Internet auction houses such as eBay.

Mechanism 1.3 (English Auction).
1. Gradually raise an o er price up from zero.
2. Allow agents to drop out when they no longer wish to win atetlo er price.
3. Stop when at price at which there is only one agent left.
4. Allocate the item to this remaining agent and charge herdhstopping price.

Strategically this auction is much simpler than the rst-price auction. What should an
agent with valuev do? A good strategy would be \drop when the price exceeds' Indeed,
regardless of the actions of the other agents, this is a goalasegy for the agent to follow,
i.e., it is a dominant strategy It is reasonable to assume that an agent with an obvious
dominant strategy will follow it.

Since we know how agents are behaving we can now make conohssias to what happens
in the auction. The second-highest-valued agent will dropub when the ascending prices
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reaches her valuey,. The highest-valued agent will win the item at this price. Wecan
conclude that this auction maximizes thesocial surplus i.e., the sum of the utilities of all
parties. Notice that the utility of losers are zero, the utiity of the winner is v;,  V(y,
and the utility of the seller (e.g., the router in the congesbn control application) is v(,),
the payment received from the winner. The total is simply,, as the payment occurs once
positively (for the seller) and once negatively (for the winer) and these terms cancel. Of
coursevy is the optimal surplus possible; we could not give the item tanyone else and get
more value out of it.

Theorem 1.4. The English auction maximizes the social surplus in dominastrategy equi-
librium.

What is striking about this result is that it shows that there is essentially no loss in
surplus imposed by the assumption that the agents' valueseaprivately known only to each
agent. Of course, we also saw that the same was not true of rommg mechanisms that cannot
require the winner to make a payment in the form of a monetargransfer from the winner to
the seller. Recall, the lottery mechanism was as bad as arapproximation. A conclusion we
should make from this exercise is that transfers are very imptant for surplus maximization
when agents have private values.

Unfortunately, despite the good properties of the Englishwection there are two drawbacks
that will prevent our using it for routing and congestion cofrol in computer networks. First,
mechanisms for setting messages in computer networks must\ery fast. Ascending auctions
are slow and, thus, impractical. Second, the English auctiodoes not generalize to give a
routing mechanisms in networks beyond the single-netwotkik special case. Challenges
arise because ascending prices would not generally nd thecgal surplus maximizing set of
messages to route. A solution to these problems comes fromléblaureate William Vickrey
who observed that if we simulate the English auction with séed bids we arrive at the same
outcome in equilibrium without the need to think about an asending price.

Mechanism 1.4 (Second-Price Auction)
1. Accept sealed bids.
2. Allocate the item to the agent with the highest bid.
3. Charge this agent the second-highest bid.

In order to predict agent behavior in the second-price auan, notice that its outcome
can be viewed as a simulation of the English auction. Sinceeldominant strategy in the
English auction is to \drop at your value" then the only way a hdder could achieve the same
outcome in the simulation is to input her true value. While ths intuitive argument can be
made formal, instead we will argue directly thattruthful bidding is a dominant strategy in
the second-price auction.

Theorem 1.5. Truthful bidding is a dominant strategy in the second-pricauction.
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Figure 1.2: Utility as a function of bid in the second-price action.

Proof. We show that truthful bidding is a dominant strategy for agen i. Fix the bids of all
other agents and let ; = max;g;V;. Notice that given this ; there are only two possible
outcomes for ageni. If she bidsh > ; then she wins, pays; (which is the second-highest
bid), and has utility u; = v; ;. On the other hand, if she biddy < ; then she loses, pays
nothing, and has utility u; = 0. This analysis allows us to plot the utility of agenti as a
function of her bid in two relevant cases, the case that < ; and the case thatv, > ;. See
Figure 1.2.

Agent i would like to maximize her utility. In Case 1, this is achieve by any bid greater
than ;. In Case 2, it is achieved by any bid less than. Notice that in either case bidding
b = v, is a good choice. Since the same bid is a good choice regasdt@swhich case we
are in, the same bid is good for any;. Thus, bidding truthfully, i.e., i = v;, is a dominant
strategy. O

Notice that in the proof of the theorem ; is the in mum of bids that the bidder can make
and still win, and the price charge to such a winning bidder igxactly ;. We henceforth
refer to ; as agenti's critical value. It should be clear that the proof above can be easily
generalized, in particular, to any auction where each agefdaces such a critical value that is
a function only of the other agents' reports.

In the remainder of this section we explore a number of orthogal questions related
to practical implementations of congestion control. We r¢ address the issue of payments.
The routing protocol in today's Internet, for instance, dos not have allow the possibility
of monetary payments. How does the routing problem changewfe also disallow monetary
payments? The second issue we address is speed. While thersg@rice auction is faster
than the English auction, still the process of soliciting las, tallying results, and assigning
payments may be too cumbersome for a routing mechanism. A ghar posted-pricing mech-
anism would be faster, but how can we guarantee good perfornta with posted-pricing?
Finally, the single-link case is far from providing a solutin to the question of routing and
congestion control in general networks. How can we extendetlsecond-price auction to more
general environments?
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1.1.1 Non-monetary payments

Most Internet mechanisms, including its congestion conttanechanisms, do not currently
use transfers. There are historical, social, and infrastctural reasons for this. The Internet
was initially developed as a research platform and its usewgere largely altruistic. Since its
development, the social norm is for Internet resources anersices to be free. Indeed, the
\net neutrality" debates of the early 2000's were largely onwhether to allow di erentiated
service in routers based on the identity of the source or d@sation of messages (and based on
contracts that presumably would involve payments). Finaill, micropayments in the Internet
would require nancial infrastructure which is currently unavailable at reasonable monetary
and computational overhead.

One solution that has been considered, and implemented (bubt widely adopted) for
similar resource allocation tasks (e.g., ltering unsolited electronic mail, a.k.a., spam) is
computational paymentsuch as \proofs of work." With such a system an agent could \mve"
that her message was high-valued by having her computer pamin a large, veri able, but
otherwise, worthless computational task. Importantly, utike monetary payments, compu-
tational payments would not represent utility transferred from the winner to the router.
Instead, computational payments are utility lost to sociey.

The residual surplusof a mechanism with computational payments is the total vale
generated less any payments made. The residual surplus fagiagle-item auction is thus the
value of the winner less her payment. For the segond-price @ion, the residual surplus is
Vay V. For the lottery, the residual surplus is% i Vi, which is the same as the surplus
as there are no payments.

While the second-price auction maximized surplus (amonglahechanisms) regardless of
the values of the agents, for residual surplus it is clear nieer the second-price auction nor
the lottery best regardless of agent values. Consider the danput for the lottery, where
vi=1landv, = (fori 6 1). If welet go to zero, the second-price auction has residual
surplusvy = 1 (which is certainly optimal) and the lottery has expectedsurplus I=n (which
is far from optimal). On the other hand, if we consider the albnes input, i.e.,v; = 1 for all
i, then the residual surplus of the second-price auction ig;y Vv = 0 (which is far from
optimal), whereas the lottery surplus isv,) = 1 (which is clearly optimal). Of course, on the
input with vy = v, =1andv, = (fori 3) both the lottery and the second-price auction
have residual surplus far from what we could achieve if the ks were publicly known or
monetary transfers were allowed.

An underling fact in the above discussion that separates thebjectives of surplus and
residual surplus is that for surplus maximization there is aingle optimal mechanism for any
pro le of agent values, where as there is no such mechanism fesidual surplus. Since there
is no absolute optimal mechanism we must trade-o performame across possible pro les of
agent values. There are two ways to do this, one way to do it i®tassume a distribution
over value pro les and then optimize residual surplus in exgxrtation over this distribution.
Thus, we might trade-o low residual surplus on an rare inputfor high residual surplus
on a likely input. This approach results in a di erent \optimal mechanism" for di erent
distributions. The second approach begins with the solutioto the rst approach and asks
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for a single mechanism that bests approximates the optimal @chanism in worst-case over
distributions. This second approach may be especially uséfor applications of mechanism

design to computer networks because it is not possible to efge the routing protocol when

to accommodate changing tra ¢ workloads.

Question 1.1. In what settings does the second-price auction maximize icksal surplus?
In what settings does the lottery maximize residual surpfus

Question 1.2. For any given distribution over agent values, what mechamsoptimizes
residual surplus for the distribution?

Question 1.3. If the optimal mechanism for a distribution is complicated rounnatural, is
there a simple or natural mechanism that approximates it?

Question 1.4. In worst-case over distributions of agent values, what slegnechanism best
approximates the optimal mechanism for the distribution?

1.1.2 Posted Pricing

Consider again the original single-item allocation probke to maximize surplus (with mon-
etary payments). Unfortunately, even single-round, sealebid auction such as the second-
price auction may be too complicated and slow for congestia@ontrol and routing applica-
tions. An even simpler approach would be to just use postedipes. Consider the following
mechanism.

Mechanism 1.5 (Uniform Pricing). For a given pricep, serve the rst agent willing to pay
p, ties can be broken randomly.

For instance, if we assumed all agents arrive at once amq= 0 this uniform pricing
mechanism is identical to the aforementioned lottery. Redahat the lottery mechanism is
very bad when there are many low-valued agents and a few higalued agents. The bad
example had one agent with value one, and the remaining 1 agents with value . This
uniform-pricing mechanism, however, is more exible. Fornistance, for this example we
could setp =2 , only the high-valued agent will want to buy, and the surplusvould be one.
Such a posted-pricing mechanism is very practical and, thefore, especially appropriate for
our application to Internet routing.

Of course, the pricep needs to be chosen well. Fortunately in the routing example
where billions of messages are sent every day, it is reasdeaio assume that there is some
distributional knowledge of the demand. Imagine that the vlme of each ageni is drawn
independently and identically from distribution F. Denote thecumulative distribution func-
tion asF(z) = Pr, g[v<z]. As an example, assume thaF is the uniform distribution on
interval [0; 1], denotedU|[0; 1] and satisfyingF (z) = z.

There is a very natural way to choos@: mimic the outcome of the second-price auction
as much as possible. Notice that witim identically distributed agents, theex ante(meaning:
before the values are drawn) probability that any particula agent wins is En. To mimic the
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outcome of the second-price auction on any particular agemte could set a pricep so that
the probability that the agent's value is abovep is exactly 1=n, denotedF (1 1=n). For
the uniform distribution p=1 1=n. Unlike the second-price auction, posting a uniform
price of p may result in no winners (if all agent values are beloyw) or an agent other than
that with the highest value may win (if there are more than oneagents with value abovep).

Theorem 1.6. For any i.i.d. distribution F, the uniform pricing of p= F *(1 1=n) is an

-7 l:58 approximation to the optimal social surplus.

Proof. The main idea of this proof is to compare three mechanisms. tLREF denote the
second-price auction and its surplus (our reference meclem). Let APX denote the uniform
pricing and its surplus (our approximation mechanism). Thesecond-price auction, REF,
optimizes surplus, subject to thesupply constraintthat at most one agent wins, and chooses
to sell to each agent with ex ante probability £n. Consider for comparison a third mechanism
B that maximizes surplus subject to the constraint that each gent is served with ex ante
probability at most 1=n, but has no supply constraint, i.e.,B can serve multiple agents if it
so chooses.

The rst step in the proof is the simple observation thatB  REF. This is clear as both
mechanisms serve each agent with ex ante probabilitygd, but REF has a supply constraint
whereasB does not. B could simulate REF and get the exact same surplus, or it couldo
something even better.

In fact, B will do something better. First, observe thatB's optimization is independent
between agents. Second, observe that the socially optimabhyto serve an agent with
probability 1=nis to o er her price p. MechanismB's surplus is just the sum over then
agents of the surplus from o ering that agent a price op. Therefore,B = n E[v Vv p]
Prilv. pl=E[vjv pl

Finally, we get a bound on APX's surplus in terms oB; in particular, it gives an _%-
approximation to B. The probability that there are no agents are above the thrémld
in the uniform pricing mechanism is (1 1=n)" 1=e Therefore, the probability that
the item is sold by uniform pricing is at least 1 1=e If the item is sold it is sold to
an arbitrary agent with value conditioned to be at leastp, i.e., the expected value of this
agentisglvjv p]=B REF. Therefore, the expected surplus of uniform pricing is
APX (1 1= REF. O

Question 1.5. When are simple, practical mechanisms like posted pricinggmod approxi-
mation to the optimal mechanism?

1.1.3 General Routing Mechanisms

Finally we are ready to propose a mechanism for congestionmntm| and routing in general
networks. The main idea in the construction is the notion ofritical values that was central to
showing that the second-price auction has truthtelling as dominant strategy (Theorem 1.5).
In fact, the proof generalizes to any auction wherein each e faces a critical value that is
a function of the other agents' reports, the agent wins and pa the critical value if her bid
exceeds it, and otherwise she loses.
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Mechanism 1.6 (Second-price Routing Mechanism)
1. Solicit sealed bids.
2. Find the set of messages that can be routed simultaneouwsith the largest total value.
3. Charge each routed message its critical value.

Theorem 1.7. The second-price routing mechanism has truthful bidding as dominant
strategy.

Corollary 1.8. The second-price routing mechanism maximizes the sociargus.

The proof of the theorem is similar to the analogous result féhe second-price single-item
auction but we will defer its proof to Chapter 3. The corollay follows because payments
cancel.

Unfortunately, this is far from the end of the story. Step 2 othe mechanism is known
aswinner determination. To understand exactly what is happening in this step we mudte
more clear about our model for routing in general networks. df instance, in the Internet, the
route that messages take in the network is predetermined byé¢ Border Gateway Protocol
(BGP) which enforces that all messages routed to the same teation through any given
router follow the same path. There are no opportunities forold-balancing, i.e., for sending
messages to the same destination across di erent paths sotakeep the loads on any given
path at a minimum. Alternatively, we could be in a novel netwok where the routing can
determine which messages to route and which path to route timeon.

Once we x a model, we need to gure out how to solve the optimaion problem implied
by winner determination. Namely, how do we ne the subset of Bssages with the highest
total value that can be simultaneously routed? In principlewe are searching over subsets
that meet some complicated feasibility condition. Purelyrbm the point of optimization, this
is a challenging task. The problem is related to the infamoudisjoint paths problems: given
a set of pairs of vertices in a graph, nd a subset of pairs thatan be connected via disjoint
paths. This problem isNP-hard to solve. Meaning: it is at least as hard as any problem in
the equivalence class dNP-completeproblems for which it is widely believed that nding
optimal solutions is computationally intractable.

Theorem 1.9. The disjoint-paths problem is NP-hard.

If we believe it is impossible for a designer to implement a riganism for whichwinner
determination is computationally intractable, we cannot accept the secahprice routing
mechanism as a solution to the general network routing prodn.

Algorithmic theory has an answer to intractability: if computing the optimal solution is
intractable, try instead to compute an approximately optimal solution.

Question 1.6. Can we replace Step 2 in the mechanism with an approximatiolgarithm
and still retain the dominant-strategy incentive property
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Question 1.7. If not, can we design a computationally tractable approxirtian mechanism
for routing?

Our construction of second-price auctions by maximizing s@l surplus and then charging
each winner their \critical value" is quite general. We willdiscuss this more later.

Question 1.8. Is there a general theory for designing approximation meatnams from ap-
proximation algorithms?

1.2 Mechanism Design

Mechanism desigrgives a theory for the design of protocols, services, laws, aher \rules
of interaction” in which sel sh behavior leads to good outcmes. \Sel sh behavior* means
that each participant, hereafteragent individually tries to maximize her own utility. Such
behavior we de ne as rational. \Leads" meansn equilibrium. A set of agent strategies is in
equilibrium if no agent prefers to unilaterally change hertetegy. Finally, the \good"-ness of
an outcome is with respect to the criteria or goals of the degier. Natural economic criteria
are social surplus the sum of the utilities of all parties; andpro t , the total payments made
to the mechanism.
A theory for mechanism design should satisfy the following@r desiderata:

Informative: It pinpoints salient features of the environment and charaeristics of good
mechanisms therein.

Prescriptive: It gives concrete suggestions for how a good mechanism skiooé designed.

Predictive: The mechanisms that the theory predicts should be the same #® ones ob-
served in practice.

Tractable: The theory should not assume super-natural ability for the gents or designer
to optimize.

Notice that optimality is not one of the desiderata, nor is eactly suggesting a mechanism
to a practitioner. Instead, intuition from the theory of medanism design should help guide
the design of good mechanisms in practice. Such guidance @sgible through informative
observations about what good mechanisms do. Observatiorsat are robust to modeling
details are especially important.

Sometimes the theory ofoptimal mechanism desigmmeets the above desiderata. The
guestion of designing an optimal mechanism can be viewed astandard optimization prob-
lem: given incentive constraints, imposed by game theoretistrategizing; feasibility con-
straints, imposed by the environment; and the distributionof agent preferences, optimize
the designer's given objective. In ideal environments thawgn constraints simplify and, for
instance, the mechanism design problem can be reduced to dumal optimization problem
without incentive constraints or distribution. We saw an eample of this for routing in
general networks: in order to invoke the second-price mecham we only needed to nding
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the optimal set of messages to route. Unfortunately, therer@a many environments and ob-
jectives where analysis has failed to simplify the problemnd mechanism design for these
environments is considered \unsolved."

1.3 Approximation

In environments where optimality is impossible (by any of te above critiques) one should
instead try to approximate. The formal de nition of an appraximation is given below. A
good mechanism is one with a small approximation factor.

De nition 1.10.  For an environment given implicitly, denote arapproximation mechanism
and its performance byAPX, and areference mechanismand its performance byREF.

1. For any environment,APX is a -approximation to REF if APX REF= .

2. For any class of environments, a class of mechanisms is aapproximation to REF
if for any environment in the class there is a mechanistAPX in the class that is a
-approximation to REF.

3. For any class of environments, a mechanis®PX is a -approximation to REF if for
any environment in the classAPX is a -approximation to REF.

In the preceding section we saw each of these types of appnoeation. For i.i.d. U[0; 1], n-
agent, single-item environments, posting a uniform prics@ =1 1=nis a % approximation
to the second-price auction. More generally, for any i.i.dsingle-item environment uniform
pricing is a ;%;-approximation to the second-price auction. Finally, for ay single-item
environment the lottery is an n-approximation to the second-price auction.

Usually we will employ the approximation framework with REFrepresenting the optimal
mechanism. For instance, in the preceding section we compdra posted-pricing mechanism
to the surplus-optimal second-price auction for i.i.d., sgle-item environments. For such a
comparison, clearly REF APX, and therefore the approximation factor is at least one.
It is often instructive to consider the approximation abilty of one class of mechanisms
to another. For instance, in the preceding section we compat surplus of a lottery, as
the optimal mechanism without payments, to the surplus of tB second-price auction, the
optimal mechanism (in general). This kind of apples-to-orages comparison is useful for
understanding the relative importance of various featuresf a mechanism or environment.

1.3.1 Philosophy of Approximation

While it is no doubt a compelling success of the theory of meahism design that its mecha-
nisms are so prevalent in practice, optimal mechanism desigannot claim the entirety of the
credit. These mechanisms are employed by practitioners welkeyond the environments for
which they are optimal. Approximation can explain why: the nechanisms that are optimal
in ideal environments may continue to be approximately optnal much more broadly. It is
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important for the theory to describe how broadly these meclmsms are approximately opti-
mal and how close to optimal they are. Thus, the theory of appximation can complement
the theory of optimality and justify the wide prevalence of ertain mechanisms. For instance,
in Chapter 4 and 7 we describe how the wide prevalence resepree-based mechanisms and
posted pricings is corroborated by their approximate optirality.

There are natural environments for mechanism design wheneevery \undominated"
mechanism is optimal. If we consider only optimal mechanisnwe are stuck with the full
class from which we can make no observations about what mak&snechanism good; on
the other hand, if we relax optimality, we may be able to identy a small subclass of mech-
anisms that are approximately optimal, i.e., for any enviroment there is a mechanism in
the subclass that approximates the optimal mechanism. Thisubclass is important in the-
ory as we can potentially observe salient characteristicd d@. It is important in practice
because, while it is unlikely for a real mechanism designes be able to optimize over all
mechanisms, optimizing over a small class of, hopefully, maal mechanisms may be possible.
For instance, a conclusion that we will make precise in Chagts 4 and 7 is that reserve-
price-based mechanisms and posted pricings are approximigt optimal in a wide range of
environments including those with multi-dimensional agdrpreferences.

Approximation provides a lens with which to explore the sadint features of an envi-
ronment or mechanism. Suppose we wish to determine whethemarticular feature of a
mechanism is important. If there exists an subclass of mectiams without that feature that
gives a good approximation to the optimal mechanism, then #thfeature is perhaps not that
important. If, on the other hand, there is no such subclass #n the feature is quite im-
portant. For instance, previously in this chapter we saw thamechanisms without transfers
cannot obtain better than a linear approximation in singleiem environments. This result
suggests that transfers are very important for mechanism gign. On the other hand, we also
saw that posted-pricing could obtain anz*;-approximation to the surplus-optimal mecha-
nism. Posted-pricings do not make use of competition betweeagents, therefore, we can
conclude that competition between agents is not that impo#nt. Essentially, approximation
provides a means to determine which aspect of an environmeate details and which are
not details. The approximation factor quanti es the relative importance on the spectra be-
tween unimportant details to salient characteristics. Appoximation, then allows for design
of mechanisms that are not so dependent on details of the satj and therefore more robust.
See Figure 1.3 for an illustration of this principle. In paricular, in Chapter 4 we will formally
observe that revenue-optimal auctions when agent valueseadrawn from a distribution can
be approximated by a mechanism in which the only distributinal dependence is a single
number; moreover, in Chapter 5 we will observe that some enehments permit a single
(prior-independent) mechanism to approximate the revenueptimal mechanism under any
distributional assumption.

Suppose the principal was worried about collusion, risk atudes, after-market e ects,
or other economic phenomena that are usually not included istandard ideal models for
mechanism design. One option would be to explicitly model #se e ects and study optimal
mechanisms in the augmented model. These complicated madate di cult to analyze and
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Figure 1.3: Picasso's December, 1945 to January, 1946 abstionist study of a bull high-
lights one of the main points of approximation: identifyingthe salient features of the object
of study. Picasso drew these in order from left to right, topd bottom.
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optimal mechanisms may be overly in uenced by insigni cantseeming modeling choices.
Optimal mechanisms are precisely tuned to details in the metland these details may drive
the form of the optimal mechanism. On the other hand, we can nsider approximations
that are robust to various out-of-model phenomena. In suchnaenvironment the compari-
son between the approximation and the optimal mechanism isfair because the optimal
mechanism may su er from out-of-model phenomena that the gpoximation is robust to. In
fact, this \optimal mechanism" may perform much worse than ar approximation when the
phenomena are explicity modeled. For example, Chapters 4@ 7 describe posted pricing
mechanisms that are approximately optimal are robust to tinmg e ects; for this reason an
online auction house such eBay may want to sellers to switctom auctions to \buy it now"
(a.k.a., posted) pricings.

Finally, there is an issue of non-robustness that is inherefn any optimization over
a complex set of objects, such as mechanisms. Suppose thagdes does not know the
the distribution of agent preferences exactly but can learabout it through, e.g., market
analysis. Such a market analysis is certainly going to be sgiand then exactly optimizing a
mechanism to it may \over t" to this noise. Both statistics and machine learning theory have
techniques for addressing this sort of over tting. Approxnation mechanisms also provide
such a robustness. Since the class of approximation mecltsms is restricted from the full
set, for these mechanisms to be good, they must pay less atten to details and therefore
are robust to sampling noise. Importantly, approximation #ows analysis of small (a.k.a.,
thin) markets where statistical and machine learning methods ailess applicable.

1.3.2 Approximation Factors

Depending on the problem and the approximation mechanismpproximation factors can
range from (1 + ), i.e., arbitrarily close approximations, to linear facto approximations (or
sometimes even worse). Notice a linear factor approximatiégs one where, as some parameter
in the environment grows, i.e., more agents or more resousgehe approximation factor gets
worse. As examples, we saw earlier an environment in whichifamm pricing is a constant
approximation and the lottery is a linear approximation.

In this text we take constant versus super-constant appraxiation as the separation be-
tween good and bad. We will view a proof that a mechanism is amstant approximation
as a positive result and a proof that no mechanism (in a certaiclass) is a constant approx-
imation as a negative result. Constant approximations tendb represent a tradeo between
simplicity and optimality. Properties of constant approximation mechanisms can, thus, be
quite informative. Of course, there are many non-mechanisgesign environments where
super-constant approximations are both useful and infornti@e; however, for mechanism
design super-constant approximations tend to be indicatévof (a) a bad mechanism, (b) fail-
ure to appropriately characterize optimal mechanisms, orcj an imposition of incompatible
modeling assumptions or constraints.

If you were approached by a seller (henceforth: principalptdesign a mechanism and you
returned to triumphantly reveal an elegant mechanism that iyes her a 2-approximation to
the optimal pro t, you would probably nd her a bit discourag ed. After all, your mechanism
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leaves half of her pro t on the table. In the context of this citique we outline the main points
of constant, e.g., two, approximations for the practitione First, a 2-approximation provides
informative conclusions that can guide the design of even tbe&r mechanisms for specic
environments. Second, the approximation factor of two is éeoretical result that holds in a
large range of environments, in speci ¢ environments the raleanism may perform better. It
is easy, via simulation to evaluate the mechanism performe& on speci c settings to see how
close to optimal it actually is. Third, in many environmentsthe optimal mechanism is not
understood at all, meaning the principals alternative to yor 2-approximation is an ad hoc
mechanism with no performance guarantee. This principal & course free to simulate your
mechanism and her mechanism in her given environment and dieto use the better of the
two. In this fashion the principal's ad hoc mechanism, if usk is provably a 2-approximation
as well. Fourth, mechanisms that are 2-approximations in #ory arise in practice. In fact,
that it is a 2-approximation explains why the mechanism ariss. Even though it is not
optimal, it is close enough. If was far from being optimal therincipal (hopefully) would
have gured this out and adopted a di erent approach.

Sometimes it is possible do obtain schemas for approximagithe optimal mechanism to
within a (1 + ) factor for any . These schemas tend to be computational approaches that
are useful for addressing potential computational intraetbility of the optimal mechanism
design problem. While they do not tend to yield simple mechasms, they are relevant in
complex environments. Often these approximation schemeseabased on (a) identifying
a restricted class of mechanisms wherein a near-optimal rhanism can be found and (b)
brute-force search over this restricted class. While veryttle is learned from brute-force
search, properties of the restricted class of mechanismadae informative.

Chapter Notes

Routing and congestion control are a central problems in cquter systems such as the
Internet. Demers et al. (1989) analyze \fair queuing" whicha lottery-based mechanism for
congestion control. Grin et al. (2002) discuss the Border Gteway Protocol (BGP) which
determines the routes messages take in the Internet.

William Vickrey's 1961 analysis of the second-price auctias one of the pillars of mecha-
nism design theory. The second-price routing mechanism ispecial case of the more general
Vickrey-Clarke-Groves (VCG) mechanism which is attribute additionally to Edward Clarke
(1971) and Theodore Groves (1973).

Computational payments were proposed as means for ghtinghgolicited electronic mail
by Dwork and Naor (1992). Hartline and Roughgarden (2008) osider mechanism design
with the objective of residual surplus and describe distriltional assumptions under which
the lottery is optimal, the second-price auction is optimaland when neither are optimal.
They also give a a single mechanism that approximates the amial mechanism for any
distribution of agent values.

Vincent and Manelli (2007) showed that there are environmés for mechanism design
wherein every \undominated” mechanism is optimal for someistribution of agent prefer-

23



ences. This result implies that optimality cannot be used tadentify properties of good
mechanisms. Robert Wilson (1987) suggested that mechansihat are less dependent on
the details of the environment are likely to be more relevantThis suggestion is known as

the \Wilson doctrine."
Wang et al. (2008) and Reynolds and Wooders (2009) discussythe \buy it now" (i.e.,
posted-pricing) mechanism is replacing the second-pricacion format in eBay.
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Chapter 2
Equilibrium

The theory of equilibrium attempts to predict what happens in a game when players be-
have strategically. This is a central concept to this text asin mechanism design, we are
optimizing over games to nd the games with good equilibria.Here, we review the most
fundamental notions of equilibrium. They will all be staticnotions in that players are as-
sumed to understand the game and will play once in the game. Wi such foreknowledge
is certainly questionable, some justi cation can be derivk from imagining the game in a
dynamic setting where players can learn from past play. Reas should look elsewhere for
formal justi cations.

This chapter reviews equilibrium in both complete and incopiete information games.
As games of incomplete information are the most central to mkanism design, special at-
tention will be paid to them. In particular, we will characterize equilibrium when the private
information of each agent is single-dimensional and corpnds, for instance, to a value for
receiving a good or service. We will show that auctions withhe same equilibrium outcome
have the same expected revenue. Using this so-calledenue equivalenceve will describe
how to solve for the equilibrium strategies of standard auiins in symmetric environments.

Emphasis is placed on demonstrating the central theories efjuilibrium and not on
providing the most comprehensive or general results. Fordhreaders are recommended to
consult a game theory textbook.

2.1 Complete Information Games

In games of compete information all players are assumed todwm precisely the payo struc-
ture of all other players for all possible outcomes of the gan A classic example of such a
game is theprisoner's dilemma the story for which is as follows.

Two prisoners who have jointly committed a crime, are beingnterrogated in
separate quarters. Unfortunately, the interrogators arenable to prosecute either
prisoner without a confession. Each prisoner is o ered thelowing deal: If she
confesses and their accomplice does not, she will be reldased her accomplice
will serve the full sentence of ten years in prison. If they lib confess, they will
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share the sentence and serve ve years each. If neither cases, they will both
be prosecuted for a minimal o ense and each receive a year oifspn.

This story can be expressed as the followidgmatrix gamewhere entry @; b represents row
player's payo a and column player's payo h.

| silent confess
silent | (-1,-1) (-10,0)
confess| (0,-10) (-5,-5)

A simple thought experiment enables prediction of what wilhappen in the prisoners'
dilemma. Suppose the row player is silent. What should the konn player do? Remaining
silent as well results in one year of prison while confessimgsults in immediate release.
Clearly confessing is better. Now suppose that the row playeonfesses. Now what should
the column player do? Remaining silent results in ten years prison while confessing as well
results in only ve. Clearly confessing is better. In other wrds, no matter what the row
player does, the column player is better of by confessing. &lprisoners dilemma is hardly a
dilemma at all: the strategy pro le (confess, confess) is dominant strategy equilibrium

De nition 2.1. A dominant strategy equilibrium (DSE) in a complete information game
is a strategy pro le in which each player's strategy is as Ishas good as all other strategies
regardless of the strategies of all other players.

DSE is a strong notion of equilibrium and is therefore unsurgsingly rare. For an equi-
librium notion to be complete it should identify equilibrium in every game. Another well
studied game ischicken

James Dean and Buzz (in the movi®ebel without a Causeface o at opposite

ends of the street. On the signal they race their cars on a dsibn course towards
each other. The options each have are to swerve or to stay theoburse. Clearly if
they both stay their course they crash. If they both swerve (@posite directions)

they escape with their lives but the match is a draw. Finallyjf one swerves and
the other stays, the one that stays is the victor and the othethe loses"

A reasonable bimatrix game depicting this story is the folleing.

| stay swerve
stay | (-10,-10) (1,-1)
swerve| (-1,1) (0,0)

Again, a simple thought experiment enables us to predict hothe players might play.
Suppose James Dean is going to stay, what should Buzz do? IfRustays they crash and
Buzz's payo is 10, but if Buzz swerves his payo is only 1. Clearly, of these two options

The actual chicken game depicted inRebel without a Causes slightly di erent from the one described
here.
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Buzz prefers to swerve. Suppose now that Buzz is going to swesrwhat should James Dean
do? If James Dean stays he wins and his payo is 1, but if he swes it is a draw and

his payo is zero. Clearly, of these two options James Dean gfers to stay. What we have
shown is that the strategy pro le (stay, swerve) is a mutual lest response, a.k.a., &lash

equilibrium.

De nition 2.2. A Nash equilibrium in a game of complete information is a strategy pro le
where each players strategy is a best response to the stiate@f the other players as given
by the strategy pro le.

In the examples above, the strategies of the players corresyul directly to actions in the
game, a.k.a.pure strategies In general, Nash equilibrium strategies can be randomizahs
over actions in the game, a.k.a.mixed strategies

2.2 Incomplete Information Games

Now we turn to the case where the payo structure of the game isot completely known.
We will assume that each agent has some private informatiomd this information a ects
the payo of this agent in the game. We will refer to this infomation as the agent's type and

A strategyin a game of incomplete information is a function that maps amagent's type
to any of the agent's possible actions in the game (or a didhution over actions for mixed

pro le.

The auctions described in Chapter 1 were games of incompletdormation where an
agent's private type was her value for receiving the item,d., t; = v,. As we described,
strategies in the English auction weres;(v;) = \drop out when the price exceedsv;," and
strategies in the second-price auction werg(v;) = \bid h = v;." We refer to this latter
strategy astruthtelling. Both of these strategy pro les are indominant strategy equilibrium
for their respective games.

De nition 2.3. A dominant strategy equilibrium (DSE) is a strategy pro le s such that for
alli, t;, and b ; (whereb ; generically refers to the actions of all players buj, agenti's
utility is maximized by following strategys;(t;).

Notice that aside from strategies being de ned as a map fronypes to actions, this
de nition of DSE is identical to the de nition of DSE for games of complete information.
2.3 Bayes-Nash Equilibrium

Naturally, many games of incomplete information do not haveominant strategy equilibria.
Therefore, we will also need to generalize Nash equilibriuto this setting. Recall that
equilibrium is a property of a strategy prole. It is in equilibrium if each agent does not
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want to change her strategy given the other agents' strategg. Meaning, for an agent, we
want to the x other agent strategies and leti optimize her strategy (meaning: calculate her
best response for all possible types she may have). This is an ill speci ed optimization
as just knowing the other agents' strategies is not enough tcalculate a best response.
Additionally, i's best response depends additionally ars beliefs on the types of the other
agents. The standard economic treatment addresses this bysaming a common prior.

De nition 2.4.  Under thecommon prior assumptionthe agent typeg are drawn at random
from a prior distribution F (a joint probability distribution over type pro les) and this prior
distribution is common knowledge

The distribution F overt may generally be correlated. Which means that an agent with
knowledge of her own type must d®ayesian updatingo determine the distribution over the
types of the remaining bidders. We denote this conditionalistribution as F ; . Of course,
when the distribution of types is independent, i.e.F is the product distribution IIZ1 Fo,
thenF ;, =F ;.

Notice that a prior F and strategiess induces a distribution over the actions of each of
the agents. With such a distribution over actions, the prol@m each agent faces of optimizing
her own action is fully speci ed.

De nition 2.5. A Bayes-Nash equilibrium (BNE)for a gameG and common priorF is a
strategy pro le s such that for alli andt;, s;(t;) is a best response when other agents play
S |(t i) whent i F i £

To illustrate BNE, consider using the rst-price auction to sell a single item to one of two
agents, each with valuation drawn independently and identally from U[0; 1], i.e.,F = F F
with F(z) = Pr, g[v<z] = z. Here each agent's type is her valuation. We will calculate
the BNE of this game by the \guess and verify" technique. Fits we guess that there is a
symmetric BNE with s;(z) = z=2 fori 2 f 1;2g. Second, we calculate agent 1's expected
utility with value v; and bid b, under the standard assumption that the agent's utilityu; is
her value less her payment (when she wins).

E[uJ=(v; b) Pr[lwins]:
Calculate Pr[1 wins]=Pr[b, b]=Pr[v,=2 b]=Pr[v, 2b]= Pr[F(2b)]=2b; so,
Eud=(vi b) 2o
=2v,b 26

Third, we optimize agent 1's bid. Agent 1 with valuev; should maximize this quantity as
a function of b;, and to do so, can di erentiate the function and set its deriative equal to
zero. The result is%(Zvlbl 20) = 2v, 4b, = 0 and we can conclude that the optimal
bid is b; = v4=2. This proves that agent 1 should bid as prescribed if agentddes; and vice
versa. Thus, we conclude that the guessed strategy pro le iis BNE.
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In Bayesian games it is useful to distinguish between stagetthe game in terms of the
knowledge sets of the agents. The three stages of a Bayesiamg areex ante interim, and
ex post The ex ante stage is before values are drawn from the distution. Ex ante, the
agents know this distribution but not their own types. The irterim stage is immediately
after the agents learn their types, but before playing in thggame. In the interim, an agent
knows her own type and assumes the other agent types are drafkom the prior distribution
conditioned on her own type, i.e., viaBayesian updating In the ex post stage, the game is
played and the actions of all agents are known.

2.4 Single-dimensional Games

We will focus on a conceptually simple class of single-dingonal games that is relevant to
the auction problems we have already discussed. In a singlieaensional game, each agent's
private type is her value for receiving an abstract servicee.,t; = v;. A game has an outcome

i indeed received their desired service, i.e; = 1 if i is served and O otherwise. Price,
will denote the paymenti makes to the mechanism. An agent's value can be positive or
negative and an agent's payment can be positive or negativAn agent's utility is linear in
her value and payment and specied by; = v;x; p;. Agents are risk-neutral expected
utility maximizers.

A gameG maps actionsb of agents to an outcome and payment. Formally we will specify
these outcomes and payments as:

X (b) = outcome to i when actions areb, and
pe (b) = payment from i when actions areb.

Given a gameG and a strategy pro le s we can express the outcome and payments of the
game as a function of the valuation pro le. From the point of Yfew of analysis this description
of the the game outcome is much more relevant. De ne

xi(v) = xi°(s(v)), and

p(v) = po(s(v)).

We refer to the former as theallocation rule and the latter as the payment rulefor G and
s (implicit). Consider an agenti's interim perspective. She knows her own value and
believes the other agents values to be drawn from the distabon F (conditioned on her
value). For G, s, and F taken implicitly we can specify agenti's interim allocation and
payment rules as functions of;.

Xi(vi)= Prixi(v) =1 j vi] = E[xi(v) j vi], and
pi(vi) = E[pi(v) | vil.

With linearity of expectation we can combine these with the gent's utility function to write
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ui(vi) = vixi(vi)  pi(vi).

Finally, we say that a strategy s;( ) is onto if every action b agenti could play in the

game is prescribed bys; for some valuev;, i.e., 809v; s;(v;) = . We say that a strategy
pro le is onto if the strategy of every agent is onto. For instance, the truitelling strategy

in the second-price auction is onto. When the strategies dfi¢ agents are onto, the interim
allocation and payment rules de ned above completely spégiwhether the strategies are in
equilibrium or not. In particular, BNE requires that each agnt (weakly) prefers playing the
action corresponding (via their strategy) to her value tharthe action corresponding to any
other value.

Fact 2.6. For single-dimensional gamés and common prior F, an onto strategy prole s
is in BNE if and only if for all i, v;, and z,

vixi(vi)  pi(vi)  vixi(2)  pi(2);
whereG, F, and s are implicit in the de nition of x;() and p;().

It is easy to see that the restriction to onto strategies is dy required for the \if" direction
of Fact 2.6; the \only if" direction holds for all strategy pro les.

2.5 Characterization of Bayes-Nash equilibrium

We now discuss what Bayes-Nash equilibria look like. For itace, when givenG, s, and
F we can calculate the interim allocation and payment ruleg;(v;) and p;(v;) of each agent.
We want to succinctly describe properties of these allocath and payment rules that can
arise as BNE.

Theorem 2.7. When values are drawn from a continuous joint distributiorr; G, s, and F
are in BNE only if for all i,

1. (monotonicity) x;(v;) is monotone non-decreasing, and
R
2. (payment identity) p;(v;) = v;X;(v;) (;'i Xi(z) dz + p,(0),

where oftenp;(0) = 0. If the strategy pro le is onto then the converse also holds.

Proof. We will prove the theorem in the special case where the suppaf each agenti's
distribution is [0;1 ]. Focusing on a single agent, who we will refer to as Alice, we drop
subscriptsi from all notations.

We break this proof into three pieces. First, we show, by piate, that the game is in
BNE if the characterization holds and the strategy pro le isonto. Next, we will prove that
a game is in BNE only if the monotonicity condition holds. Fimlly, we will prove that a
game is in BNE only if the payment identity holds.
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Figure 2.1: The left column shows (shaded) the surplus, paynt, and utility of Alice playing
action s(v = z,). The right column shows (shaded) the same for Alice playingction
s(v°= z;). The nal diagram shows (shaded) the di erence between Ade's utility for these
strategies. Monotonicity implies this di erence is non-ngative.
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Note that if Alice with value v deviates from the equilibrium and takes actions(v9
instead ofs(v) then she will receive outcome and payment(v9 and p(v3. This motivates
the de nition,

u(viv9 = vx(vy  p(v9;
which corresponds to Alice utility when she makes this dewian. For Alice's strategy to
be in equilibrium it must be that for all v, and V% u(v;v) u(v;\9, i.e., Alice derives no
increased utility by deviating. The strategy pro le s is in equilibrium if and only if the same
condition holds for all agents. (The \if" direction here folows from the assumption that
strategies map values onto actions. Meaning: for any action the game there exists a value
v®such that s(v9 is that action.)

1. G, s, and F are in BNE if s is onto and monotonicity and the payment identity hold.

We prove this by picture. Though the formulaic proof is simm@, the pictures provide
useful intuition. We consider two possible valueg, and z, with z; < z,. Supposing
Alice has the high value,v = z,, we argue that Alice does not bene t by simulating
her strategy for the lower valuev®= z,, i.e., by playing s(v9 to obtain outcome x(v9
and paymentp(v%. We leave the proof of the opposite, that whew = z; and Alice is
considering simulating the higher strategw®= z,, as an exercise for the reader.

fo start with this proof, we assume thatx(v) is monotone and thatp(v) = vx(v)

o X(2) dz.
Consider the diagrams in Figure 2.1. The rst diagram (top, enter) showsx( ) which is
indeed monotone as per our assumption. The column on the lsthow Alice's surplus,
vx(v); payment, p(v), and utility, u(v) = vx(v) p(v), assuming that she follow the
BNE strategy s(v = z,). The column on the right shows the analogous quantities whe
Alice follows strategy s(v’ = z;) but has valuev = z,. The nal diagram (bottom,
center) shows the di erence in the Alice's utility for the oucome and payments of these
two strategies. Note that as the picture shows, the monotocity of the allocation
function implies that this di erence is always non-negatie. Therefore, there is no
incentive for Alice to simulate the strategy of a lower value

As mentioned, a similar proof shows that Alice has no incentg to simulate her strategy
for a higher value. We conclude that she, with value, (weakly) prefers to play the
BNE strategy s(v).

2. G, s, and F are in BNE only if the allocation rule is monotone.

If we are in BNE then for all valuations, v and v° u(v;v)  u(v;v9. Expanding we
require
vx(v)  p(v)  vx(v)  p(v9):
We now considerz, and z, and take turns settingv = z;, V°= z,, andv°= z;, v = z,.
This yields the following two inequalities:
V=2V0= 2,5) 2x(z) p(z)  zX(zi) p(zi); and (2.1)
v=ziV0= 2,=) z2ix(z)  P(z)  zX(Z)  p(Z): (2.2)
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Figure 2.2: Upper (top, left) and lower bounds (top, right) br the di erence in payments
for two strategiesz; and z, imply that the di erence in payments (bottom) must satisfy the
payment identity.

Adding these inequalities and canceling the payment termsenhave,
2oX(22) + 21X(z1)  ZX(Z1) + z4X(2p):
Rearranging,
(22 z)(X(z2) X(z1)) O
Forz, z; > Oitmust be that x(z,) x(z;) 0, i.e.,x()is monotone non-decreasing.

3. G, s, and F are in BNE only if the payment rule satis es the payment ideniy.

We will give two proofs that payment rule must satisfyp(v) = vx(v)  ; X(z) dz; the
rst is a calculus-based proof under the assumption that anéach ofx( ) and p( ) are
di erentiable and the second is a picture-based proof thatequires no assumption.

Calculus-based proof: Fix and recall that u(v;z) = vx(z) p(z). Let u{v;z) be the
partial derivative of u(v; z) with respect toz. Thus, u{v;z) = vx%z) pYz), wherex¥ )
and pY ) are the derivatives ofp( ) and x( ), respectively. Since truthfulness implies
that u(v;z) is maximized atz = v. It must be that

uqv;v) = vxqv) pYv)=0:

This formula must hold true for all values ofv. For remainder of the proof, we treat
this identity formulaically. To emphasize this, substitute z = v:

zx%z) pYz)=0:
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Solving for pXz) and then integrating both sides of the equality from 0 tov we have,

piz) = %Xo(z); SO
VIOO(Z)dZ= szo(z) dz; so
° i, Z
p(v) p(0)

Z

zXx(2) ’ ’ X(z) dz
OZ . 0
vX(V) x(z) dz:
0

Adding p(0) from both sides of the equality, we conclude that the paysant identity
must hold.

Picture-based proof: Consider equations (2.1) and (2.2) drsolve in each fomp(z,)
p(z;) in each:

(X(z2) X(z)) PZ) Pz) zKX(z) x(z):

The rst inequality gives an upper bound on the di erence in @yments for two types
z, and z; and the second inequality gives a lower bound. It is easy toes¢hat the
only payment rule that satis es these upper and lower boundfor all pairs of typesz,
and z; has payment di erence exactly equal to the area to the left othe allocation
rule betweenx(z;) and x(z,). See Figure 2.2. The payment identity follows by taking
z,=0and z, = v. O

As we conclude the proof of the BNE characterization theorgnit is important to note
how little we have assumed of the underlying game. We did nossume it was a single-round,
sealed-bid auction. We did not assume that only a winner wilinake payments. Therefore,
we conclude for any potentially wacky, multi-round game theutcomes of all Bayes-Nash
equilibria have a nice form.

2.6 Characterization of Dominant Strategy Equilibrium

Dominant strategy equilibrium is a stronger equilibrium cacept than Bayes-Nash equilib-
rium. All dominant strategy equilibria are Bayes-Nash eqlibria, but as we have seen, the
opposite is not true; for instance, there is no DSE in the rsprice auction. Recall that

a strategy pro le is in DSE if each agent's strategy is optimiafor them regardless of what
other agents are doing. The DSE characterization theorem log follows from the BNE

characterization theorem.

Theorem 2.8. G and s are in DSE only if for all i,
1. (monotonicity) X;(v ;;V;) is monotone non-decreasing iv;, and

Vi

2. (payment identity) pi(v ;i) = ViXi(V i;vi) o Xi(v i;2)dz+ p(v ;;0),
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where (v ;;z) denotes the valuation pro le with theith coordinate replaced withz. If the
strategy pro le is onto then the converse also holds.

It was important when discussing BNE to explicitly refer tox;(v;) and p;(v;) as the prob-
ability of allocation and the expected payments because ama played by agents with values
drawn from a distribution will inherently, from agent i's perspective, have a randomized out-
come and payment. In contrast, for games with DSE we can codsr outcomes and payments
in a non-probabilistic sense. A deterministic game, i.e.ne with no internal randomization,
will result in deterministic outcomes and payments. For ousingle-dimensional game where
an agent is either served or not served we will hawve(v) 2 f 0; 1g. This speci cation along
with the monotonicity condition implied by DSE implies that the function x;(v ;;Vv;) is a
step function inv;. The reader can easily verify that the payment required foruch a step
function is exactly the critical value, i.e., ; at which x;(v ;; ) changes from 0 to 1. This
gives the following corollary.

Corollary 2.9. A deterministic gameG and strategiess are in DSE only if for all i,
1. (step-function) x;(v ;;Vv;) stepsfromOto 1 at; =inffz : x;(v ;;z)=1g, and

i if Xi(V i;Vi)zl

2. (critical value) for pi(v i;v;) = .
0 otherwise

+ pi(v ;;0):

If the strategy pro le is onto then the converse also holds.

Notice that the above theorem deliberately skirts around aubtle tie-breaking issue.
Consider the truthtelling DSE of the second-price auctionmtwo agents. What happens
whenv; = v,? One agent should win and pay the other's value, but, as thisesults in
a utility of zero, from the perspective of utility maximization both agents are indi erent
as to which of them it is. One natural tie-breaking rule is thdexicographical one, i.e., in
favor of agent 1 winning. For this rule, agent 1 wins when; 2 [v,;1 ) and agent 2 wins
whenv, 2 (vq;1 ). The critical values aret; = v, and t, = v;. We will usually prefer the
randomized tie-breaking rule because of its symmetry.

2.7 Revenue Equivalence

We are now ready to make one of the most signi cant observatis in auction theory. Namely,
mechanisms with the same outcome in BNE have the same expektevenue. In fact, not
only do they have the same expected revenue, but each agens llae same expected payment
in each mechanism. We state this result as a corollary of Then 2.7 which is intuitively
clear. The payment identity means that the payment rule is pecisely determined by the
allocation rule and the payment of the lowest type, i.e.p,(0).

Corollary 2.10. Consider any two mechanisms where 0-valued agents pay naghiif the
mechanisms have the same BNE outcome then they have sameceegeevenue.
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We can now quantitatively compare the second-price and rsprice auctions from a
revenue standpoint. Consider the case where the agent'swes are distributed independently
and identically. What is the equilibrium outcome of the seaad-price auction? The agent
with the highest valuation wins. What is the equilibrium outcome of the rst-price auction?
This question requires a little more thought. Since the disibutions are identical, it is
reasonable to expect that there is a symmetric equilibriumi,e., one wheres; = s for all
i and i’ Furthermore, it is reasonable to expect that the strategie are monotone, i.e., an
agent with a higher value will out bid an agent with a lower vale. Under these assumptions,
the agent with the highest value wins. Of course, in both auins a 0-valued agent will
pay nothing. Therefore, we can conclude that the two auctianobtain the same expected
revenue.

As an example of revenue equivalence consider rst-price casecond-price auctions for
selling a single item to two agents with values drawn fronl[0; 1]. The expected revenue
of the second-price auction i€ v(; . In Section 2.3 we saw that the symmetric strategy
of the rst-price auction in this environment is for each aget to bid half their value. The
expected revenue of rst-price auction is therefor&e v;;=2 . An important fact about
uniform random variables is that in expectation they evenlydivide the interval they are
over, i.e.,, E vy; =2=3 andE v = 1=3. How do the revenues of these two auctions
compare? Their revenues are identically=B.

Corollary 2.11. When agent's values are independent and identically didtuted, the second-
price and rst-price auction have the same expected revenue

Of course, much more bizarre auctions are governed by revenequivalence. As an
exercise the reader is encourage to verify that thadl-pay auctior; where agents submit bids,
the highest bidder wins, and all agents pay their bid; is reveie equivalent to the rst- and
second-price auctions.

2.8 Solving for Bayes-Nash Equilibrium

While it is quite important to know what outcomes are possitd in BNE, it is also often im-
portant to be able to solve for the BNE strategies. For instate, suppose you were a bidder
bidding in an auction. How would you bid? In this section we d&eribe an elegant tech-
nique for calculating BNE strategies in symmetric environmnts using revenue equivalence.
Actually, we use something a little stronger than revenue e@valence: interim payment
equivalence This is the fact that if two mechanisms have the same allocan rule, they
must have the same payment rule (because the payment rulegisfy the payment identity).
As described previously, the interim payment of agerit with value v; is p,(v;).

Suppose we are to solve for the BNE strategies of mechanidin The approach is to
express an agent's payment itM as a function of the agent's action, then to calculate the
agent's expected payment in a strategically-simple mechiam M °that is revenue equivalent
to M (usually a \second-price implementation” ofM ). Setting these terms equal and solving
for the agents action gives the equilibrium strategy.
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We give the high level the procedure below. As a running exatepwe will calculate the
equilibrium strategies in the rst-price auction with two U[0; 1] agents, in doing so we will
use a calculation of expected payments in the strategicalimple second-price auction in
the same environment.

1. Guesswhat the outcome might be in Bayes-Nash equilibrium.

E.g., for the rst-price auction with two agents with valuesUJ0; 1], in BNE, we expect
the agent with the highest value to win. Thus, guess that the ighest-valued agent
always wins.

2. Calculatethe expected payment of an agent with xed value in a strategally-simple
auction with the same equilibrium outcome.

E.g., recall that it is a dominant strategy equilibrium (a special case of Bayes-Nash
equilibrium) in the second-price auction for each agent toith their value. l.e., b, = v;
and b, = v,. Thus, the second-price auction also selects the agent withe highest
value to win. So, let us calculate the expected payment of plar 1 when their value is
Vi.

E[p:(v1)] = E[p1(v1) ] 1 wins]Pr[1 wins] + E[p;(v;) j 1 losesPr [1 loses]
Calculate each of these components for the second-price @t

Elpi(v1) j 1 wins] = E[v, j v, <vy]
= V=2
The rst step follows by the de nition of the second-price awtion and its dominant
strategy equilibrium (i.e., b, = v,). The second step follows because in expectation a
uniform random variable evenly divides the interval it is oer, and once we condition
onv, <V, V, is U[0; vq].

Pr[1 wins] = Pr[v, < v4]
= vy

The rst step follows from the de nition of the second-priceauction and its dominant
strategy equilibrium. The second step is because is uniform on [Q 1].

E[pi(v;) ] 1 loses] =0

This is because a loser pays nothing in the second-price daot This means that we
do not need to calculatePr [1 loses]. Plug these into the equation above to obtain:

Elp.(v)] = V%=25
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3. Solvefor bidding strategies from expected payments.

E.g., by revenue equivalence the expected payment of playkmwith value v; is vi=2
in both the rst-price and second-price auction. We can redeulate this expected
payment in the rst-price auction using the bid of the playeras a variable and then
solve for what that bid must be.

Again,
E[p:(v1)] = E[pi(v1) ] 1 wins]Pr[1 wins] + E[p;(v;) j 1 losesPr[1 loses]

Calculate each of these components for the rst-price aucth where agent 1 follows
strategy s;(vq):

Elpi(v;) j 1 wins] = s;(vy):
This by the de nition of the rst-price auction: if you win yo u pay your bid.
Pr[1 wins] = Pr[v, <v4] = vq:
This is the same as above.
E[p;(v4) j 1 loses] =0

This is because a loser pays nothing in the rst-price auctio This means that we do
not need to calculatePr [1 loses]. Plug these into the equation above to obtain:

Elpy(vi)] = s1(v1) va:

This must equal the expected payment calculated in the premis step for the second-
price auction, implying:

Vi=2 = s1(vy) Vi
We can solve fors;(v4) and get
S1(vy) = vi=2:

4. Verify initial guess was correct.

Indeed, if agents follow symmetric strategies,(z) = s,(z) = z=2 then the agent with
the highest value wins.

In the above rst-price auction example it should be readilyapparent that we did slightly
more work than we had to. In this case it would have been enough note that in both the
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rst- and second-price auction a loser pays nothing. We cadiltherefore simply equate the
expected payments conditioned on winning:

E[pi(v1) j 1 wins] = Y{Z? = fl Vi? :
secolnd-‘price rst-pric-:e
We can also work through the above framework for thall-pay auction where the agents
submit bids, the highest bid wins, but all agents pay their . The all-pay auction is also is
revenue equivalent to the second-price auction. Howevemw we compare the total expected
payment (regardless of winning) to conclude:

Elp(v1)] = ﬁz:? = f_l Vigi

second-price all-pay

l.e., the BNE strategies for the all-pay auction ares;(z) = z°=2. Remember, of course, that
the equilibrium strategies solved for above are for singieem auctions and two agents with
values uniform on [Q1]. For dierent distributions or numbers of agents the equibrium
strategies will generally be di erence.

2.9 The Revelation Principle

We are interested in designing mechanisms and, while the cheterization of Bayes-Nash
equilibrium is elegant, solving for equilibrium is still geerally quite challenging. The nal
piece of the puzzle, and the one that has enabled much of modenechanism design is
the revelation principle. The revelation principle states, informally, that if we ae searching
among mechanisms for one with a desirable equilibrium we megstrict our search to single-
round, sealed-bid mechanisms in which truthtelling is an egjibrium.

De nition 2.12. A direct revelation mechanism is single-round, sealed bid, and has action
space equal to the type space, (i.e., an agent can bid any eatlney might have)

De nition 2.13. A direct revelation mechanism isBayesian incentive compatiblgBIC) if
truthtelling is a Bayes-Nash equilibrium.

De nition 2.14. A direct revelation mechanism isdominant strategy incentive compatible
(DSIC) if truthtelling is a dominant strategy equilibrium.

Theorem 2.15. Any mechanismM with good BNE (resp. DSE) can be converted into a
BIC (resp. DSIC) mechanismM ° with the same BNE (resp. DSE) outcome.

Proof. We will prove the BNE variant of the theorem. Lets, F, and M be in BNE. De ne
single-round, sealed-bid mechanism ° as follows:

1. Accept sealed bidd.
2. Simulates(b) in M.
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3. Output the outcome of the simulation.

We now claim that s being a BNE ofM implies truthtelling is a BNE of M ° (for distribution
F). Let s denote the truthtelling strategy. In M consider agenti and suppose all other
agents are truthtelling. This means that the actions of the ther players inM are distributed
ass (s°i(v )= si(v )forv; F, .- Of course, inM if other players are playing
S i(v ;) then sincesis a BNE, i's best respénse is to plag; (v;) as well. Agenti can play this
action in the simulation of M is by playing the truthtelling strategy sX(v;) = v; in M% O

Notice that we already, in Chapter 1, saw the revelation priciple in action. The second-
price auction is the revelation principle applied to the Enlish auction.

Because of the revelation principle, for many of the mecham design problems we con-
sider, we will look rst for Bayesian or dominant-strategy ncentive compatible mechanisms.
The revelation principle guarantees that, in our search fooptimal BNE mechanisms, it suf-
ces to search only those that are BIC (and likewise for DSE ahDSIC). The following are
corollaries of our BNE and DSE characterization theorems.

We de ned the allocation and payment rulesx( ) and p( ) as functions of the valuation
pro le for an implicit game G and strategy pro le s. When the strategy pro le is truthtelling,
the allocation and payment rules are identical the originahappings of the gamg from actigns

to allocations aﬂd prices, denoteat®( ) and p®( ). Additionally, let xZ(v.) = E xS(v) j v;
|

andp®(v;) = E p°(v) jv; forv F. Furthermore, the truthtelling strategy prole in a
direct-revelation game is onto.

Corollary 2.16. A direct mechanismM is BIC for distribution F if and only if for all i,
1. (monotonicity) x (v;) is monotone non-decreasing, and
H H M - M RVi M M
2. (payment identity) p" (v;) = viX;" (V) o Xi (2)dz+ p” (0).
Corollary 2.17. A direct mechanismM is DSIC if and only if for all i,
1. (monotonicity) x!" (v ;;v;) is monotone non-decreasing iwv;, and
H H M M RV' M M
2. (payment identity) p" (v i;Vv;) = viX; (V ;) o Xi (V i;2)dz+ p" (v i;0).
Corollary 2.18. A direct, deterministic mechanismM is DSIC if and only if for all i,
1. (step-function) xM (v ;:v;) steps fromOto 1 at; =inffz : x (v ;;z)=1g, and

i xM(v ov) =1

+ (v ;:0):
0 otherwise pr(v:0)

2. (critical value) for pM (v ;) =

When we construct mechanisms we will use the \if" directionsf these theorems. When
discussing incentive compatible mechanisms we will assuthat agents follow their equilib-
rium strategies and, therefore, each agent's bid is equal keer valuation.
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Between DSIC and BIC clearly DSIC is a stronger incentive catraint and we should
prefer it over BIC if possible. Importantly, DSIC requires éwer assumptions on the agents.
For a DSIC mechanisms, each agent must only know her own vajuehile for a BIC mech-
anism, each agent must also know the distribution over otheagent values. Unfortunately,
there will be some environments where we derive BIC mechamis where no analogous DSIC
mechanism is known.

The revelation principle fails to hold in some environment®f interest. We will take
special care to point these out. Two such environments, fangtance, are where agents only
learn their values over time, or where the designer does natdw the prior distribution (and
hence cannot simulate the agent strategies).

Exercises

2.1 Find a symmetric mixed strategy equilibrium in the chicken gme described in Sec-
tion 2.1. l.e., nd a probability such that if James Dean stays with probability and
swerves with probability 1 then Buzz is happy to do the same.

2.2 In Section 2.3 we characterized outcomes and payments for Bhh single-dimensional
games. This characterization explains what happens whenegs behave strategically.

Suppose instead of strategic interaction, we care about faess. Consider a valuation

of i regardless of whether is served or not.

Allocation x and paymentsp are envy-freefor valuation pro le v if no agent wants to
unilaterally swap allocation and payment with another agen l.e., for all i andj,

ViXi P ViXp P

Characterize envy-free allocations and payments (and pr@wyour characterization cor-
rect). Unlike the BNE characterization, your characterizéion of payments will not

be unique. Instead, characterize the minimum payments thadre envy-free. Draw a
diagram illustrating your payment characterization. (Hirt: You should end up with a
very similar characterization to that of BNE.)

2.3 AdWords is Google product in which the search engine sells atiction advertisements
that appear along side search results on the search resultge. Consider the following
position auction environment which provides a simpli ed model of AdWords. Tlere
are m advertisement slots that appear along side search resultican advertisers.
Advertiser i has valuey; for a click. Slotj has click-through ratew;, meaning, if an
advertiser is assigned slat the advertiser will receive a click with probabilityw; . Each
advertiser can be assigned at most one slot and each slot candssigned at most one
advertiser. If a slot is left empty, all subsequent slots muse left empty, i.e., slots
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cannot be skipped. Assume that the slots are ordered from higst click-through rate
to lowest, i.e.,w; w;,, forallj.

(a) Find the envy-free (See Exercise 2.2) outcome and payntenvith the maximum
social surplus. Give a description and formula for the enviyee outcome and
payments for each advertiser. (Feel free to specify your pagnt formula with a
comprehensive picture.)

(b) In the real AdWords problem, advertisers only pay if theyreceive a click, whereas
the payments calculated, i.e.p, are in expected over all outcomes, click or no
click. If we are going to charge advertisers only if they arelicked on, give a
formula for calculating these payment® from p.

(c) The real AdWords problem is solved by auction. Design anuation that max-
imizes the social surplus in dominant strategy equilibrium Give a formula for
the payment rule of your auction (again, a comprehensive pige is ne). Com-
pare your DSE payment rule to the envy-free payment rule. Dva some informal
conclusions.

2.4 Consider the rst-price auction for sellingk units of an item to n unit-demand agents.
This auction solicits bids and allocates one units to each d@he k highest-bidding
agents. These winners are charged their bids. This auctioa revenue equivalent to
the k-unit \second-price" auction where the winners are chargethe k + 1st highest
bid, b1y . Solve for the symmetric Bayes-Nash equilibrium strategien the rst-price
auction when the agent values are i.i.dU[0; 1].

2.5 Consider the position auction environment withn = m = 2 (See Exercise 2.3). Con-
sider running the following rst-price auction: The adverisers submit bidsb = ( b;; b,).
The advertisers are assigned to slots in order of their bid#\dvertisers pay their bid
when clicked. Use revenue equivalence to solve for BNE st&gtess when the values
of the advertisers are drawn independent and identically dm U[O; 1].

Chapter Notes

The characterization of Bayes-Nash equilibrium, revenuegeivalence, and the revelation
principle come from Myerson (1981). The BNE characterizain proof presented here comes
from Archer and Tardos (2001).
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Chapter 3

Optimal Mechanisms

In this chapter we discuss the objectives of social surplusé prot. As we will see, the
economics of designing mechanisms to maximize social sugpis relatively simple. The
optimal mechanism is a simple generalization of the secopdee auction we have already
discussed. Furthermore, it is dominant strategy incentiveompatible and prior-free, i.e., itis
not dependent on distributional assumptions. Social surp$é maximization is uniqgue among
economic objectives in this regard.

The objective of pro t maximization, on the other hand, addssigni cant new challenge:
for pro t there is no single optimal mechanism. For any mechaism, there is a distributional
setting and another mechanism where this new mechanism hascly larger pro t than the
rst one.

This non-existence of an absolutely optimal mechanism reigess a relaxation of what we
consider a good mechanism. To address this challenge, thimpter follows the traditional
economics approach of Bayesian optimization. We will assenthat the distribution of the
agents' preferences is common knowledge, even to the medbieindesigner. This designer
should then search for the mechanism that maximizes her exgted pro t when preferences
are indeed drawn from the distribution.

As an example we could consider two agents with values drawmdependently and iden-
tically from UJ[O; 1]. The second-price auction obtains revenue equal to thepscted second-
highest value,E v;y = 1=3. A natural question is whether more revenue can be had. As
a rst step, it is similarly easy to calculate that the seconeprice auction with reserve 2
obtains an expected revenue of=A2 (which is higher than 1/3)! Perhaps surprisingly, a
seller can make more money by sometimes not selling the itewer when there is a buyer
willing to pay. In this chapter we show that the second-priceauction with reserve 1/2 is
indeed optimal for this two agent example and furthermore wgive a concise characterization

'The calculation proceeds as follows: There are three caseg (=2> Vv ) > V(y), (i) vq) > 122> vy,
and (iii), vy >V > 1=2. Case (i) happens with probability 1/4 and has no revenue; ase (ii) happens
with probability 1/2 and has revenue 1/2; and case (iii) happens with probability 1/4 and has expected
revenueE v, | case (iii) occurs = 2=3. The calculation of the expected revenue in case (iii) fobws from
the conditional values being U[1=2; 1] and the fact that, in expectation, uniform random variabl es evenly
divide the interval they are over. The total expected revenwe can then be calculated as 5£12.
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of the optimal auction for any single-dimensional agent emonment.

3.1 Single-dimensional Environments

In our previous discussion of Bayes-Nash equilibrium we fged on the agents' incentives.
Agents are single-dimensional, i.e., each has a single pta/value for receiving some abstract
service and quasi-linear utility, i.e., the agent's utiliy is her value for the service less her pay-

is the payment made by agent. Here we formalize the designer's constraints and objeatis.

De nition 3.1. A general cost environmenis one where the designer must pay a service
cost c(x) for the allocation x produced.

De nition 3.2. A general feasibility environmentis one where there is a feasibility con-
straint over the set of agents that can be simultaneously ged.

De nition 3.3. A downward-closedfeasibility constraint is one where subsets of feasible
sets are feasible.

Of course, downward-closed environments are a special casegeneral feasibility envi-
ronments which are a special case of general cost environtsenWe can express general
feasibility environments as general costs environments rgec( ) 2 f 0; 1g . We can similarly
express downward-closed feasibility environments as therther restriction where x°  x
(i.e., for all i, x° x;) and c(x) = 0 and implies that c¢(x% = 0. We will be aiming for
general mechanism design results and the most general réswlill be the ones that hold in
the most general environments. However, we will pay specktention to restrictions on the
environment that enable illuminating observations about ptimal mechanisms.

The two most fundamental designer objectives are social glus, a.k.a., social welfaré,
and prot.

De nition 3.4. The social surplusof an allocation is the cumulative value of agents served
less the service cost: X
Surplus(v; x) = Vi X o(Xx):
|

De nition 3.5. The prot of allocation and payments is the cumulative payment of agen

less the service cost: X

Prot(p;x)=  p cX):
|

Implicit in the de nition of social surplus is the fact that t he payments from the agents
are transferred to the service provider and therefore do netect the objective.’

2A mechanism that optimizes social surplus is said to beeconomically e cient ; though, we will not use
this terminology because of possible confusion witltomputational e ciency .

3An alternative notion would be to consider only the total val ue derived by the agents, i.e., the surplus less
the total payments. This residual surpluswas discussed in detail in Chapter 1; mechanisms for optiming
residual surplus are the subject of Exercise 3.1.
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The single-item and routing environments that were discusd in Chapter 1 are special
cases of downward-closed environments. Single-item eoviments have
if . x; 1,and

o(x) = '
1 otherwise.

In routing environments, recall, each agent has a message send betwen a source and
destination in the network.

0 if messages withkx; = 1 can be simultaneously routed, and

c(x) = .
1 otherwise.

We have yet to see any examples of general cost environmer@e natural one is that of
a multicast auction. The story for this problem comes from live video steaming.uppose we
wish to stream live video to viewers (agents) in a computer ivork. Because of the high-
bandwidth nature of video streaming the content provider mst lease the network links.
Each link has a publicly known cost. To serve a set of agentd designer must pay the cost
of network links that connect each agent, located at di erennodes in the network, to the
\root", i.e., the origin of the multicast. The nature of multicast is that the messages need
only be transmitted once on each edge to reach the agents. Té®re, the total cost to serve
these agents is the minimum cost of thenulticast tree that connects them?

3.2 Social Surplus

We now derive the optimal mechanism for social surplus. To dthis we walk through
a standard approach in mechanism design. We completely relthe Bayes-Nash equilib-
rium incentive constraints and ask and solve the remainingom-game-theoretic optimization
guestion. We then verify that this solution does not violatethe incentive constraints. We
conclude that the resulting mechanism is optimal.

The non-game-theoretic |9ptimization problem of maximizig surplus is that of nding x
to maximize Surplusf¢/;x) = ,Vvix; c(x). Let OPT be an optimal algorithm for solving this
problem. We will care about both the allocation that OPT selets, i.e., argmax Surplus(v; x)
and its surplus max Surplus(v;x). Where it is unambiguous we will use notation OPTY)
to denote either of these quantities. Notice that the formwation of OPT has no mention of
Bayes-Nash equilibrium incentive constraints.

We know from our characterization that the allocation rule dany BNE is monotone, and
that any monotone allocation rule can be implemented in BNE ith the appropriate payment
rule. Thus, relative to the non-game-theoretic optimizatin, the mechanism design problem
of nding a BIC mechanism to maximize surplus has an added moionicity constraint. As
it turns out, even though we did not impose a monotonicity costraint on OPT, it is satis ed

anyway.

*In combinatorial optimization this problem is known as the weighted Steiner treeproblem. It is a
computationally challenging variant of the minimum spanning tree problem.
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Lemma 3.6. For each agent and all values of other agentg ;, the allocation rule ofOPT
for agenti is a step function.

Proof. Consider any agenti. There are two situations of interest. Eitheri is served by
OPT(v) or i is not served by OPT{). We write out the surplus of OPT in both of these
cases. Below, notationy ;;z) denotes the vectorv with the ith coordinate replaced with
z.

Case 1 (i 2 OPT):

OPT(v) = max Surplus(v; x)
X

= v+ max Surplus((v ;;0); (x ;;1)):

De ne OPT ,(v) as the second term on the right hand side. Thus,
OPT(v) = v; + OPT ;(v):
Notice that OPT ;(v) is not a function of v.
Case 2 (i 620PT):
OPT(v) = max Surplus(v; x)

= max Surplus((v ;;0);(x ;;0):

De ne OPT(v ;) as the term on the right hand side. Thus,
OPT(v) = OPT(vV ;):
Notice that OPT(v ;) is not a function of v;.
OPT chooses whether or not to allocate to agent and thus which of these cases we are

in, so as to optimize the surplus. Therefore, OPT allocate®t whenever the surplus from
Case 1 is greater than the surplus from Case 2. l.e., when

v + OPT ;(v) OPT(v ;):
Solving forv; we conclude that OPT allocates ta whenever
v, OPT(v ;) OPT ;(v):

Notice that neither of the terms on the right hand side contai v;. Therefore, the allocation
rule for i is a step function with critical value ; = OPT(v ;) OPT ;(v). O
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Since the allocation rule induced by OPT is a step function,t isatis es our strongest
incentive constraint: with the appropriate payments (i.e, the \critical values") truthtelling
is a dominant strategy equilibrium (Corollary 2.18). The rsulting surplus maximization
mechanism is often referred to as th&/ickrey-Clarke-Groves(VCG) mechanism, named
after William Vickrey, Edward Clarke, and Theodore Groves.

Mechanism 3.1. The surplus maximization (SM) mechanism is:
1. Solicit and accept sealed bids.
2. x OPT(b), and
3. for eachi, p, OPT(b ;) OPT ;(b).

An intuitive description of OPT(v ;) OPT ;(v) is the externality that agent i imposes
on the other agents by being served. l.e., becausés served the other agents obtain total
surplus OPT ,(v) instead of the surplus OPT{ ;) that they would have received ifi was not
served. Hence, we can interpret the surplus maximization rcieanism as serving agents to
maximize the social surplus and charging each agent the esttality imposed on the others.

By Corollary 2.18 and Lemma 3.6 we have the following theorerand by the optimality
of OPT and the assumption that agents follow the dominant trthtelling strategy, we have
the following corollary.

Theorem 3.7. The surplus maximization mechanism is dominant strategy éantive com-
patible.

Corollary 3.8. The surplus maximization mechanism optimizes social suuglin dominant
strategy equilibrium.

The second-price routing auction from Chapter 1 is simply aimstantiation of the surplus
maximization mechanism where feasible outcomes are sulsset agents whose messages can
be simultaneously routed.

It is useful to view the surplus maximization mechanism as aduction from the mech-
anism design problem to the non-game-theoretic optimizatn problem. Given an algorithm
that solves the non-game-theoretic optimization problemi.e., OPT, we can construct the
surplus maximization mechanism from it.

Of course, by revenue equivalence, the payment rule of therglus maximization mech-
anism is unique up to the payments each agent would make if healue was zero, i.e.,
pi(v ;;0) for agenti. For instancep, = OPT ;(v) is an DSIC payment rule as well with
pi(v ;;0) = OPT(vVv ;). This payment rule does not satisfy a naturalno-positive-transfers
condition which requires that agents not be paid to participte. It is also possible to de-
sign BNE mechanisms, e.g., with rst-price semantics, thaimplement the same outcome
in equilibrium as the surplus maximization mechanism (seexgércise 3.2), though unlike
the surplus maximization mechanism given above, design dfese BNE mechanisms often
requires distributional knowledge.
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3.3 Prot

Surplus maximization is singular among objectives in thatitere is a single mechanism that is
optimal regardless of distributional assumptions. Esseilly: the agents' incentives already

aligned with the designer's objective and one only needs terive the appropriate payments,

i.e., the critical values. For general objectives we shoulibt expect to be so lucky.

A non-game-theoretic optimization problem looks to maxinzie some objective subject
to feasibility. Given the input, one can search over outconsefor the one with the highest
objective value relative to this input. The outcome producg on one input need not bear
any relation to the outcome produced on a (even slightly) dierent input. Mechanisms,
on the other hand, additionally must address agent incentés which impose constraints on
the outcomes that the mechanism produces across all possibhisreports of the agents. In
other words, the mechanism's outcome on one input is consinad by its outcome on similar
inputs. Therefore, a mechanism may need to tradeo its objéiwe performance across inputs.

When the distribution of agent values is speci ed, e.g., byhle common prior, and the
designer has knowledge of this prior, such a tradeo can be topized. In particular, the
prior assigns a probability to each input and the designer cathen optimize expected ob-
jective value over this probability distribution. The mechanism that results from such an
optimization is said to be Bayesian optimal In this section we derive Bayesian optimal
mechanism for the objective of pro t.

At various points in the remaining sections of this chaptertiwill be more convenient
(and intuitive) to express certain functions in terms of theintegral of their derivative. This
notation is mathematically imprecise when the derivatived not de ned, e.g., because the
function is discontinuous. It can be made precise via the Gic delta function which integrates
to a step function; however, we will not describe these detsiformally. The reader is welcome
to, instead, just assume the functions in question are contious. An example of this is
Theorem 3.10, below.

3.3.1 Quantile Space

In single-dimensional Bayesian mechanism design where ageat's value is distributed ac-
cording to a continuous distribution F there is a one-to-one mapping between the agent's
value and her strength relative to the distribution. For ingance, an agent with valuev = 0:9
drawn from UJ[0; 1] is stronger than 90% of agents and weaker than 10% of agewith values
drawn from the same distribution. We refer to indexing of ag# from strong (q = 0) to weak
(g=1) as quantile. Importantly, the distribution of an agent's quantile is aways UJ[0; 1].

De nition 3.9. The quantile q of an agent with valuer  F is the probability that the agent
is weaker than a random draw fronF. l.e., =1 F(v).

It will be convenient to express an agent's value as a functioof quantile asv(q) =
F (1 ). We will overload notation to de ne allocation and paymentrules in quantile
space as well. Specically, X(g)" and \ p(g)" will be short-hand notation for x(v(q)) and
p(v(q)), respectively. This convention will be extended to othefunctions as well: if the
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function is de ned on values but applied to a quantile, then ¥ this application we implicitly
mean the function composed with the value functiony( ). We can rederive Theorem 2.7 in
guantile space as follows.

Theorem 3.10. Allocation and payment rulesx and p are BIC if and only if for all i,

1. (monotonicity) X;(g) is monotone non-increasing ing, and
R
2. (payment identity) pi(q) = qf vi(r) xj(r) dr + pi(1),

where x(q) = %xi(q) and p;(1) is the payment made by agentwhen her value is at its
lowest.

The payment identity of this theorem and Theorem 2.7 are retad by a change of variables
and integration by parts. Notice that asx(q) is monotone non-increasing, its derivative
xYq) is non-positive; hence, the negation of the integral guantees a non-negative expected
payment.

Proof. See Exercise 3.3. I

3.3.2 Revenue Curves

We start by removing all the complication of mechanisms for aitiple agents and consider
only a single agent, Alice, desiring a single item. Supposdide's valuev is drawn from
distribution F. How should we sell the item to Alice to maximize our pro t?

Suppose we wish to sell to Alice with ex ante probabilitg.*"The most direct way to do
this would be to post a pricev(§) as this is the price at whichPr, [v>v ()] =4 The
revenue obtained by posting such a price is exactly the pridemes the probability of sale,

ie,v(g 6

De nition 3.11. The revenue curveR( ) speci es the revenue as a function of ex ante
probability of sale. l.e.,R(g) = v(q) g R(1) and R(0) are de ned to be zero.

We can clearly optimize revenue by taking the derivative ofte revenue curve and setting
it equal to zero. For example, ifF is the uniform distribution U[0;1] then F(z) = z,
vig=1 g R(@=q o, andRYq)=1 29 The revenue is optimized by pricing at
guantile ¢ = 1=2 (which corresponds to a prices(1=2) = 1=2). The uniform distribution is
well-behaved in the sense that the revenue, as a function afamptile, increases up to quantile
1/2, which obtains a revenue of 1/4, and then decreases. Thaportance of the derivative
in solving for the optimal price can be noted by observing thathe derivative is positive
but decreasing ag is increased to £2, where it is zero, and then continues to be negative
and decreasing afterwards. This optimal revenue is obtaiddy allocating to Alice when the
derivative of the revenue curve at her quantile, i.eRY0), is non-negative.

®Notice that for distributions with support [0 ; h] for some valueh, g 2 f 0; 1g implies v(g) q = 0, therefore
explicitly de ning R(1) = R(0) =0 is unnecessary.
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3.3.3 Expected Revenue and Virtual Values

Suppose we are given the allocation rule (in quantile spacef) an agent (Aliﬁe) asx(q). By

the payment identity (in quantile space), the payment rule mst bep(q) = ql v(r) xYr) dr.
Since Alice's quantileqis drawn fromU[0; 1] we can calculate our expected revenue as follows.
Z 1 Z'l
Eqlp(a)] = v(r)x{r) drdg
g=0 r=q

This equation can be simpli ed by swapping the order of integtion.
YA 1 Z r
Eqlp(a)] = dg u(r) x{r) dr

r=0 g=0

Z 1
rv(r)x¥r)dr

ZriO
R(a) xY0) dq (3.1)

a=0

Equation (3.1) follows from substituting the de nition of R() and making a change of
variables. DenotediqR(q) by RYq). If we integrate the above, by parts, we obtain:

Z, h iy

Eqlp(a)] = RYg)x(q)dg  R(q) x(q)
0 ;
= RYq) x(g) dq: (3.2)

q=

=0

Equation (3.2) follows from the de nition of revenue curvesvhich requiresR(0) = R(1) = 0.
We conclude this analysis by summarizing equations (3.1) dr{3.2) as the following lemma.

Lemma 3.12. An agent with revenue curv& () subject to allocation rulex( ) makes expected
payment:

E p(@] = Eq R(@)xYa) = Eq RY9) x(0) :

Both of the identities in Lemma 3.12 are useful for understaling the expected payments
of agents in BNE. For instance, the former, from equation (3), implies that the same
allocation rule (in quantile space) on a higher revenue cugwgives more revenue.

Corollary 3.13. If agents 1 and 2 with revenue curves satisfyirig;(q) R»(q) for all g
are subject to the same (in quantile space) allocation ruleg., satisfying x;(q) = x,(q), then

Eqlpi(A)]  Eqlp2(a)].

The latter identity from Lemma 3.12, from equation (3.2), gies an approach for opti-
mizing revenue. It is instructive to viewRY ) as the marginal increase in revenue we get
for selling to Alice with incrementally more probability. For our goal of optimizing expected
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prot, it suggests selectingx to maximize this marginal revenue Informally: revenue is
maximized by optimizing marginal revenue. This principled standard in microeconomics.
The standard terminology in mechanism design for this mangal revenue isvirtual value.

De nition 3.14. The virtual value of an agent with quantileq and revenue curveR( ) is
the marginal revenue a2 (0; 1):°

(9 = RYa:
The virtual surplus of outcomex and pro le of agent quantilesq is:
X
Surplus( (@);x) = (@)% o(x);

Often it is useful to write the virtual value in terms of the agent's value, v, and the
distribution, F, from which the value is drawn. Evaluating, in value space,he derivative
(with respect to quantile) of the revenue curve we obtain:

1 F(v)

(V)=v TR

(3.3)

The following theorem is an immediate consequence of Lemmad3and linearity of expec-
tation.

Theorem 3.15. A mechanism's expected revenue is equal to its expecteduattsurplus, i.e.,
with allocation rule x( ) on agents with virtual value functions () the expected revenue is:
hx i

Eq (@) cx(@) :

It should be noted that the distributional properties of an @ent's value can be given
equivalently by specifying the distribution F, the value function v( ), the revenue curve
R(), or the virtual value function ().

3.3.4 Optimal Mechanisms and Regular Distributions

We now derive the optimal mechanism for prot. To do this we agin walk through a

standard approach in mechanism design. We completely reléxe incentive constraints and
solve the remaining non-game-theoretic optimization praém. Since expected prot equals
expected virtual surplus, this non-game-theoretic optinzation problem is to optimize virtual

surplus. We then verify that this solution does not violate he incentive constraints (under
some conditions). We conclude that (under the same conditie) the resulting mechanism is
optimal.

®The virtual value for g 2 f0;1g is irrelevant for optimization for continuous distributio ns as these
realizations of quantile is a measure zero event.
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The non-game-theoretic optimization I:problem of maximizig virtual surplus is that of
nding x to maximize Surplus( (v);x)= ; i(v)X; c(x). Let OPT again be the surplus
maximizing algorithm. We will care about both the allocatiom that OPT( (v)) selects,
i.e., argmax Surplus( (v);x) and its virtual surplus max, Surplus( (v);x). Where it is
unambiguous we will use notation OPT( (v)) to denote either of these quantities. Note
that this formulation of OPT has no mention of the incentive onstraints.

We know from the BIC characterization (Corollary 2.16) thatincentive constraints require
that the allocation rule be monotone. Thus, the mechanism d&gn problem of nding a
BIC mechanism to maximize virtual surplus has an added monanicity constraint. Yet,
even though we did not impose a monotonicity constraint on OP, if the virtual valuation
functions () are monotone, OPT( ()) is monotone.

De nition 3.16.  Distribution F is regular if its associated revenue curv&(q) is a concave
function of q (equivalently: () is monotone).

Many distributions are regular, e.g., uniform, normal, expnential. On the other hand
many relevant distributions are irregular, e.g., bimodal.

Lemma 3.17. For each agent and any values of other agents ;, if F; is regular theni's
allocation rule from OPT( ()) on virtual values is monotone in's valueyv;.

Proof. Recall from Lemma 3.6 that maximizing surplus is monotone. &aning, if we nd x
to maximize Surplusg; x) then x;(v ;;Vv;) is monotone inv;. Thereforex;( (v i); i(v))
is monotone in ;(v;), i.e., increasing ;(v;) does decreas&;. By the regularity assumption
onF;, i(v) is monotone inv;. Therefore, increasings; cannot decrease ;(v;) which cannot
decreasex;( (v i); i(w)). O

Since OPT on virtual values is monotone for each agent and amgilues of other agents it
satis es our strongest incentive constraint. With the appopriate payments (i.e., the \critical
values") truthtelling is a dominant strategy equilibrium (recall Corollary 2.18). One way to
view the suggested virtual surplus maximization mechanisns as a reduction to surplus
maximization, which is solved by the SM mechanism (Mechams3.1).

Mechanism 3.2. The virtual surplus maximization (VSM) mechanism with virtual value
functions () is:

1. Solicit and accept sealed bids,
2. (x;p%  SM( (b)), and

3. for eachi, p; Y.

Notice that the payments p calculated can be viewed as follows. SM on virtual values
outputs virtual prices p° These correspond to the minimum virtual value an agent must
have to win. The price an agent pays is the minimum value it masave to win, this can be
calculated from the virtual prices via the inverse virtual @luation function.”

7Assuming virtual valuations are strictly non-decreasing then the inverse virtual valuations are well
de ned. We defer discussion of the non-strict case to the subequent section on irregular distributions.
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Theorem 3.18. For regular distributions, the virtual value maximizatiormechanism is dom-
inant strategy incentive compatible.

Corollary 3.19. For regular distributions, the virtual surplus maximizatbn mechanism op-
timizes expected pro t in dominant strategy equilibrium.

3.3.5 Single-item Auctions

The above description of pro t-optimal mechanisms does nai er much in the way of intu-
ition. To get a clearer picture, we consider optimal mechasiins the special case of single-item
auctions, i.e., environments where feasible outcomes s most one agent. What is the
mechanism that optimizes virtual surplus for single-item mvironments?

First notice that virtual values can be negative. Considertte uniform distribution U[0; 1]
where F(z) = z and f (2) = 1. From equation (3.3), (v) = v &2 =2v 1. Thus,

(0) = 1. If our goal is to optimize virtual surplus we clearly do notvant to allocate to any

agent with negative virtual value. Recall that virtual values are the derivative of the revenue
curve and our analysis of single-agent environments alrgaduggested that we should not
allocate to an agent for whom this quantity is negative.

Second notice that among the agents with positive virtual ‘aes the virtual surplus is
maximized by allocating to the one with the highest virtual alue. Conclude the following
corollary.

Corollary 3.20. For regular, single-item environments, the auction that #&cates to the
agent with the highest non-negative virtual value optimzexpected revenue.

As virtual valuations are the derivative of the revenue cure, the optimal auction allocates
to the agent whose revenue curve is the steepest at her value.

The case where the agents are independent and identicallysalibuted is of special in-
terest. For i.i.d. and regular distributions, the agent wit the highest positive virtual value
is also the one with the highest value (as the virtual valuatin functions are identical). An
agent's virtual value is non-negative when her value is atdst *(0). What auction al-
locates to the agent with the highest value that is at least '(0)? It is the second-price
auction with reserve  *(0)!

De nition 3.21  (Second-price Auction with reservation price). The second-price auction
with reservation pricer, sells the item if any agent bids above The price the winning agent
pays the maximum of the second highest bid and

Corollary 3.22. For i.i.d., regular, single-item environments, the secongrice auction with
reserve *(0) optimizes expected revenue.

Notice that the optimal reserve price is not a function of thenumber of agents. Fur-
thermore, the result can easily be extended to single-itemutti-unit auctions where the
optimal reserve price is also not a function of the number ofits that are for sale. As we
will see from Theorem 4.24 in Chapter 4 the same result extendbeyond single-item and
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multi-unit feasibility constraints to those that are downward-closed and satisfy a natural
\augmentation" property that is related to substitutabili ty, a.k.a., matroids.

While this auction is optimal among all BIC auctions, which $ the class of mechanisms
we restricted our attention to, (a) the revelation principle implies that no auction has a BNE
with higher expected revenue, and (b) it actually satis es e stronger dominant strategy
incentive compatibility constraint. Therefore, we conclde that in a very strong sense, that
the second-price auction with reserve price maximizes exped revenue.

We conclude by returning to the two agentU[0; 1] example. As we have calculated,

(v)=2v 1;therefore, *(0)=1=2. The second-price auction with reserve price=2 has
the optimal expected revenue. Our calculation at the introdction of this chapter showed
this optimal revenue to be 512.

3.4 Irregular Distributions

We now turn our attention to the case where the non-game-theetic optimization problem

is not itself inherently monotone. Anirregular distribution is one for which the the rev-
enue curve is non-concave (in quantile). The virtual valu&n functions are non-monotone,
therefore, a higher value might result in a lower virtual vale. Clearly OPT( ()) is non-

monotone for such a distribution; therefore, there is no payent rule for which it is incentive

compatible.

3.4.1 Ironed Revenue Curves

Consider again the problem of selling an item to Alice with eante probability §. We could
o er Alice price v(@) to obtain revenueR(0) = 4 v;(g); however, whenR( ) is not concave,
this approach may not optimize expected revenue.

To see what is going wrong, notice that if we treat Alice the sae, regardless of her value,
when her quantile is on some intervald; j then we can replace her exact virtual valuation
with her average virtual valuation on this interval. Figure 3.1(a) depicts a hypothetical
non-concave revenue curve; Figure 3.1(c) depicts the capending virtual value function.
Figure 3.1(d) shows Alice's virtual value averaged ora{h. Finally, Figure 3.1(b) shows the
resulting revenue curve. Notice that the constant virtual aluation over [a; 4 results in a
linear revenue curve, speci cally, the line segment connewy (a; R(a)) to (b; R(b)). Since
R(') is non-concave this line segment & ¢an be strictly higher thanR((), as pictured. This
process of treating Alice the same on an interval to atten tle virtual valuation function is
known asironing.

To sell to Alice with ex ante probability ¢ we can pick some intervald; j with a< ¢ <b
and apply the allocation rule

8

21 ifg<a
xMa)=_ &5 ifg2[ab

"0 if b<aq.
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0 . 0+ : .
0 1 Oa b 1
(a) Revenue curveR(q). (b) Revenue curveR(q) ironed on [a; b.
10+ 101
10+ [ 10+ 1 [ [
0 1 Oa b 1
(c) Virtual values R%q). (d) Virtual values R%q) ironed on [a; b.

Figure 3.1: On the left is the revenue curvdk(q) and virtual valuations RYq) in quantile

space. On the right is the e ective revenue curve and virtuataluations when ironed ong; b.

Though it is not necessary for understanding this examplehis R() comes from bimodal
distribution that is UJ[0; 2] with probability 3=4 and U[2; 8] with probability 1=4.
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Notice that when Alice's quantile q is realized (i.e., drawn from the uniform distribution)

then the probability that Alice is served byx%()is1 a+ % (b a) =1%. The revenue from

such an allocation rule follows directly from Theorem 3.10lt is R(a) + %(R(b) R(a)).
Notice that this revenue is exactly the value aigon the line segment connectinga; R(a))
to (b; R(b), e.g., see Figure 3.1(b). Again, wher®( ) is non-concave, the revenue obtained
from this randomized rule can be higher tharR(¢).

It should be intuitively clear that if we restrict ourselvesto allocation rules that treat
Alice the same on appropriate subintervals of quantile spacve can construct an e ective
revenue curveR( ) equal smallest concave function that upper-bounds the al revenue
curve R(). This revenue curve is known as th@oned revenue curveand its derivative is the
ironed virtual valuation function.

De nition 3.23. For v  F, the ironed revenue curveR( ), is smallest concave function
that upper-boundsR( ) and theironed virtual valuation function is (q) = RYq).

Ironed intervals of the ironed revenue curve are those witR(g) > R (g). The usage of
ironed virtual values in place of virtual values as a proxy foan agent's (Alice) expected
payment is valid only for mechanisms treat her the same way gardless of where in the
interval her quantile lies. Meaning: Alice with quantileq 2 [a;  that is ironed will be served
with the same probability as she would have been with any othejuantile g° 2 [a; . The
following lemma formally states that ironed virtual surplis gives an upper bound on virtual
surplus that is tight for mechanisms that respect the ironedhtervals.

Lemma 3.24. An agent's expected payment is upper-bounded by their exge¢roned virtual
surplus, i.e.,

Evip(vl  Eq (9x(0) :
Furthermore, this inequality holds with equality whe8q; R(q) >R (q) ) x¥q) =0.

Proof. We will start by showing a more precise statement.

Eqp(@] = Eq RY9) x(9) + Eq RY9) x(a) E4 RY9 x(q)
E, RY9) x(@ Eq RY® RY9 x(d)
E, RY9) x(@ +E, R(@® R(@ x%0) : (3.4)

The last line above follows from writing the expectation asraintegral and integration by
parts.

Inspecting the second term of equation (3.4) more closelyptice that the di erence in
the revenue curves is non-negative, &( ) is de ned to be an upper-bound onR( ); and
the derivative of the allocation rule is non-positive, as té allocation rule is monotone non-
increasing in quantile. Therefore, the second term is norppitive and the inequality of the
lemma is proven.

Of course, the assumption thatR(g) > R(q) ) x%g) = O implies that the second
term of (3.4) is identically zero: whenever the rst multipicand is non-zero, the second
multiplicand is zero. O
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Notice the advantage oR( ) over R( ) is two-fold. First, Corollary 3.13 suggests that we
can get more revenue fronR( ) than from R(). Second,R() is concave by de nition, so
ironed virtual valuations are monotone, so ironed virtual wrplus maximization results in a
monotone allocation rule, so with the appropriate paymentule it is incentive compatible.

In retrospect it should be obvious that the optimal revenue @a function of ex ante sale
probability is concave. Given any two IC mechanisms the coax combination of the two
mechanisms is IC and its revenue is a convex combination ofettwo mechanisms revenue.

3.4.2 Optimal Mechanisms

We will now show that for any distribution, the mechanism tha maximizes ironed virtual

surplus obtains the optimal expected pro t. Again we view tlis mechanism as a reduction to
surplus maximization which is solved, e.g., by mechanism SMiechanism 3.1). The resulting
mechanism is sometimes referred to as the Myerson auctioor(single-item environments) or
the Myerson mechanism (for general single-dimensional @nments) after Roger Myerson.

Mechanism 3.3. The ironed virtual surplus maximization (IVSM) mechanism for distri-
butions with ironed virtual value functions () is:

1. Solicit and accept sealed bids,
2. (x;p%  SM( (b)), and
3. calculate payments for each agent from the payment idewnti

By monotonicity of () and OPT( ), OPT( ()) is monotone for each agent and all
values of other agents. Therefore, ironed virtual surplus aximization satis es our strongest
incentive constraint. With the appropriate payments (i.e, the \critical values") truthtelling
is a dominant strategy equilibrium (recall Corollary 2.18)

Theorem 3.25. The ironed virtual surplus maximization mechanism is domant strategy
incentive compatible.

To show that ironed virtual surplus mechanism is optimal we @ed to argue that it
respects the ironed intervals of the ironed revenue curveel, any agent with value within an
ironed interval receives the same outcome regardless of wehen the interval her value lies.

Lemma 3.26. For agents with revenue curve® (), the allocation rule x( ) of the ironed
virtual surplus maximization mechanism satis eR;(q) > R;(q) ) xXqg) =0 for all i and

G.

Proof. Observe that on ironed intervals, i.e., wher&k(q) > R (q), the ironed revenue curve,
R(), is linear. This follows from the de nition of the ironed revenue curve as the smallest
concave function that upper-bounds the revenue curve. SE&( ) is linear on this ironed
interval, its derivative and, consequently, the ironed viual function is constant on the
interval. The allocation probability of the ironed virtual surplus maximization mechanism
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(a) Unique highest ironed virtual value. (b) Non-unique highest ironed virtual value.

Figure 3.2: The ironed virtual valuation function (v) under two realizations of agent values
depicting both the case where the highest ironed virtual vak is unique and the case where
it is not unique.

is determined by the optimization OPT( ()) which is a function only of the ironed virtual
values. Since an agent with any quantile within an ironed imrval has the same ironed virtual
valuation, this optimization must produce an outcome that $ constant on the interval. On
ironed intervals, therefore, the derivative of the allocabn rule is zero. O

Corollary 3.27. The ironed virtual surplus maximization mechanism optimes expected
pro t in dominant strategy equilibrium.

Like in the regular case, it is quite useful to view this restlas a reduction from the
problem of pro t maximization to the problem of surplus maxmization.

Note that unlike the surplus maximization mechanism and theirtual surplus maximiza-
tion mechanism (for regular distributions) where the contiuity assumption on the distribu-
tion implies that there is never a tie, the ironed virtual suplus maximization mechanism
for irregular distributions may require a tie-breaking paty, for instance, when two agents
with distinct values have the same ironed virtual value. Tiebreaking can be implemented
arbitrarily (as long as it is not a function of the agents' valles). Common tie-breaking rules
are lexicographicaland random. Lexicographical tie breaking will favor sets of agents wit
higher indices. Random tie breaking takes the lexicograptal ordering on a random permu-
tation of the agent indices. The randomized tie-breaking ta is often desired because it is
symmetric.

3.4.3 Single-item Auctions

We consider the special case of single-item auctions to getlaarer picture of exactly what
the optimal mechanism is in the case of i.i.d., irregular disbutions. Figure 3.2 depicts
hypothetical ironed virtual valuation function. Instanti ating the agents' values corresponds
to picking points on the horizontal axis. The agents' ironedirtual valuations can then be
read o the plot. The optimal auction assigns the item to the gent with the highest ironed
virtual value. If there is a tie, it picks a random tied agent b win.
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Figure 3.3: The allocation (black line) and payment rule (gay region) for agent 1 givenv ;
and the ironed virtual valuation function from Figure 3.2.

Figure 3.2(a) depicts a realization of values fon = 4 agents where the highest ironed
virtual valuation is unique. What does the ironed virtual suplus maximization do here? It
allocates the item to this agent, i.e., agent 1 in the gure. kgure 3.2(b) depicts a second
realization of values where the highest ironed virtual vahtion is not unique. In this setting
the mechanism, we will assume, breaks ties by picking a ramddied agent as the winner,
i.e., one of agents 1, 2, and 3 in the gure. In general when tleeis ak-agent tie for the
highest ironed virtual valuation then each tied agent wins #h probability 1 =k.

It is instructive to calculate the payment an agent must maken expectation over the
random tie-breaking rule. Consider the case where there isuaique highest ironed virtual
value. The agent with this ironed virtual value wins. To calalate her DSIC payment we
need to consider agent's allocation rule for xed valuesv ; of the other agents. Consider
again the example in Figure 3.2(a) and imagine the probalyi we allocate to agent 1 as a
function of v;. This is

8

21 if z>a
Xi(v i;2) = >1:k if z2 [b;d

"0 if z<bh.

whenv ; has ak 1 agents in p; d tied for the highest ironed virtual valuation. The 1=k
probability of winning for z 2 [b; d arises from our analysis of what happens when inla
agent tie. Figure 3.3(a) depicts the allocation and rule payent of this agent. When agent 1
has the unique highest ironed virtual value, i.ey; >a, thenp,=a (a b=k

When agent 1 is tied for the highest ironed virtual value withk 1 other agents, as
depicted in Figure 3.3(b), her expected payment ip; = b=k Of course,x; = 1=k so such
a payment can be implemented by charging to the tied agent that wins and zero to the
losers.

Exercises

3.1 In computer networks such as the Internet it is often not podsle to use monetary
payments to ensure the allocation of resources to those whalwe them the most.
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3.2

3.3

3.4

Computational payments, e.g., in the form of \proofs of work however, are often
possible. One important di erence between monetary payménand computational
payments is that computational payments can be used to aligimcentives but do not
transfer utility from the agents to the seller. l.e., the séér has no direct value from
an agent performing a proof-of-worlﬁ, computation. De ne theaesidual surplusas the
social surplus less the payments, i.e., ; (v; X; p) ¢(x). (For more details, see the
discussion of non-monetary payments in Chapter 1.)

Describe the mechanism that maximizes residual surplus whehe distribution on

agents' values satisfy themonotone hazard rateassumption, i.e.,f (v)=(1 F(v)) is

monotone non-decreasing. Your description should rst iiede a description in terms
of virtual values and then you should interpret the implicaton of the monotone hazard
rate assumption to give a simple description of the optimal ethanism. In particular,
consider monotone hazard rate distributions in the followig environments:

(a) a single-item auction with i.i.d. values,

(b) a single-item auction with non-identical values, and

(c) an environment with general costs speci ed byg( ) and non-identical values.
Give a mechanism with rst-price payment semantics that imfements the social sur-

plus maximizing outcome in equilibrium for any single-dimesional agent environment.
Hint: Your mechanism may be parameterized by the distributn.

Prove from rst principles that BNE implies the payment idertity of Theorem 3.10.
You may assume thatx() and p() are continuously di erentiable with respect to
guantile.

Consider the non-downward closed environment @ublic projects either every agent
can be served or none of them. l.e., the cost structure sates:

8 P
2 0 if i Xj = 0,

c(x) = S 0 if ;x;=n,and
"1 otherwise.

(a) Describe the revenue maximizing mechanism for generastulibutions.

(b) Describe the revenue maximizing mechanism when agentgllues are i.i.d. from
U[0; 1].

(c) Give an asymptotic, in terms of the numbern of agents, analysis of the ex-
pected revenue of the optimal public project mechanism wheagents' values are
i.i.d. from UI[O0; 1].
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Chapter Notes

The surplus-optimal Vickrey-Clarke-Groves (VCG) mecharsim is credited to Vickrey (1961),
Clarke (1971), and Groves (1973).

The revenue-optimal single-item auction was derived by RegMyerson (1981). Its gener-
alization to single-dimensional agent environments is arbeious extension. The relationship
between revenue-optimal auctions, revenue curves, andarginal revenue(equivalent to vir-
tual values) is due to Bulow and Roberts (1989).
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Chapter 4

Bayesian Approximation

One of the most intriguing conclusions from the preceding apter is that for i.i.d., regular,
single-item environments the second-price auction with @servation price is revenue optimal.
This result is compelling as the solution it proposes is qutsimple; therefore, making it easy
to prescribe. Furthermore, reserve-price-based auctiomse often employed in practice so
this theory of optimal auctions is also descriptive. Unfonately, i.i.d., regular, single-item
environments are hardly representative of the scenarios imhich we would like to design
good mechanisms. Furthermore, if any of the assumptions arelaxed, reserve-price-based
mechanisms are not optimal.

In this chapter we address this de ciency by showing that wike reserve-price-based mech-
anisms are not optimal, they are approximately optimal in a wde range of environments.
Furthermore, these approximately optimal mechanisms are one robust, less dependent on
the details of the distribution, and provide more conceptuaunderstanding than their op-
timal counterparts. The approximation factor obtained by nost of these reserve-pricing
mechanisms is two. Meaning, for the worst distributional aumption, their performance is
within a factor two of the optimal mechanism. Of course, in an particular environment
these mechanisms may perform better than their worst-casearantee.

Distributional regularity, as implied by the concavity of the revenue curve, and inde-
pendence will be instrumental in many of the approximation esults obtained, as will two
additional structural properties. First, the monotone hazard rateeondition, a further restric-
tion of regularity, is a property of a distribution that, int uitively, restricts how heavy the tails
of the distribution are. An important consequence of the mastone hazard rate assumption
is that the optimal revenue and optimal social surplus are wiin a factor of e  2:718 of
each other. Second, anatroid set systemis one that is downward-closed and satis es an
additional \augmentation property.” An important consequence of the matroid property is
that the surplus maximizing allocation (subject to feasibity) is given by the greedy-by-value
algorithm: sort the agents by value, then consider each agen-turn and serve the agent if
doing so is feasible.
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4.1 Single-item Auctions

We start with single-item auctions and show that the secong¥ice auction with suitably cho-
sen agent-speci ¢ reserve prices is always a good approxiioa to the optimal mechanism.

1. reject each agent with v, <r;,
2. allocate the item to the highest valued agent remaining (@one if none exists), and

3. charge the winner her critical price.

4.1.1 Regular Distributions

Recall from Chapter 3 that when the agents values are i.i.drdm a regular distribution

F (De nition 3.16) then the optimal auction is identically the second-price auction with
reservesr = ( %(0);:::;  (0)) where () is the virtual value function (De nition 3.14)

for F. Further, if we just had a single agent with valuev F we would o er her  *(0) to

maximize our revenue. This price is often referred to as thmonopoly price

De nition 4.1  (monopoly price) The monopoly price denoted , for a distribution F is
the revenue-optimal price to o er an agent with value drawrrdm F, i.e., =  *(0).

Notice that for asymmetric distributions, i.e., whereF; 6 F,o, monopoly prices may di er
for di erent agents. Furthermore, the second-price auctio with monopoly reserves is not
equivalent to the optimal auction when agent values are noiatentically distributed. Instead
the optimal auction carefully optimizes agents' virtual vdues at all points of their respective
distributions. Therefore, the second-price auction with mnopoly reserves has suboptimal
revenue.

As an example consider a 2-agent single-item environmenttiiagent 1's value from
U[0; 1] and agent 2's value fromU[0; 2]. The virtual value functions are ;(v;) =2v; 1
and ,(v,) = 2v, 2. We serve agent 1 whenever,(v;) > max( ,(v»);0), i.e., when
v, > max(v, 1=2;1=2). This auction is not the second-price auction with resees.

The main result of this section is enabled by the following c@equence of distributional
regularity. The virtual valuation function is monotone in value, therefore, the monopoly
price is the boundary between positive virtual values and gative virtual values.

Fact 4.2. Any agent whose value exceeds the monopoly price has noraineg virtual value.

We will shortly show that the expected revenue of the secormatice auction with monopoly
reserves is close to the optimal revenue when the distribatis are regular; however, before
doing so, consider the following intuition. Either the monpoly-reserves auction and the
optimal auction have the same winner or di erent winners. Ifthey have the same winner
then they have the same virtual surplus. By Fact 4.2, the morply-reserve auction always
has non-negative virtual surplus, so the virtual surplus wén both auctions have the same
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winner is a lower bound on its total virtual surplus and, thus its revenue. If the two

auctions have di erent winners then the optimal auction's wnner is not the agent with the

highest value. Of course this winner can pay at most her valubut the monopoly-reserves
auction's winner pays at least the second highest value whianust be least the value of
the optimal auction's winner. Therefore, in this case the pament in the monopoly-reserves
auction is higher than the payment in the optimal auction. Weconclude that the revenue
of the monopoly-reserves auction bounds the optimal revesun both cases, therefore, it is
a 2-approximation. Importantly, this analysis is driven byregularity and Fact 4.2.

Theorem 4.3. For any regular, single-item environment the second-pri@iction with monopoly
reserves gives a 2-approximation to the optimal expectedaaue.

Proof. Let REF denote the optimal auction and its expected revenuenal APX denote the
second-price auction with monopoly reserves and its expedtrevenue; our goal is to show
that REF 2 APX. Let | be the winner of the optimal auction andJ be the winner of the
monopoly reserves auction. Notice that both auctions do natell the item if and only if all
virtual values are negative; in this situation de nel = J = 0. | andJ are random variables.
With these de nitions, REF = E[ ,(v;)] and APX = E[ ;(Vv;)].

We start by simply writing out the expected revenue of the opinal auction as its expected
virtual surplus conditioned onl = J and| 6 J.

REF = F[ () J 17 I1Prll = Jﬂ+|£[ ((w) j 1 g IIPrll 6 Iy

REF _ REF ¢

We will prove the theorem by showing that both the terms on theight-hand side are bounded
from above by APX. For the rst term:

REF. = E[ (v) j | =J]Pr[l =J]
= E[s(vw) i1 =Jd]Pr[l =J]
E[ 5(vy) j 1 =J]Pr[l =31+ E[ 5(v;) j | 8 JIPr[l 6 J]
= APX :

The inequality in the above calculation follows Fact 4.2 (e., regularity) as even when 6 J
the virtual value of J must be non-negative. Therefore, the term added is non-ndgy&. For
the second term:

REFg = E[ ,(v,) j | 6 J]Pr[l 6 J]

E[v, j| 6 J]Pr[l 6 J]

Elp, j | 6 J]Pr[l 6 J]

Elp, jI| 6 J]Pr[l 6 J]+ E[py j | = J]Pr[l = J]

= APX :

1 Fi(vi) i
oo Vi (since

is always non-negative). The second inequality follows betse, among agents that

The rst inequality in the above calculation follows becaus ;(v;) = v,
1 Fi(vi)
fi(vi)
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meet their reserveJ is the highest valued agent and is a lower valued agent and therefore,
in a second-price auction)'s price is at leastl 's value. The third inequality follows because
payments are non-negative so the term added is non-negative O

This 2-approximation theorem is tight. We will give a distrbution and show that there is
an auction with expected revenue 2 forany > 0 but the revenue of the monopoly reserves
auction is precisely one. The example that shows this sep&iom is easiest to intuit for a
distribution that is partly discrete, i.e., one that does n¢ satisfy the continuity assumptions
of the preceding chapter. It is of course possible to obtaifmé same result with continuous
distributions.

A distribution that arises in many examples is theequal-revenue distribution The equal-
revenue distribution lies on the boundary between reguldyi and irregularity, i.e., it has
constant virtual value. It is called the equal-revenue distbution because the same expected
revenue is obtained by o ering the agent any price in the distbution's support.

De nition 4.4. The equal-revenue distributionhas distribution function F(z) =1 1=z
and density functionf (z) = 1=7. Its support is[1;1 ).

Consider the asymmetric two-agent single-item auction s&tg where agent 1's value is
deterministically 1 and agent 2's value is distributed acaeding to a variant of the equal-
revenue distribution. The monopoly price for the equal-reanue distribution is ill-de ned
because every price is optimal. Therefore, we slightly perb the equal-revenue distribution
for agent 2 so that her monopoly price is, = 1. Clearly then, =(1;1) and the expected
revenue of the second-price auction with monopoly resen&ane.

Of course, for this distribution it is easy to see how we can douch better. O er agent
2 a high priceh. If agent 2 rejects this price then o er agent 1 a price of 1. Nme that by
the de nition of the equal-revenue distribution, agent 2'sexpected payment is one, but still
agent 2 rejects the o er with probability 1  1=h and the item can be sold to agent 1. The
expected revenue of the mechanismis 2 +1 (1 2)=2 1=h. Choosing = 1=h gives
the claimed result.

4.1.2 Irregular Distributions

Irregular distributions pose a challenge as where virtualaluations are not monotone, an
agent whose value is above the monopoly price may yet have ayagve virtual value. We
rst show that the regularity property is crucial to Theorem 4.3; without it the approximation
factor of the second-price auction with monopoly reservesart be linear. We next make an
aside to discusgprophet inequalitiesfrom optimal stopping theory Finally, we use prophet
inequalities to succinctly describe reserve prices for whi the second-price auction is a
2-approximation. These approximation results rely critially on the assumption that the
agents' values are independently distributed.
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(a) Revenue curveR(Q). (b) Ironed Revenue curveR(Q).

Figure 4.1: The revenue curve and ironed revenue curve foretiSydney opera house distri-
bution for n = 2.

Lower-bound for Monopoly Reserves

The second-price auction with monopoly reserve prices islpra two approximation for reg-
ular distributions. The proof of Theorem 4.3 relied on regakity crucially when it assumed
that the virtual valuation of the winning agent is always nornegative. We start our explo-
ration of approximately optimal auctions for the irregularcase with an example that shows
that the second-price auction with monopoly reserves can leelinear factor from optimal
even when the agents' values are identically distributed.

De nition 4.5.  The Sydney opera house distributiorarises from drawing a random variable
1+U[0;1 1=n?] with probability 1 1=n? and n®+ U[0; 1] with probability 1=n®. Its revenue
curve resembles the Sydney opera house (Figure 4.1).

The Sydney opera house distribution is bimodal witlR( ) maximized atq=1 (v = 1)
and q = 1=n® (v = n®. Both give expected revenue of 1. For the purpose of discimss
consider the distribution perturbed sightly so that =1 is the unigue monopoly price. The
key property of this distribution is that, if there are n agents, the probability of exactly one
high-valued agent (i.e., with value at leasin?) is about 1=n while the probability of two or
more high-valued agents is about=%(2n?).

The expected revenue of the second-price auction with morap reserves is simply the
expected second highest value (since the reserve price iganebinding). If there is one or
fewer high-valued agents then the second highest agent valat most 2. If there are two
or more high-valued agents then the second highest agentwelis aboutn®. The expected
revenue is thus about 2.5 (for large).

To calculate the expected revenue of the optimal auction nice that low-valued agents
are completely ironed (Figure 4.1(b)). Suppose there is oregh-valued agent, say Alice,
and the rest are low valued. If Alice bids a high value she windf she bids a low value she
is placed in a lottery with all the other agents for a £n chance of winning. (Of course if she
bids below 1 she always loses.) This allocation rule is dejgid in Figure 4.2. Alice's payment
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Figure 4.2: The optimal auction allocation rule (black lin¢ and payment (area of gray region)
for high-valued Alice when all other agents have low values.

(the area of the gray region in Figure 4.2) in this situationsn® (n> 1)=n n®> n. There

is one such high-valued agent with probability 2n so the total expected revenue is about.
The conclusion from this rough calculation is that the optinal auction's revenue can be
a linear factor more than the second-price auction with mompmly reserves.

Theorem 4.6. There is an i.i.d., irregular distribution for which the seond-price auction
with monopoly reserves is a linear approximation to the optial auction revenue.

Prophet Inequalities

Consider the following scenario. A gambler faces a seriesrofjames on each oh days.
Gamei has prize distributed according toF;. The order of the games and distribution of
the game prizes is fully known in advance to the gambler. On ga the gamblerrealizesthe
valuev; F; of gamei and must decide whether to keep this prize anstop or to return the
prize and continue playing. In other words, the gambler is only allowed to keepne prize
and must decide which prize to keep immediately on realizirthe prize and before any other
prizes are realized.

The gambler's optimal strategy can be calculated bipackwards induction On day n the
gambler should stop with whatever prize is realized. This selts in expected valueE|[v,].
On day n 1 the gambler should stop if the prize has greater value thap ; = E[v,], the
expected value of the prize from the last day. On dap 2 the gambler should stop with
if the prize has greater value thart,, ,, the expected value of the strategy for the last two
days. Proceeding in this manner the gambler can calculate aresholdt; for each day where
the optimal strategy is to stop with prizei if and only if v; t;.

Of course, this optimal strategy su ers from many of the drawacks of optimal strategies.
It is complicated: it takes n numbers to describe it. It is not robust to small changes in
the game, e.g., changing of the order of the games or makingahthanges to distribution
i strictly above t;. It does not allow for any intuitive understanding of the prgerties of
good strategies. Finally, it does not generalize well to gdvsolutions to other similar kinds
of games.

Therefore, as we are predisposed to do in this text, we turn t@pproximation to give a
crisper picture. Athreshold strategys given by a single for acceptable prizes and an implicit
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tie-breaking rule which speci es which prize should be seked if there are multiple prizes
abovet. The implicit tie-breaking rule in the gambler's game is leicographical: the gambler
takes the rst prize with value at leastt. Threshold strategies are clearly suboptimal as even
on day n if prize v,, <t the gambler will not stop and will, therefore, receive no pre.

Theorem 4.7 (Prophet Inequality). There exists a threshold strategy such that the expected
prize of the gambler is at least half the expected value of thaximum prize. Moreover, one
such threshold strategy is the one where the probability ttllae gambler receives no prize is
exactly 1/2. Moreover, this bound is invariant to the tie-laking rule.

The prophet inequalitytheorem is suggesting something quite strong. Most impomdy
it is saying that even though the gambler does not know the réaations of the prizes in
advance, he can still do as well in comparison to a \prophet" o does. While this result
implies that the optimal (backwards induction) strategy s#is es the same condition, such
a implication was not at all clear from the original formulaton of the optimal strategy.
We can also observe that the result is driven by trading o theprobability of not stopping
and receiving no prize with the probability of stopping east with a suboptimal prize. The
suggested threshold strategy is also quite robust. Noticédt the order of the games makes
no di erence in the determination of the threshold. Furthemore, if the distribution above
the threshold changes, nothing on the bound or suggestedattgy is a ected.

Implicit in de nition of a threshold strategy is a tie-breaking rule for resolving which ac-
ceptable prize is selected when there is a tie, i.e., more thane prize above the threshold. In
fact, the prophet inequality theorem, as is stated, is invaant to the tie-breaking rule. While
some tie-breaking rules may bring more or less value to therghler, the 2-approximation
result still holds. This invariance of with respect to the te-breaking rule means that the
prophet inequality theorem has broad implications to othesimilar settings and in particular
to auction design and posted pricing, as we will see later imis section.

Proof of Theorem 4.7. Let REF denote prophet and her expected prize, i.e., the expted

maximum prize, E[max v;], and APX denote a gambler with threshold strate% and her
expected prize. Deneqg =1 F(t) as the probability that vy t. Let = ", (1 q)

be the probability that the gambler receives no prize. The mrof follows in three steps. In
terms oft and , we get an upper bound on the prophet, REF. Likewise, we get awer
bound on the gambler, APX. Finally, we plug in = 1=2 to obtain the bound. If there is
not with = 1=2, which is possible if the distributionsF; are not continuous, one of the

that corresponds to the smallest > 1=2 or largest < 1=2 su ces.

In the analysis below, the notation \(y; t)*" is short-hand for \max(v, t;0)."

1. An upper bound on REF =E[max; vi]:

Notice that regardless of whether there exists & t or not, REF is at mostt +
max (v; t)*. Therefore,

REF t+ )E( max (v, t)*
t+ E (v, t)7
|
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2. A lower bound on APX = E[prize of gambler with thresholdt]:

Clearly, we gett with probability 1 . Depending on which prizei is the earliest
one that is greater thant we also get an additional;, t. It is easy to reason about
the expectation of this quantity when there is exactly one sth prize and much more
di cult to do so when there are more than one. We will ignore the additional prize we
get from the latter case and get a lower bound.

X
APX (1 )t+ E (v t)" j otherv, <t Pr otherv, <t
X

(1 Ht+ E (vi t)" jothery, <t
x |

=@ g+ EM 0
The second inequality follows becauder otherv, <t = sti(l g) . The nal
equality follows because the random variable, is independent of random variables;

forj 6 i.
3. Plugin =1=2.

From the upper and lower bounds calculateq3 if we can nd &such that = 1=2 then
APX  REF=2. Incigentally, ast increases ,E (v; t)* decreases; therefore, we
can also solve fot = . E (v t)" to obtain same approximation result.

Consider as a function oft denoted (t). For discontinuous distributions, e.g., ones
with point-masses, (t) may be discontinuous. Therefore, there may be nb with

(t) =1=2. Let ; =supf (t) < 1=2gand , =inff (t) > 1=2g. Notice that an
arbitrarily small increase in threshold causes the jump fra ; to ,; lett be the
limiting threshold for both thelge s. Therefore, for 2 f ;; ,g the lower-bound
formulalB( ) (1 )t + ‘E (vi t)" which is linear in

We know that this function evaluated at = 1=2 (which is not possible to implement)
satises LB(1=2) REF=2. Of course it is a linear function of so it is maximized
on the end-points on which it is valid, namely ; or ,. Therefore, one of 2f ;; .9

satises LB( ) REF=2. Ifitis optimized at , then the threshold is exclusive, i.e.,
the gambler should accept the rst prize in € ;1 ); if it is optimize at , then the

threshold is exclusive, i.e., the gambler should accept thest prize in [t ;1 ).

]
Again the independence of the distributions of prizes is fulamental to the prophet
inequality.
Uniform Virtual Prices

We return to our discussion of single-item auctions. Our gban single-item auctions is
to select the winner with the highest (positive) ironed virtial value. To draw a connection
between the auction problem and the gambler's problem, we taothat the gambler's problem
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in prize space is similar to the auctioneer's problem in ir@d-virtual-value space. The
gambler aims to maximize expected prize while the auctioneaims to maximize expected
virtual value. A uniform threshold in the gambler's prize spce corresponds to ainiform
ironed virtual price in ironed-virtual-value space. This strongly suggests thiaa uniform
ironed virtual price would make good reserve prices in the @nd-price auction.

De nition 4.8. A uniform ironed virtual price is p = (py;:::;p,) such that ;(p) = o(pyo)
for all i and i°

Now compare the second-price auction with a uniform ironedrual reserve price to the
gambler's threshold strategy in the stopping game. The dieence is the tie-breaking rule.
The second-price auction breaks ties by value whereas thengaer's threshold strategy breaks
ties by the ordering assumption on the games (i.e., lexicaphically). Recall, though, that
the tie-breaking rule was irrelevant for our analysis of th@rophet inequality. We conclude
the following theorem and corollary where, as in the prophehequality, the uniform virtual
price is selected so that the probability that the item remais sold is about 1/2.

Theorem 4.9. For any independent, single-item environment the secondige auction with
a uniform ironed virtual reserve price is a 2-approximatiorto the optimal auction revenue.

It should be clear that what is driving this result is the speicc choice of reserve prices and
not explicit competition in the auction. Instead of runningan auction imagine the agents
arrived in any, perhaps worst-case, order and we made eachtumn a take-it-or-leave-it o er
of her reserve price? Such sequential posted pricingnechanism is also a 2-approximation.

Theorem 4.10. For any independent, single-item environment a sequentipbsted pricing
of uniform ironed virtual prices is a 2-approximation to theoptimal auction revenue.

Proof. There may be several agents with values at least their postgutice. Suppose that
in such a situation the agent with the lowest price arrives st. The revenue under this
assumption is certainly a lower bound on the revenue of anylwr ordering. Furthermore,
the prophet inequality on virtual values with tie-breakingby \ p;" guarantees a virtual
surplus and, therefore, expected revenue that is a 2-appmmation to the optimal expected
revenue. U

In fact we already saw in Chapter 1 that posted pricing can be g  1:58 approximation
to the optimal mechanism for social surplus for i.i.d. distbutions (Theorem 1.6). This
approximation factor also holds for revenue and i.i.d., redar distributions.

Corollary 4.11. For any i.i.d., regular, single-item environment posting auniform price is
an ;% approximation to the optimal revenue.

We can also apply the prophet inequality in value space to awng, similarly to Theo-
rem 4.10 that when the values are non-identically distribwd posting a uniform price is is a
2-approximation to the optimal social surplus.
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4.1.3 Anonymous Reserves

Thus far we have shown that simple reserve-price-based aiocts approximate the optimal
auction. Unfortunately, agent-speci c reserve prices malge impractical for many scenarios,
especially ones where agents could reasonably expect somgrele of fairness of the auction
protocol. Undoubtedly eBay faces such a constraint for theedign of their auction. We
therefore consider the extent to which an auction with amnonymous reserve price.e., the
same for each agent, can approximate the revenue of the opéimperhaps non-anonymous,
auction.

We start by considering i.i.d., irregular distributions. For i.i.d., irregular distributions,
the optimal auction is anonymous, but it is not a reserve-pce-based auction. An immediate
corollary of Theorem 4.9 is the following.

Corollary 4.12. For any i.i.d., single-item environment, the second-pric&uction with an
anonymous reserve is a 2-approximation to the optimal aueti revenue.

We now turn to the more challenging question of whether an angmous reserve price
will give a good revenue when the agents' values are not iderally distributed. For instance,
in the eBay auction the buyers are not identical. Some buyetsave higherratings and these
ratings are public knowledge. The value distributions for gents with di erent ratings may
generally be distinct. Therefore, the eBay auction may be boptimal. Surely though, if the
eBay auction was very far from optimal, eBay would have swithed to a better auction. The
theorem below justi es eBay sticking with the second-pricauction with anonymous reserve.

Theorem 4.13. For any independent, regular, single-item environment theecond-price
auction with an anonymous reserve is a 4-approximation toeahoptimal auction revenue.

Proof. This proof can be obtained by extending the proof of Theorem 3l or by following a
similar approach to the proof of the prophet inequality. Weédave the details to Exercise 4.2.
]

Note rst that it is possible to prove Theorem 4.13 without cmsidering the e ect of
competition between agents. Therefore, an anonymous pritieat satis es the conditions of
the theorem is the monopoly price for the distribution of themaximum value. Note second
that the bound given in this theorem is not known to be tight. The two agent example
with F4, a point mass at one, and~,, the equal-revenue distribution, shows that there is a
distributional setting where approximation an factor of amnymous reserve pricing is least
two.

We now turn to non-identical, irregular distributions. Here we show that anonymous re-
serve pricing cannot be better than a logarithmic approxinm#on to the optimal (asymmetric)
mechanism.

Theorem 4.14. There is an n-agent, non-identical, irregular, single-item environmat for
which the second-price auction with an anonymous reserveais (log n)-approximation to
the optimal auction revenue.
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Proof. The proof follows from analyzing the optimal revenue and theevenue of the second-
price auction with any anonymous reserve on the following stirete distribution (which can,
of course, be approximated by a continuous distribution). genti's value is drawn as:

(
v = n’=i  w.p. 1=r?, and
! 0 otherwise.
The details of this analysis are left to Exercise 4.3. O

4.2 General Feasibility Settings

We now return to more general single-dimensional mechanisdesign problems, namely,
those where the seller faces a combinatorial feasibility mstraint. Feasibility constraints
that are not downward closed will turn out to be exceptionail di cult and we will give no
general approximation mechanisms for them. On the other hdn for regular, downward-
closed environments, we show that the surplus maximizatiomechanism with monopoly
reserves is often a 2-approximation. In particular, this mult holds if we further restrict the
distribution to those satisfying a \monotone hazard rate" ondition. It also also holds if we
instead restrict the feasible sets to those satisfying a natal augmentation property. These
two results are driven by completely di erent phenomena.

De nition 4.15.  The surplus maximization mechanism with reservesis:
1. v f agents withv; r;g.

2. (x;p%  SMY.
(

max(r;;p?) if x; =1, and

3. foralli: p otherwise

whereSM is the surplus maximization mechanism with no reserves.

4.2.1 Monotone-hazard-rate Distributions (and Downward- closed
Feasibility)

An important property of electronic devices, such as light llbs or computer chips, is how
long they will operate before failing. If we model the lifethe of such a device as a random
variable then the failure rate, a.k.a.hazard rate for the distribution at a certain point in time

is the conditional probability (actually: density) that th e device will fail in the next instant
given that it has survived thus far. Device failure is naturly modeled by a distribution
with a monotone hazard rate, i.e., the longer the device hasbn running the more likely it
is to fail in the next instant. The uniform, normal, and exporential distributions all have
monotone hazard rate. The equal-revenue distribution (Deition 4.4) does not.
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HO) 1

Figure 4.3: The cumulative hazard rate function (solid) forthe uniform distribution is
H(v)= In(1 v)anditis lower bounded by its tangent (dashed) av = =1=2.

De nition 4.16.  The hazard rate of distribution F (with density f) is h(z) = ;. The

distribution has monotone hazard rate (MHR)if h(z) is monotone non-decreasing.

Intuitively distributions with monotone hazard rate are na heavy tailed In fact, the
exponential distribution, with F(z) =1 e ?, is the boundary between monotone hazard
rate and non; its hazard rate is constant. Hazard rates areeaarly important for optimal
auctions as the de nition of virtual valuations, expressedn terms of the hazard rate, is

(v) = v 1=h(v). An important property of monotone hazard rate distributions that will
enable approximation by the surplus maximization mechams with monopoly reserves is
that, for MHR distributions, the optimal revenue is within a factor of e = 2:718 of the
optimal surplus. We illustrate this with an example, then pove it for the case of a single
agent. The proof of the general theorem, we will leave for Exaise 4.4.

Theorem 4.17. For any downward-closed, monotone-hazard-rate environntethe optimal
expected revenue is ap-approximation to the optimal expected surplus.

To gain some intuition we will look at the exponential distrbution. The expected value
the expgnential distribution (with rate one) is one. This ca be calculated from the formula
E[v] = 01 (1 F(z)dzwith F(z)=1 e % Since the exponential distribution has hazard
rate h(z) = 1, the virtual valuation formula for the exponential distributionis (v)=v 1.
The monopoly priceis =  *(0) = 1. The probability that the agent accepts the monopoly
price is l=e so its expected revenue is=B The ratio of the expected surplus to expected
revenue ise as claimed.

Lemma 4.18. For any monotone-hazard-rate distribution its expected e is at moste
times more than the expected monopoly revenue.

Proof. Let REF = E[v] be the gxpected value and APX = (1 F( )) be the expected
monopoly revenue. LetH (v) = OV h(z)dz be the cumulative hazard rateof the distribution
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F. We can write
1 F(v)=e "M: (4.1)

an identity that can be easjly veri ed by di erentiating log (1  F(z)). Recall of course that
the expectation ofv  F is 01 (1 F(2)dz To get an upper bound on this expectation we

need to upper bounde ") or equivalently lower boundH (v).

The main di culty is that the lower bound must be tight for the exponential distribution
where optimal expected value is exactlg times more than the expected monopoly revenue.
Notice that for the exponential distribution the hazard rate is constant; therefore, the cu-
mulative hazard rate is linear. This observation suggesthat perhaps we can get a good
lower bound on the cumulative hazard rate with a linear funabn.

Let = *(0) be the monopoly price. Sincéd (v) is a convex function (it is the integral
of a monotone function). We can get a lower bounHi (v) by the line tangentto it at . See
Figure 4.3. l.e.,

H(v) H(CO)+h()v )
= H()+ X (4.2)

The second part follows because= 1=h( ) by de nition. Now we use this bound to calculate
a bound on the expectation.

YA 1 Z 1
REF = (1 F(2)dz= e H@dz
Z°, 0 Z,
e MO —dgz=e e "O e “dz
0 0
—eel) =—e @ F() =e APX:
The rst and last lines follow from (4.1); the inequality follows from (4.2). O

Importantly, it is not generally the case that the optimal suplus and revenue are within
a constant of each other. In fact, for non-monotone-hazangdte distributions the separation
between the optimal revenue and the optimal surplus can belatrarily large. To see this
consider the egual-revenue distribution witi=(z) =1 1=z The expected surplus is given
by E[v] =1+ 11 %dz =1+ [log z]i = 1 . The expected monopoly revenue, of course, is
one.

Shortly we will show that the surplus maximization mechanim with monopoly reserve
prices is a 2-approximation to the optimal mechanism for MHRdownward-closed envi-
ronments. This result derives from the intuition that reverue and surplus are close. The
following lemma reformulates this intuition.

Lemma 4.19. For any monotone-hazard-rate distributionF and v , (V) + V.
Proof. Since = 10) it solves = 1=h( ). By MHR, v implies h(v) h( ).
Therefore,

(V+ =v 1=h(v)+1=h() wv: O
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Theorem 4.20. For any independent, monotone hazard rate, downward-cldsenviron-
ment the revenue of the surplus maximization mechanism withonopoly reserves is a 2-
approximation to the optimal mechanism revenue.

Proof. Let APX denote the surplus maximization mechanism with mongoly reserves (and
its expected revenue) and let REF denote the revenue-optitnaechanism (and its expected
revenue). We start with two bounds on APX and then add them.

APX = E[APX's virtual surplus] ; and
APX  E[APX's winners' reserve prices]

So, summing these two equations and letting(v) denote the allocation rule of APX,

2 APX EL@\(PX'S winners' virtuall values + reserve prices]
=E  (iv)+ Dxi(v)
hx [
E ivixi(v) = E[APX's surplus]

E[REF's surplus] E[REF's revenue] = REF:

The second inequality follows from Lemma 4.19. By downwardosure, neither REF nor
APX sells to agents with negative virtual values. Of courseAPX maximizes the surplus
subject to not selling to agents with negative virtual valus. Hence, the third inequality.
The nal inequality follows because the revenue of any mechasm is never more than its
surplus. O

4.2.2 Matroid Feasibility (and Regular Distributions)

In Chapter 3 we saw that the second-price auction with the mapoly reserve was optimal for
i.i.d., regular, single-item environments. In the rst setion of this chapter we showed that
the second-price auction with monopoly reserves is a 2-apgimmation for regular, single-item
environments. A very natural question to ask at this point isto what extent we can relax

the single-item feasibility constraint and still preservethese results. Often the answer to
such questions isnatroids.

De nition 4.21. A set system is(E; | ) whereE is the ground setof elements and is a
set of feasible (a.k.a.jndependen) subsets ofE. A set system is amatroid if it satis es:

downward closure subsets of independent sets are independent.

augmentation given two independent sets, there is always an element frtme larger
whose union with the smaller is independent.

8:J 21;jJj<jlj)9 e21nJ; feg[ J 21 :
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The augmentation property trivially implies that all maximal independent sets of a ma-
troid have the same cardinality. This cardinality is known & the rank of the matroid. The
most important theorem about matroids is that the greedy-by-valuealgorithm optimizes
surplus. In fact, the most succinct proofs of many mechanisuaiesign results in matroid en-
vironments are obtained as consequences of the optimalitiytbe greedy-by-value algorithm.

Algorithm 4.1. A greedy-by-value algorithmis
1. Sort the agents in decreasing order by value.
2. X 0 (the null assignment).

3. For each agent (in this sorted order),
if (x ;;1)is feasible,x; 1.
(l.e., servei if i can be served along side previously served agents.)

4. Output X.

Theorem 4.22. The greedy-by-value algorithm is selects the independeat with largest
surplus for all valuation pro les if and only if feasible setare a matroid.

Proof. The \only if" direction follows from showing, by counter exanple, (a) downward-
closure is necessary and (b) if the set system is downwards#d then the augmentation
property is necessary; the \if" direction is as follows.

by greedy-by-value. The surplus from serving a subsétof the agents is ,5V;.

Assume for a contradiction that the surplus of set is strictly more than the surplus
of setJ, i.e., greedy-by-value is not optimal. Assume the items df and J are indexed
in decreasing order. Therefore, there must exist a rst indek such thatv, >v; . Let

I, and J, ; we see that there must exist some elemen®2 I, nJ, ; such thatJ, ,[f igis
feasible. Of coursey; v;, >v; which means agent was considered by greedy-by-value
before it selected . By downward-closure and feasibility ofl, ;[f ig, wheni was considered
by greedy-by-value it was feasible. By de nition of the algathm, i should have been added;
this is a contradiction. O

The following matroids will be of interest.

In a k-uniform matroid all subsets of cardinality at mostk are independent. The
1-uniform matroid corresponds to a single-item auction; #ak-uniform matroid corre-
sponds to ak-unit auctions.

In a transversal matroid the ground set is the set of vertices of parA of the bipartite
graph G = (A;B; E) (where verticesA are adjacent to verticesB via edgesk) and
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independent sets are the subsets &fthat can be simultaneously matched. E.g., iA is
people,B is houses, and an edge from2 A to b2 B suggests thatb is acceptable to
a; then the independent sets are subsets of people that can gltaneously be assigned
acceptable houses with no two people assigned the same hoeatice that k-uniform
matroids are the special case wheli@®j = k and all houses are acceptable. There-
fore, transversal matroids represent a generalization &Funit auctions to a market
environment where not all items are acceptable to every agen

In a graphical matroid the ground set is the set of edges in grap6 = (V;E) and

independent sets are acyclic subgraphs (i.e. faresf). Maximal independent sets in a
connected graph are spanning trees. The greedy-by-valug@ithm for graphical ma-

troids is known asKruskal's algorithm and is studied in every introductory algorithms
text.

It is important to be able to argue that a set system satis estie augmentation property
to verify that it is a matroid. As an example we show that acydt subgraphs are indeed a

subgraph induced by edge seE’ E is G°= (V;EY.

Lemma 4.23. For graph G = (V;E) with | the set of sets of edges for induced subgraphs
that are acyclic, set systen{E; | ) is a matroid.

Proof. Downward closure is easy to argue: given an acyclic subgrapémoving edges cannot
create cycles.

To show the augmentation property, consider the number of ooected components of an
acyclic subgraphG®= (V;E% with m°= E° edges. By induction the number of connected
components im m* whenm®= 0 each vertex is its own connected component; the addition
of any edge that does not create a cycle must connect two cootexl components thereby
reducing the number of connected components by one.

Now consider two acyclic subgraphs given by edge sétd  E satisfying the assumption
of the augmentation property, i.e., thatjJj < jlj. We conclude that the number of connected
components of graph V;J) is strictly more than that of (V;I) which is at least that of
connected components of the graphv( 1 [ J).

Consider adding edge$ nJ one at a time toJ and let e be the rst such edge that
decreases the number of connected components. Theh J[f eg) is acyclic, ase connects two
connected components of\(; J) and therefore does not create a cycle; and the augmentation
property is satis ed. O

Since greedy by value is the optimal algorithm for matroid ernronments; the revenue-
optimal mechanism for matroid environments iggreedy by ironed virtual value Of course,
for i.i.d., regular distributions greedy by ironed virtual value is simply greedy by value with
a reserve price of (0) = . This is exactly the surplus maximization mechanism with
reserve price . This argument is implicitly taking advantage of the fact that the greedy-by-
value algorithm is ordinal, i.e., only the relative order ofvalues matters in determining the
optimal feasible allocation.

78



Theorem 4.24. For any i.i.d., regular, matroid environment, the surplus naximization
mechanism with monopoly reserve price optimizes expectegtenue.

Proof. The optimal algorithm for maximizing virtual surplus (hence: the optimal mecha-
nism) is greedy by virtual value with agents with negative viual value discarded. In the
regular case, i.e., when virtual values are monotone and iieal, sorting by virtual values is
the same as sorting by values and discarding negative virtiinalues is the same as discarding
values less than the monopoly price. O

Of course, in matroid environments that are inherently asymetric, the i.i.d. assumption
is overly restrictive. It turns out that the surplus maximization mechanism with (agent-
speci ¢) monopoly reserves continues to be a good approxitim even when the agents'
values are non-identically distributed.

Theorem 4.25. In regular, matroid environments the revenue of the surplusiaximization
mechanism with monopoly reserves is a 2-approximation toetloptimal mechanism revenue.

There are two very useful facts about the surplus maximizain mechanism in matroid
environments that enable the proof of Theorem 4.25. The rsshows that the critical value
(which determine agent payments) for an agent is the value tfe agent's \best replacement.”
The second shows that the surplus maximization mechanismpgsint-wise revenue monotone,
i.e., if the values of any subset of agents increases the nawe of the mechanism does not
decrease. These properties are summarized by Lemma 4.29 aedima 4.28, below. The
formal proofs of Theorem 4.25 and Lemma 4.28 are left for Exéses 4.5 and 4.6, respectively.

De nition 4.26. If I [f ig 2| is surplus maximizing set containing then thebest replace-
ment for i is | =argmaXy. ¢ kg21g V-

De nition 4.27. A mechanism isrevenue monotonéf for all valuation proles v v°(i.e.,
for all i, vi V), the revenue of the mechanism om is no worse than its revenue on°

Lemma 4.28. In matroid environments, the surplus maximization mechasm is revenue
monotone.

Lemma 4.29. In matroid environments, the surplus maximization mechasm on valuation
prole v has the critical values satisfying, for each ageni, ; = v; wherej is the best
replacementfor i.

Proof. The greedy-by-value algorithm is ordinal, therefore we caassume without loss of
generality that the cumulative values of all subsets of agenare distinct. E.g., add aU[0; ]
random perturbation to each agent value, the event where tweubsets sum to the same value
has measure zero, and as! 0 the critical values for the perturbation approach the criical
values for the original valuation pro le, i.e., from equaton (4.3).

To proceed with the proof, consider two alternative calcutéons of the critical value for
player i. The rst is from the proof of Lemma 3.6 where OPTY¢ ;) and OPT ,(v) are
optimal surplus from agents other than with i is not served and served, respectively.

i =OPT(v ;) OPT ;(v): 4.3)
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The second is from the greedy algorithm. Sort all agents exatei by value, then consider
placing agenti at any position in this ordering. Clearly, when placed rsti is served. Letj
be the rst agent after which i would not be served. Then,
P = Vj: (44)
Now we compare these the two formulations of critical valuegiven by equations (4.3)
and (4.4). Notice that if i is ordered afterj and this causes to not be served, thenj must
be served as this is the only possible di erence betweernoming before or aftef. Therefore,
agentj must be served in the calculation of OPTY ;). Let J [f ] g be the agents served in

OPT(v ;) and let | be the apents served in OPT;(v) (which does not includei). We can
deduce (denoting by(S) = |, W):

Vj =
:OPT(V i) OPT i(V)
=v;+v(d) v(l):

We conclude thatv(l ) = v(J) which, by the assumption that the cumulative values of dishct
subsets are distinct, implies thatl = J. Meaning: j is a replacement fori; furthermore, by
optimality of J[f jgfor OPT(v ;), ] must be the best, i.e., highest valued, replacement]

Exercises

4.1 Show that there exists an i.i.d. matroid environment for whih the surplus maxi-
mization mechanism with anonymous reserve is no better thaan (log n=loglogn)-
approximation to the Bayesian optimal mechanism.

4.2 Show that for any non-identical, regular distribution of agnts, there exists a re-
serve price such that second-price auction with an anonymsueserve price obtains
4-approximation to the optimal single-item auction revena.

4.3 Prove Theorem 4.14 by analyzing the revenue of the optimal etion and the second-
price auction with any anonymous reserve when the agents uak distributed as:

(

n’=i  w.p. 1=n? and

Vv = .
0 otherwise.

(&) Show that the expected revenue of the optimal auction is (log n).

(b) Show that for any anonymous reserve, the expected revanwf the second-price
auction conditioned on exactly one agent having a non-zeralue isO(n).

(c) Show that for any anonymous reserve, the expected revenof the second-price
auction is O(1).
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(d) Combine the above three steps to prove the theorem.

4.4 Consider the followingsurplus maximization mechanism with lazy monopoly resesve
where, intuitively, we run the the surplus maximization mebanism SM and then reject
any winner i whose value is below her monopoly price:

1 (xo;p(‘ﬁ SM(v),
XiO if Vi i

2. X =
' 0 otherwise, and

3. p =max( ;;p).

Prove that the revenue of this mechanism is ae-approximation to the optimal so-
cial surplus in any downward-closed, monotone-hazard-eatenvironment. Conclude
Theorem 4.17 as a corollary.

4.5 Show that in regular, matroid environments the surplus maxnization mechanism with
monopoly reserves gives a 2-approximation to the optimal rdeanism revenue, i.e.,
prove Theorem 4.25. Hint: This result can be proved using Lemas 4.29 and 4.28 and
a similar argument to the proof of Theorem 4.3.

4.6 A mechanismM is revenue monotonéf for all pairs of valuation pro les v and v°such
that for all i, v, VC the revenue ofM onv is at least its revenue on/’. It is easy to
see that the second-price auction is revenue monotone.

1. Give a single-parameter agent environment for which theugplus maximization
mechanism (Mechanism 3.1) is not revenue monotone.

2. Prove that the surplus maximization mechanism is revenuaonotone in matroid
environments.

Chapter Notes

For non-identical, regular, single-item environments, tb proof that the second-price auc-
tion with monopoly reserves is a 2-approximation is from Chea et al. (2007). For the
same environment, the second-price auction with anonymousserve was shown to be a
4-approximation by Hartline and Roughgarden (2009).

The prophet inequality theorem was proven by Samuel-Cahn 984) and the connection
between prophet inequalities and mechanism design was nstade by Taghi-Hajiaghayi et al.
(2007). For irregular distributions and single-item auctns, the 2-approximation for the
second-price auction with constant virtual reserves (anche related sequential posted pric-
ing mechanism) was given by Chawla et al. (2010a).

Beyond single-item environments, Hartline and Roughgarde(2009) show that the sur-
plus maximization mechanism with monopoly reserves is a Paroximation to the optimal
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mechanism both for regular, matroid environments (geneifiaing the single-item auction
proof of Chawla et al., 2007) and for monotone-hazard-ratdpwnward-closed environments.

The structural comparison between optimal surplus and optal revenue for downward-
closed, monotone-hazard-rate environments was given by &igwatnotai et al. (2010). The
analysis of greedy-by-value under matroid feasibility waisitiated by Joseph Kruskal (1956)
and there are books written solely on the structural properés of matroids, see e.g., Welsh
(2010) or Oxley (2006). Mechanisms based on the greedy algun were rst studied by
Lehmann et al. (2002) where it was shown that even when theskgarithms are not optimal,
mechanisms derived from them are incentive compatible.

The rst comprehensive study of the revenue of the surplus mamizing mechanism in
matroid environments was given by Talwar (2003); for instare, he proved critical values
for matroid environments are given by the best replacemeniThe revenue monotonicity for
matroid environments and non-monotonicity for non-matrails is discussed by Dughmi et al.
(2009), Ausubel and Milgrom (2006), and Day and Milgrom (200.
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Chapter 5

Prior-independent Approximation

In the last two chapters we discussed mechanism that perfoea well for a given Bayesian
prior distribution. Assuming such a Bayesian prior is natual when deriving mechanisms for
games of incomplete information as Bayes-Nash equilibriuraquires the prior distribution to
be common knowledge. For reasons to be discussed, it is dase to relax this known prior
assumption. The objective of prior-independent mechanismesign is to identify a single
mechanism that always has good performance, e.g., under ahgtributional assumption. A
slightly relaxed objective would be to constrain the distbutions to fall within some broad,
natural class, e.g., i.i.d., regular distributions.

As is evident from our analysis of Bayesian optimal auctionsg.g., for pro t maximization,
for any auction that one might consider good, there is a valugistribution for which another
auction performs strictly better. This is obvious becausepimal auctions for distinct distri-
butions are generally distinct. While no auction is optimalfor all value distributions, there
may be a single auction that is approximately optimal acrosa wide range of distributions.

In this chapter we will take two approaches to prior-indepesient mechanisms. The rst
is a \resource" augmentation, a.k.a., bicriteria, approdt We will show that increasing
competition, e.g., by recruiting more agents, and runninghe (prior-independent) surplus
maximization mechanism sometimes earns more revenue motar the revenue-optimal
mechanism would have without the increased competition. Ehsecond approach is to design
mechanisms that do a little market analysis on the y. We willshow that for a large class
of environments there is a single mechanism that approximeg the revenue of the optimal
mechanism.

5.1 Motivation

Since prior-independence is not without loss it is importano consider the motivation behind
going from Bayesian optimal to prior-independent approxi@tion mechanisms.

Remember why we adopted Bayesian optimality in the rst plae: we are considering a
game of incomplete information and in games of incompletefarmation, in order to argue
about strategic choice, we needed to formalize how playergal with uncertainty. In a
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Stackelberg gamenstead of moving simultaniously, players make actions ia prespeci ed
order. We can view the mechanism designer as a player who nowest and the agents as
players who (simultaniously) move second. To analize the Bas-Nash equilibrium in such a
Stackelberg game, the designer bases her strategy on the owon prior. Without such prior
knowledge, prediction the designer's strategy is ill posed

Now consider from where the designer may have learned the grdistributions. There
are two most logical candidates. The rst is from the designés history in interacting with
these or similar agents. The problem with this point of views that the earlier agents
may strategize so that information about their preferences not exploited by the designer
later. In fact, if a monopolist cannot commit not exploit the agents using information from
prior interaction then the socially e cient (i.e., surplus maximizing) outcome is the only
equilibrium. Its revenue can be far from the optimal revenueThis phenomenon is referred
to as the Coase Conjecturga theorem).

The second candidate isnarket analysis The designer can hire a marketing rm to
survey the market and provide distributional estimates of gent preferences. This mode of
operation is quite reasonable in large markets. However, iarge markets mechanism design
is not such an interesting topic; each agent will have littlémpact on the others and therefore
the designer may as well stick to posted-pricing mechanismisideed, for commodity markets
posted prices are standard in practice. Mechanisms on thehetr hand are most interesting
in small, a.k.a., thin, markets. Contrast the large market for personal computers the
thin market for super computers. There may be ve organizatins in the world in the
market for super computers. How would a designer optimize aethanism for selling super
computers? First, even if the agents' values do come from asttibution, the only way
to sample the distribution is to interview the agents themdees. Second, even if we did
interview the agents, the most data points we could obtain ise. This is hardly enough for
statistical approaches to be able to estimate the distributhn of agent values. This strongly
motivates a question (which we will also answer in this chapt) that is closely related to
prior-independent mechanism design: How many samples fradistribution are necessary
to design a mechanism that can approximate the optimal mechesm for the distribution?

There are other reasons to consider prior-independent mectism design besides the
guestionable origin of prior information. The most strikirg of which is the frequent inability
of a designer to redesign a new mechanism for each scenariavinch she wishs to run a
mechanism. This is not just a concern, in many settings it is @rinciple. Consider the
standard Internet routing protocol TCP/IP. This is the prot ocol responsible for sending
emails, browsing web pages, steaming video, etc. Notice thie workloads for each of these
tasks is quite di erent. Emails are small and can be delivecewith several minutes delay
without issue. Web pages are small, but must be delivered ingdiately. Comparably, video
streaming requires a high responsiveness and a large bardttvi There is not the exibility
to install new protocols in Internet routers each time a new etwork usage pattern arises.
Instead, a good protocol, such as TCP/IP, should work prettywell in any setting, perhaps
ones well beyond the imaginations of the original designeeo$ the Internet.

The nal motivation we will discuss for prior-independent nmechanism design is that
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the solution of Bayesian optimal (or approximate) mechanms is incomplete. It solves
the problem of what a designer should do who knows the prioistiribution, but in many
real situations a designer may not have such knowledge. Ré&tnug the designer to acquire
distribution information from \outside the system", therefore, does not completely solve the
designer's problem.

5.2 \Resource" Augmentation

In this section we describe a classical result from auctiohéory which shows that a little more
competition in a surplus maximizing mechanism revenue-donates the prot maximizing
mechanism without the increased competition. From an ecomuc point of view this result
guestions theexogenous-participatiorassumption, i.e., that there a certain number of agents,
say n, that will participate in the mechanism. If, for instance, aents only participate in the
mechanism if their utility from doing so is large enough, i.ewith endogenous participation
then running an optimal mechanism may decrease participath and then result in a lower
revenue than the surplus maximizing mechanism.

On the other hand, the suggestion of this result, that a litte increasing competition can
ensure good revenue, is inherently prior-independent. Thaesigner does not need to know
the prior distribution to market her service so as to attractmore agent participation.

5.2.1 Single-item Auctions

The following theorem is due to Jeremy Bulow and Peter Klemper and is known as the
Bulow-Klemperer Theorem.

Theorem 5.1. For i.i.d., regular, single-item environments, the expeetl revenue of the
second-price auction om + 1 agents is at least the expected revenue of the optimal auttio
on n agents.

Proof. First consider the following question. What is the optimal mgle-item auction for
n + 1 agents that always sells the item? The requirement to alwa sell the item means
that, even if all virtual values are less than zero, a winner ust still be selected. Clearly the
optimal such auction is the one that assigns the item to the agt with the highest virtual
value. Since the distribution is i.i.d. and regular, the ag# with the highest virtual value is
the agent with the highest value. Therefore, this optimal action that always sells the item
is the second-price auction.

Now consider ann + 1 agent mechanism that we will call \mechanismB". Mechanism
B runs the optimal auction on the rst n agents and if this auction fails to sell the item, it
gives the item away for free to the last agent. By de nitionB's expected revenue is equal to
the expected revenue of the optimah-agent auction. It is, however, am + 1-agent auction
that always sells. Therefore, its revenue is at most that ohe optimal n + 1-agent auction
that always sells.
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We conclude that the expected revenue of the second-pricectian with n + 1 agents is
at least that of mechanismB which is equal to that of the optimal auction forn agents. [

This resource augmentation result provides the beginning a prior-independent theory
for mechanism design. For instance, we can easily obtain agrindependent approximation
result as a corollary to Theorem 5.1 and Theorem 5.2, below.

Theorem 5.2. For i.i.d., regular, single-item environments the optima(n 1)-agent auction
is an -5 -approximation to the optimaln-agent auction revenue.

Proof. See Exercise 5.1. O

Corollary 5.3. For i.i.d., regular, single-item environments withn agents, the second-price
auction is an _"-approximation to the optimal auction revenue.

5.2.2 Matroid Environments

Unfortunately, the \just add a single agent" result fails to generalize beyond single-item
environments. Suppose instead that there are identical units for sale. Is thek + 1st-price
auction (i.e., the one that sells to thek highest-valued agents at thek + 1st value) revenue
onn +1 agents at least that of the optimal k-unit auction on n agents? It is certainly not.

Consider the special case whete= n and the values are distributed uniformly on [D1].
The expected revenue of the + 1st-price auction onn + 1 agents is about one as there are
n winners any then + 1st value is about 1=n in expectation. Of course the optimal auction
will o er a price of 1=2 and achieve an expected revenue 4.

It turns out that the resource augmentation result does extad, and in a very natural
way, but we will have to recruit more than a single agent. Fok-unit auctions we will have
to recruit k additional agents. Notice that to extend the proof of Theona 5.1 to the k-unit
setting we can de ne the auctionB to allocate optimally to the rst n agents and then any
remaining items can be given to the& additional agents. The desired conclusion results. In
fact, this argument can be extended to matroids. Of course rraid set systems are generally
asymmetric so we have to speci ¢ what kind of agents we are ddd. This is formalized by
the de nition and theorem below.

De nition 5.4. A baseof a matroid is an independent set of maximal cardinality.

Theorem 5.5. For any i.i.d., regular, matroid environment the expected avenue of the
surplus maximization mechanism is at least that of the optahmechanism in the environment
induced by removing the agents corresponding to any baseha iatroid.

Notice that by the augmentation property of matroids, all b&es are the same size. Notice

that the theorem implies the aforementioned result fok-unit auctions as any set ok agents
forms a base.
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5.3 Single-sample Mechanisms

While the assumption that it is possible to recruit an additonal agent seems not to be too
severe; once we have to recruk new agents ink-unit auctions or a new base for matroid
environments, the approach provided by Bulow-Klemperer Téorem seems less relevant.
In this section we will show that a single additional agent issnough to obtain a good
approximation to the optimal auction revenue. We will not, lowever, just add this agent to
the market, instead we will use this agent for statistical prposes.

In the opening of this chapter we discussed the need to conhélte size of the sample
for market analysis with the size of the actual market. In ths context, the assumption that
the prior distribution is known is tantamount to assuming that an in nitely large sample
is available for market analysis. In this section we show thdhis impossibly large sample
market can be approximated by a single sample from the distuition.

Mechanism 5.1. The lazy single-sample mechanisns the following:
1L (x%p9  SM(v),

2. draw a single sample from the distribution F,

(
3y = X ifvoor
S 0 otherwise, and

4. p. = max(r;pd),
where SM denotes the surplus maximization mechanism.

In comparison to the surplus maximization mechanism with serve prices discussed in
Chapter 4, where the reserve prices are used lter out low-ksed agents out before nding
the surplus maximizing set, in the lazy single-sample meahiam the reserve price lters
out low-valued agents after nding the surplus maximizing st. In matroid environments,
which include single- andk-unit auctions, the order in which the reserve price is impesl is
irrelevant (i.e., the same outcome results), therefore, isuch environments we will refer to
the lazy single-sample mechanism as ttengle-sample mechanism

5.3.1 The Geometric Interpretation

Consider a single-agent, single-item environment. The aptal auction in such an environ-
ment is simply to post the monopoly price as a take-it-or-lae-it 0 er. The single-sample
mechanism in this context posts a random, from the distribubn, price as a take-it-or-leave-it
o er. We will give a geometric proof that shows that for regudr distributions, the revenue
from this random price is within a factor of two of the revenudrom the (optimal) monopoly
price.

This result can be viewed as the = 1 special case of the Bulow-Klemperer Theorem, i.e.,
that the two-agent second-price auction obtains at least # (one-agent) monopoly revenue.
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0 . 0
0 1 0 1
(a) Revenue curveR(Q). (b) Region A (shaded) with areaR( ).
1 1 +
0 - 0 -
0 1 0 1
(c) Region B (shaded) with areaE[R(Q)]. (d) Region C (shaded) with area A=2.

Figure 5.1: In the geometric proof of the that a random reseevis a 2-approximation to the
optimal reserve, the areas of the shaded regions satigy B C = A=2.

In a two-agent second-price auction each agent is o ered the price equal to the value of
the other, i.e., a random price from the distribution. Theréore, the two-agent second-price
auction obtains twice the revenue of the single sample. Thesult showing that the single-
sample revenue is at least half of the monopoly revenue themplies that the two-agent

second-price auction obtains at least the (one-agent) mopoly revenue.

Lemma 5.6. For a single-agent with value drawn from regular distributn F, the revenue
from a random take-it-or-leave-it oer r  F is at least half the revenue of the (optimal)
monopoly o er.

Proof. Let R(q) be the revenue curve folF in quantile space. Let be the quantile corre-

sponding to the monopoly price, i.e., = argmax,R(d). The expected revenue from such a

price isR( ). Recall that drawing a random value from the distributionF is equivalent to

drawing a Lﬁnform quantileq U[0; 1]. The expected revenue from such a random price is
Eq [R(Q)] = R(q) dg. In the Figure 5.1 the area of regiorA is R( ). The area of regionB

is E4[R(9)]. Of course, the area ofC is less than the area oB, by concavity of R( ), but at

least half the area ofA, by geometry. The lemma follows. O

5.3.2 Random versus Monopoly Reserves

The geometric interpretation above is almost all that is nezssary to show that the lazy single-
sample mechanism is a good approximation to the optimal meahism. We will show this in
two pieces. First we will show that the lazy single-sample rakanism is a good approximation
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to the revenue of the surplus maximization mechanism with aty monopoly reserve. Then
we argue that this lazy monopoly reserve mechanism is optitnar approximately optimal.

Theorem 5.7. For any i.i.d., regular distribution, downward-closed enwonment, the rev-
enue of the lazy single-sample mechanism is a 2-approxiroatio that of the lazy monopoly
reserve mechanism.

Proof. Let REF denote the lazy monopoly reserve mechanism and itsvenue, and let APX
denote the lazy single-sample mechanism and its revenue.

For v ;. We argue that the expected revenue from agemntin APX is at least half of
that in REF. REF and APX are deterministic and dominant strategy IC, therefore in each
mechanism agent faces a critical value for winning. It will be useful to consler this critical
value in quantile space, henceforth, \critical quantile". Let ; be the critical quantile of
the surplus maximization mechanism (with no reserve). In AR, i's critical quantile is
min( ;;q) for g UJ[0;1]. In REF, i's critical quantile min( ;; ), where is the quantile of
the monopoly price.

Now consider the induced revenue curve in APX from agentwith value v, F as

a function of q in the case where ; and where ; > (Figure 5.2). We show, via
the geometric interpretation, that in each case APX is a 2-gwoximation. Notice that if
g ; then APX's revenue fromi is R(q), otherwise it is R( ;). The REF revenue fromi is

R(min( ;; )). By concavity of R( ) and geometry (Figure 5.2) the theorem follows. O

5.3.3 Single-sample versus Optimal

We have shown that lazy random reserve pricing is almost asamas lazy monopoly reserve
pricing. We now connect lazy monopoly reserve pricing to theptimal mechanism to show
that the lazy single-sample mechanism is a good approximati to the optimal mechanism.

As discussed above lazy monopoly reserve pricing is ideatito (eager) monopoly reserve
pricing in matroid settings. Also, Theorem 4.24 showed thatonopoly reserve pricing is
optimal. We conclude the following corollary. (Of coursek-unit auctions are a special case
of matroid environments.)

Corollary 5.8. For any i.i.d., regular, matroid environment, the single-ample mechanism
is a 2-approximation to the optimal mechanism revenue.

For downward-closed environments we have slightly more woto do. Theorem 4.20
showed that for monotone-hazard-rate distributions surpis maximization with (eager) monopoly
reserves is a 2-approximation to the optimal mechanism. Fdownward-closed environments,
eager and lazy reserve pricing are not identical. Howevers auggested by Exercise 4.4 (for
the eventual proof of Theorem 4.17), the revenue of lazy mgmaly reserve pricing is an
e-approximation to the optimal surplus. Clearly, then its revenue is ane-approximation to
the optimal revenue. We can conclude the following.

Corollary 5.9. For any i.i.d., monotone-hazard-rate, downward-closed gmonment, the
lazy single-sample mechanism is Ze-approximation to the optimal mechanism revenue.
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(a) Case 1: ; , REF revenue (shaded) (b) Case 2: , REF revenue (shaded)
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0
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(c) Case 1: ; , APX revenue (shaded) (d) Case 2: , APX revenue (shaded)

0

Figure 5.2: On the top is a geometric depiction of the paymer{shaded area) of agent in
the lazy monopoly reserve (REF) mechanism; on the bottom i ¢ same for the lazy single
sample (APX) mechanism. On the left is the case where the ddal quantile ; is less than
the monopoly quantile ; on the right is the opposite case. The revenue curve is dejgid
with a dotted line, and the induced revenue curve given the itical quantile is depicted with

a solid line.
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The bound in the above corollary can be improved to a factor dbur, but we will not
discuss the details here.

5.4 Prior-independent Mechanisms

We now turn to mechanisms that are completely prior-indepatent. Unlike the mechanisms
of the preceding section, these mechanisms will not requiay distributional information in
advance, not even a single sample from the distribution. Weily however, still assume that
there is a distribution. We search for a single mechanism thhas good expected performance
for any distribution from a large class of distributions.

De nition 5.10. A mechanismAPX is a prior-independent -approximation if
8F; E, e[APX(V)] *E, ¢[REFg(V)]
whereREF¢ is the optimal mechanism for distributionfF.

The central idea behind the design of prior-independent mieanisms is that a small
amount of market analysis can be done on-the-y as the mechiam is being run; bids of
some agents can be used for market analysis for other agents.

Consider the followingk-unit auction:

0. Solicit bids.
1. Randomly reject an ageni .
2. Run the k + 1st-price auction with reservev;, onv ; .

This auction is clearly incentive compatible. Furthermorgit is easy to see that it is a
%-approximation for n agents with values drawn i.i.d. from a regular distribution This
follows from the fact that rejecting a random agent loses at ost a 1=n faction of the optimal
revenue and the previous single-sample result (Corollary8. For n 2 this mechanism
guarantees a 4-approximation. The same approach can be apglto matroid and downward-
closed environments as well; however, we will focus instead a slightly more sophisticated
approach.

5.4.1 Digital Good Environments

An important single-dimensional agent environment is thabf a digital good A digital good
is one where there is little or no cost for duplication. The &t function for digital goods is
c(x) = 0 for all x, or equivalently, all outcomes are feasible. Digital goodsre the special
case ofk-unit auctions wherek = n. Therefore the mechanism above obtains aa2(n  1)-
approximation.

There are a number of ways to improve this mechanism to remowee n=(n 1) from
the approximation factor. Two of the most natural are the fdbwing.
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De nition 5.11.

The pairing auction arbitrarily pairs agents and runs the second-price auctioan each
pair (assumingn is even).

The circuit auction orders the agents arbitrarily (e.g., lexicographically)rad o ers each
agent a price equal to the value of the preceding agent in thrdev (the rst agent is
o ered the last agent's value).

The random pairing auction and the random circuit auction are the variants where the
implicit pairing or circuit is selected randomly.

Theorem 5.12. For i.i.d., regular, digital-good environments, any aucttn wherein each
agent is o ered the price of another random or arbitrary (butot value dependent) agent is
a 2-approximation to the optimal auction revenue.

The proof of this theorem follows directly from the geometdi interpretation for the single-
sample mechanism. Clearly, the pairing and circuit auctis satisfy the conditions of the
above theorem. In conclusion, it is relatively easy, withim mechanism, to get samples from
the distribution.

5.4.2 General Environments

We now adapt the results for digital goods to general enviroments. The main idea here is
to replace the lazy single-sample reserve with a lazy circwr pairing mechanism. Notice
that in downward-closed environments we can view the lazyserve pricing used with a sur-
plus maximizing mechanism as a digital good auction. The suus maximizing mechanism
outputs a feasible outcome. Since all subsets of feasibldcmmes are feasible, the induced
environment is essentially one of a digital good.

Two deterministic DSIC mechanisms,M ° and M % can be composed in many ways,
perhaps the most natural is the following. Consider the ciital values an agent in each
mechanism, 2 and %° respectively. Consider the composite mechanisM in which i's
critical value is ; = max( > %J. Notice that the set of agents served b is the intersection
of those served byM °and M % This outcome is feasible by downward-closure and DSIC by
its de nition via critical values. Notice that the surplus maximization mechanism with lazy
reserves is the composition, in this manner, of the surplusaximization mechanism with the
mechanism that simply makes a take-it-or-leave-it o er of lhe reserve price to each agent.

Instead of composing the surplus maximization mechanism twithe reserve pricing, we
can compose it with either the pairing or circuit auctions. Bth of the theorems below follow
from analyses similar to that of the single-sample mechanis

De nition 5.13.

The pairing mechanismis the composition of the surplus maximization mechanismtbi
the (digital goods) pairing auction.
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The circuit mechanismis the composition of the surplus maximization mechanismtbi
the (digital goods) circuit auction.

Theorem 5.14. For i.i.d., regular, matroid environments, the pairing andcircuit mecha-
nisms are 2-approximations to the optimal mechanism revesu

Theorem 5.15. For i.i.d., monotone-hazard-rate, downward-closed enanments, the pair-
ing and circuit mechanisms ared-approximations to the optimal mechanism revenue.

Two issues remain undiscussed. First, our prior-indepenastemechanisms were derived
from single-sample mechanisms. Clearly more on-the-y sabes can be used to obtain
revenue that more closely approximates the lazy monopolyserve pricing, and therefore,
the optimal auction. Second, similarly more on-the- y samles can be used to obtain prior-
independent approximation mechanisms when distributionsiay be irregular. Both of these
directions will be taken up during our discussion of priorrée mechanisms in Chapter 6.

Exercises

5.1 Prove Theorem 5.2: For i.i.d., regular, single-item enviranents the optimal (n  1)-
agent auction is an_"s-approximation to the optimal n-agent auction revenue.

5.2 Suppose we are in a non-identical environment, i.e., ageils value is drawn from
independently from distribution F;, and suppose the mechanism can draw one sample
from each agent's distribution.

(a) Give a constant approximation mechanism for regular, meoid environments (and
give the constant).

(b) Give a constant approximation mechanism for monotonedzard-rate, downward-
closed environments (and give the constant).

(c) Conclude with a two Bulow-Klemperer style theorems. Sygpse you can recruit
a competitor for each agent (i.e., from the same distributio but where the set
system only allows an agent or her competitor to be served)hén the surplus
maximization mechanism with competitors obtains a constdriraction of the op-
timal revenue in the original environment. Give one theorerfor regular, matroid
environments and one for monotone-hazard-rate, downwaddesed environments.

5.3 This chapter has been mostly concerned with the pro t objecte. Suppose we wished
to have a single mechanism that obtained good surplus and gbpro t.

(a) Show that surplus maximization with monopoly reservessinot generally a con-
stant approximation to the optimal social surplus in regulg single-item environ-
ments.

(b) Show that the lazy single sample mechanism is a constanp@roximation to the
optimal social surplus in i.i.d., regular, matroid enviroments.
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(c) Investigate the Pareto fontier between prior-indepeneht approximation of surplus
and revenue. l.e., if a mechanism is an approximation to the optimal surplus
and a -approximation to the optimal revenue, plot it as point (= ; 1= ) in the
positive quadrant.

5.4 Suppose the agents are divided intk markets where the value of agents in the same
market are identically distributed. Assume that the partitioning of agents into markets
is known, but not the distributions of the markets. Assume tlere are at least two agents
in each market. Unrelated to the markets, assume the envirorent has a downward-
closed feasibility constraint.

(a) Give a prior-independent constant approximation to therevenue-optimal mecha-
nism for regular, matroid environments.

(b) Give a prior-independent constant approximation to therevenue-optimal mecha-
nism for monotone-hazard-rate, downward-closed envirorants.

Chapter Notes

The Coase conjecture, which states that a monopolist cannsell early at a high price to
high-valued consumers and late at a low price to low-valueadrsumers as the late price will
compete with the high price, is due to Ronald Coase (1972).

The resource augmentation result that shows that recruitig one more agent to a single-
item auction raises more revenue than setting the optimal serve price is due to Bulow and Klemperer
(1996). The proof of the Bulow-Klemperer Theorem that was msented in this text is due
to Rere Kirkegaard (2006).

The single-sample mechanism and the geometric proof of thelBw-Klemperer theorem
is due to Dhangwatnotai et al. (2010). The pairing auction fodigital good environments
was proposed by Goldberg et al. (2001); however, in their, fgmtially irregular, environment
it does not have good revenue guarantees.
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Chapter 6

Prior-free Mechanisms

The big challenge that separates mechanism design from (ngame-theoretic) optimization
is that the incentive constraints in mechanism design bindaoss all valuation pro les. E.g.,
the payment of an agent depends on the what the mechanism dogken the agent has a
lower value (Theorem 2.7). Therefore, where optimizationiges an outcome that is good
point-wise (i.e., for any input), mechanism design gives aaohanism for all of type-space
that must trade-o performance on one input for another.

In the last chapter we gave mechanisms that made this trade-obliviously to the actual
distribution. The resulting mechanisms were prior-indepedent and approximated the opti-
mal mechanism for the implicit distribution. Furthermore, the described mechanisms were
dominant-strategy incentive compatible, meaning, agentlso need not know the distribution
to act. This lack of distributional requirement for both the agent and the designer suggests
that there must be a completely prior-free theory of mechasm design.

Intuitively, the class of good prior-free mechanisms shalilbe smaller than the class of
good prior-independent mechanisms. The prior-independemechanism can rely on there
being a distribution where as the prior-free mechanism caoh Therefore, we demand from
our prior-free design and analysis framework, that priorrée approximation implies prior-
independent approximation. Indeed, up to constance facter the results of this chapter
subsume the results of the previous chapter.

A main challenge in considering a formal framework in whichot design and analyze
prior-free mechanisms is in identifying a meaningful benohark against which to evaluate
a mechanism's performance. For instance, it was natural tampare the prior-independent
mechanisms of the previous chapter to the (Bayesian) optirhanechanism for the implicit,
and unspeci ed, distribution. We de ne the meaningfulnes®f a benchmark by the implica-
tions of its approximation. A mechanism is a prior-free apmximation to a given benchmark
if the mechanisms performance on any valuation pro le alwayapproximates the bench-
mark performance. The benchmark is economically meaningft) as desired by the previous
paragraph, its approximation implies prior-independent pproximation.

In this chapter we introduce the envy-free optimal revenuednchmark. An outcome, i.e.,
allocation and payments X;p), is envy-free if no agent prefers to swap outcome (allocati
and payment) with another agent. Notice that the envy-freedm constraint binds point-wise
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on valuation pro les; therefore, for any objective and valation pro le there is an envy-free
outcome that is optimal. Envy-freedom can be viewed as a raktion incentive compatibility,
a view point that can be made precise in many environments,ge, as the envy-free optimal
revenue dominates the revenue of any (Bayesian) optimal niamism. Thus, the focus of the
chapter is on designing prior-free approximation mechamss for this benchmark in general
downward-closed environments.

6.1 The Digital Good Environment

Recall the digital good environment wherein all allocatios are feasible. Given an i.i.d. dis-
tribution, the optimal mechanism would post the monopoly pice as a take-it-or-leave-it
o er to each agent. Of course, agents with values above the mapoly price would choose
to purchase the item, while, agents with values below the mopoly price would not. This
outcome is inherently envy-free as each agent was permittéal choose from among the two
possible outcomes: either take item at the monopoly pricer take nothing and pay nothing.
Without a prior the monopoly price is not well de ned; howeve, on inspection of the

any monopoly pricing as maxiv,. While it is not incentive compatible to inspect the
valuation pro le and o er the revenue maximizing price to eah agent, it is envy free. Fur-
thermore, though we do not argue it here, it gives the envyde optimal revenue, denoted
EFO(v). Clearly, any mechanism that approximates this envy-fre@ptimal revenue would
also approximate the (Bayesian) optimal auction for any i.d. distribution. Therefore, this

envy-free benchmark is economically meaningful.

Unfortunately, there is no prior-free constant approximabn to this benchmark. In par-
ticular, when there isn = 1 agent the optimal envy-free revenue is the surplus, whilee
know that, even if the distribution on values is known (cf., Gapter 4, Section 4.2.1), the
optimal surplus and revenue can be separated by more than anstant. For instance, if the
agent's value is known to fall within the range [1h] then the best approximation factor is
1 +In h (See Exercise 6.1). Clearly, if nothing is known about the nge of values then no
nite approximation is possible.

In fact the only thing preventing maxiv;, from being a good benchmark is the case
where the maximization is obtained ati = 1 by selling to the highest value agent at her
value. We therefore slightly alter the benchmark to exclud¢his scenario. Theenvy-free
(optimal) benchmarkfor digital goods is EFG? (v) = max; ,ivy:

We now consider approximating this benchmark. In the remader of this section we will
show that deterministic auctions cannot give good prior-&e approximation. We will then
describe two approaches for designing prior-free auctioftg digital goods. The rst auction
is based on a straightforward market analysis metaphor: userandom sample of the agents
to estimate the distribution of values, run the optimal aucton for the estimated distribution
on the remaining agents. The resulting auction is known to ba 4.68-approximation. The
second auction is based on a standard algorithmic design pdigm: reduction to the a
\decision version" of the problem. The resulting auction iknown to be a 4-approximation.
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Finally, we describe a method for proving lower bounds on thepproximation factor of any
prior-free auction; no auction is better than a 2.42-appromation.

6.1.1 Deterministic Auctions

The main idea that enables approximation of the envy-free behmark is that when guring
out a price to 0 er agenti we can use statistics from the values of all other agents;. This
motivates the following mechanism.

Mechanism 6.1. The deterministic optimal price auction o ers each agent the take-it-or-
leave-it price of ; equal to the monopoly price fow ;.

It is possible to show that the deterministic optimal price action is a prior-independent
constant approximation; however it is not a prior-free appsximation. For example, consider
the valuation pro le with ten high-valued agents, with value ten, and 90 low-valued agents,
with value one. What does the auction do on such a valuation pie? The o er to a high-
valued agent is , = 1, as v , consists of 90 low-valued agents and 9 high-valued agents.
The revenue from the high price is 90; while the revenue frorhé low price is 99. The o er
to a low-valued agent is ; = 10, asv ; consists of 89 low-valued agents and 10 high-valued
agents. The revenue from the high price is 100; while the rewes from the low price is
99. Clearly with these o ers all high-valued agents will winand pay one, while all low-
valued agents will lose. The total revenue is ten, a far crydm the envy-free benchmark
revenue of EFC? (v) = EFO(v) = 100. In fact, this de ciency of the deterministic optimal
price auction is one that is fundamental to allanonymous(a.k.a., symmetric) deterministic
auctions.

Theorem 6.1. No anonymous, deterministic digital good auction is bettethan an n-
approximation to the envy-free benchmark.

Proof. We consider only valuation pro les with valuesy; 2 f 1;hg. Let n,(v) and ny(v)
represent the number ofh values and 1 values inv, respectively. That an auctionA is
anonymous implies that the critical value for ageni as a function of the reports of other
agents is independent of and only a function ofn,(v ;) and n;(v ;). Thus, we can let

(ny; ny) represent the o er price of A for any agenti when we plug inn, = n,(v ;) and
n, = ny(v ;). Finally we assume that (n,;n,;) 2 f 1;hg as this restriction cannot hurt the
auction pro t on the valuation pro les we are considering.

We assume for a contradiction that the auction is a good appxonation and proceed in

three steps.

1. Observe that for any auction that is a good approximationit must be that for all m,

(m; 0) = h. Otherwise, on the allh's input, the auction only achieves pro t n while

the envy-free benchmark isin. Thus, the auction would be at most arh-approximation
which is not constant.
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2. Likewise, observe that for any auction that is a good appxonation, it must be that
for all m, (0O;m) = 1. Otherwise, on the all 1's input, the auction achieves n@ro t
and is clearly not an approximation of the envy-free benchmia n.

3. For the nal argument, consider takingm su ciently large and looking at (k;m k).
As we have argued fok =0, (k;m k) =1. Consider increasingk until (k;m k) =
h. This must occur since (k;m k) = hwhenk = m. Letk =minfk : (k;m k)=
hg 1 be this transition point. Now consider ann = m + 1 agent valuation pro le
with n,(v) = k andn;(v) = m k +1. Consider separately the o er prices to high-
and low-valued agents:

For low-valued agents: (n,(v 1);ni(v 1)) = (k;m k)= h. Thus, all low-
valued agents are rejected and contribute nothing to the ation pro t.

For high-valued agents: (nn(v ,);ni(v )= (kK  1ym k +1)=1. Thus,
all high-valued agents are are o ered a price of one which theaccept. Thus, the
contribution to the auction prot from such agentsis 1 n,(v) = k .

Seth = n. If k =1 then the benchmark isn (from selling to all agents at price 1); of course,
fork =1then n=nk . If k > 1 the benchmark is als;k (from selling to the k high-
valued agents at pricen). Therefore, the auction prot k is at-best ann-approximation. [

6.1.2 Random Sampling

The conclusion from the preceding discussion is that eitheandomization or asymmetry is
necessary to obtain prior-free approximations. While eietr approach will permit the design
of good mechanisms, all deterministic asymmetric auctionsnown to date are based on
derandomizations of randomized auctions. In this text we Widiscuss only these randomized
mechanisms.

Notice that the problem with the deterministic optimal price auction is that it sometimes
o ers high-valued agents a low price and low-valued agentshégh price. Either of these prices
would have been good if only it o ered consistently to all ages. The rst idea to combat
this lack of coordination is to coordinate using random santipg. The idea is roughly to
partition the agents into a market and sample and then use theample to estimate a good
price and then o er that price to the agents in the market. With a random partition we
expect a fair share of high- and low-valued agents to be in bothe market and the sample;
therefore, a price that is good for the sample should also beay for the market.

Mechanism 6.2. The random sampling (optimal price)
1. randomly partitions the agents intoS® and S®(by ipping a fair coin for each agent),
2. computes (empirical) monopoly prices®and “for S° and S®respectively, and

3. oers °to S®nd “to S°
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As a warm-up exercise for analyzing this random sampling aimn we observe that its
not better than a 4-approximation to the envy-free benchma:. Consider the 2-agent input
v = (1:1; 1) for which the envy-free benchmark is EF® (v) = 2. To calculate the auction's
revenue on this input, notice that these two agents are in theame partition with probability
1/2 and in di erent partitions with probability 1/2. In the f ormer case, the auction's revenue
is zero. In the latter case it is the lower value, i.e., one. Ehauction's expected prot is
therefor 1/2, which is a 4-approximation to the benchmark.

Theorem 6.2. For digital good environments and all valuation pro les, tb random sampling
auction is at least a 4.68-approximation to the envy-free tehmark.

This theorem is involved and it is generally believed that th bound it provides is loose
and the random sampling auction is in fact a worst-case 4-aggximation. Below we will
prove the weaker claim that it is at worst at 15-approximatio. This weaker claim highlights
the main techniques involved in proving that variants and geeralizations of the random
sampling auction are constant approximations.

Lemma 6.3. For all valuation proles, the random sampling auction is atleast a 15-
approximation to the envy-free benchmark.

Proof. Assume without loss of generality thatv,;) 2 S°and call S° the market; call S%the
sample. This terminology comes from the fact that i/, is much bigger than all other agent
values then all agents inS®will be rejected; the role ofS®is then only as a sample for
statistical analysis. There are two main steps in the proofStep 1 is to show that EFO{ g
is close to EFG? (v). Step 2 is to show that the revenue from price “°on SCis close to
EFO(v¢w), i.e., the revenue from price on S

We will use the following de nitions. First sort the agents ly value so thatv; is the
ith largest valued agent. De neX; is an indicator variable for the event thati 2 S%(the
sample). Notice that E[X;] = 1=2 except fori =pl; X1 = 0 by our assumption that the
highest valued agent is in the market. De ne5; = = ; X;. Let k be the number of winners
in EFO(v), i.e., k = argmax; iv;.

1. With good probability, the optimal revenue for the sample EFO(v ), is close to the
benchmark, EFG? (v).

De ne the event B that S k=2. Of course EFO{ ) SV as the former is
the optimal single price revenue or8®and the latter is the revenue fromS®with
price v, Event B implies that S,v,  kv,=2 = EFO® (v)=2, and thus, EFO( 4
EFO®@ (v)=2.

We now show thatPr[B] = 1=2 whenk is even. Recall that the highest valued agent
is always in the market. Therefore there ar& 1 (an odd number) of agents which
we partition between the market and the sample. One partitio receives at leask=2
of these and half the time it is the sample; thereforelr [B] = 1=2. Whenk is odd
Pr[B] < 1=2, and a slightly more complicated argument is needed to cotefe the
proof. We omit the detalils.
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2. With good probability, the revenue from price ®on SPis close to EFOY c).

DenetheeventEthat\8i; (i S) S$=3." Notice that the left hand side of this
equation is the number of agents with value at least; in the market, while the right

hand side is a third of the number of such agents in the samplee., this event implies
that the partitioning of agents is not too imbalanced in favo of the sample. We refer
to this event as thebalanced samplevent; though, note that it is only a one-directional
balanced condition.

Let kbe index of the agent whose value is the monopoly price for tlsample, i.e.,

Vo = ®and EFO(vg) = S,ov,00. The prot of the random sampling auction is

equal to (k% S 9V, 0. Under the balanced sample condition this is lower bounded/b
S v, 0=3 = EFO( v g00)=3.

We defer to later the proof of abalanced sampling lemm@_emma 6.4) that shows that

Pr[E] :9.

Finally, we combine these two pieces. If both good events and B hold, then the
expected revenue of random sampling auction is at least EEv)=6. By the union bound,
the probability of this good fortune isPr[E~*B]=1 Pr[(E] Pr[:B] 0:4. We conclude
that the random sampling auction is a 15-approximation to tle envy-free benchmark. O

Lemma 6.4 (Balanced Sampling) For X; = 0, X, fgr i 1 an indicator variable for a
independent fair coin ipping to heads, and sun§; = X,

Pri8i; (i S) S$=3] 009

Proof. We relate the condition to the probability of ruin in a random walkon the integers.
Notice that (i S;) S=3 if and only if, for integersi and S;, 3i 4S;+1 > 0. So let
Z, =3i 4S;+1 and view Z; as the position, in stepi, of a random walk on the integers.
SinceS; = 0 this random walk starts at Z, = 4. Notice that at step i in the random walk
with Z; = k then at stepi + 1 we have

k 1 ifX;=1, and
Ziy = .
k+3 if X;=0;
i.e., the random walk either takes three steps forward or orsep back. We wish to calculate
the probability that this random walk never touches zero. Tis type of calculation is known
as the probability of ruin in analogy to a gambler's fate when playing a game with such a
payo structure.

Let r, denote the probability of ruin from position k. This is the probability that the
random walk eventually takesk steps backwards. Clearlyry, = 1 (at k = 0 we are already
ruined) andr, = r¥ (taking k steps back is equal to stepping badk times). By the de nition
of the random walk, we have the recurrence

Ne = %(rk 1+ Nas):
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Plugging in the above identities,
rp= 31+ ry):

This is a quartic equation that can be solved, e.g., biferarri's formula. Since our random
walk starts at Z, = 4 we calculater, = r{  0:1, meaning that the success probability for
the random walk satisfying the balanced sampling conditiois at least 0.9. O

6.1.3 Decision Problems

Decision problemsplay a central role in computational complexity and algoribm design.

Where as an optimization problem is to nd the optimal soluton to a problem, a decision
problem is to decide whether or not there exists a solution #t meets a given objective
criterion. While it is clear that decision problems are no haler to solve than optimization

problems, often times the opposite is also true. For instaacwith binary search and repeated
calls to an algorithm that solves the decision problem, theptimal solution can be found.
In this section we develop a similar theory for mechanism dgs.

Pro t extraction

For pro t maximization in mechanism design, recall, theres no absolutely optimal mecha-
nism. Therefore, we de ne the mechanism design decision ptem in terms of the aforemen-
tioned pro t benchmark EFO. The decision problem for EFO andpro t target R to design

a mechanism that obtains prot at leastR on any input v with EFO(v) R. We call the

mechanism that solves the decision problem@o t extractor .

De nition 6.5. The digital good pro t extractor for target R and valuation pro le v nds
the largestk such thatvy, R=k, sells to the topk agents at priceR=k, and rejects all
other agents. If no such set exists, it rejects all agents.

Lemma 6.6. The digital good pro t extractor is dominant strategy incetive compatible.

Proof. Consider the following indirect mechanism. See if all agentcan evenly split the
target R. If some agents cannot a ord to pay their fair share, rejecttiem. Repeat with the
remaining agents. Notice that as the number of agents in thigrocess is decreasing, the fair
share that each agent faces is increasing. Therefore, anyeagrejected for inability to pay
their fair share could not a ord any of the future prices conglered in the mechanism either.
Thus, the incentives are identical to that of the English auton. An agent wishes to drop
out when the increasing price surpasses her value.

The digital good pro t extractor is obtained by applying the revelation principle to the
above ascending price mechanism. O

Lemma 6.7. For all valuation pro les v, the digital good pro t extractor for targetR obtains
revenueR if R EFO(v) and zero otherwise.
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Proof. EFO(v) = kv, for somek. If R EFO(v) then R=k v,. The digital good prot
extractor may yet nd a larger k that satis es the same property, however, it can certainly
nd some k. On the other hand, ifR > EFO(v) = max, kv, then there is no suchk for
which R=k v, and the mechanism has no winners and no revenue. O

Approximate Reduction to Decision Problem

We now use random sampling to approximately reduce the meafiam design problem of
optimizing pro t to the decision problem. The key observaton in this reduction is an analogy.
Notice that given a single agent with valuev, if we o er this agent a thresholdt the agent

buys and payst if and only if v t. Analogously a prot extractor with target R obtains

revenueR on v if and only if EFO(v) R. The idea then is to randomly partition the

agents and use prot extraction to run the second-price aun on the benchmark prot

from each partition.

De nition 6.8. The random sampling pro t extraction auction works as follows:

1. Randomly partition the agents by ipping a fair coin for eah agents and assigning her
to S°or S%

2. CalculateR°= EFO(v«0) and R%= EFO( V<), the benchmark pro t for each part.
3. Prot extract Rfrom S°and R° from S%

Notice that the intuition from the analogy to the second-prce auction implies that the
revenue of the random sampling pro t extraction auction is actly the minimum of R®and
R Since the pro t extractor is dominant strategy incentive @mpatible, so is the random
sampling pro t extraction auction.

Lemma 6.9. The random sampling pro t extraction auction is dominant stategy incentive
compatible.

Before we prove that the auction is a 4-approximation to to th envy-free benchmark, we
give a simple proof of a lemma that will be important in the anlysis.

Lemma 6.10. Flip k 2 fair coins, then

| =

E[minf#heads #tailsg]  7:

Proof. Let M; be a random variable for the mif#heads; #tails g after only i coin ips. We
make the following basic calculations (verify these as an exise):

E[M,] = 0.
E[M,] = 1=2.
E[M,] = 3=4.
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We now obtain a general bound orE[M;] for i > 3. Let X; = M; M, ; representing
the change to mir #heads; #tallslg after ipping one more coin. Notice that linearity of
expectation implies thatE[M,] = . 1 E[X;]. Thus, it would be enough to calculateE[X;]
for all i. We consider this in two cases:
Case 1 (i even): This implies thati 1 is odd, and prior to ipping the ith coin it was
not the case that there was a tie, i.e, #head$ #tails. Assume without loss of generality
that #heads < #tails. Now when we ip the ith coin, there is probability 1/2 that it is
heads and we increase the minimum by one; otherwise, we geiddave no increase to the
minimum. Thus, E[X;] = 1=2.
Case 2 (i odd): Here we use the crude bound thaE[X;] 0. Note that this is actually the
best we can claim in worst case sinde 1 is even and it could have been that #heads =
#tails in the previous round. If this were the case then regafless of theith coin ip, X; =0
and the minimum of #heads and #tails would be unchanged.
Case 3 (i = 3): This is a special case of Case 2; however we can get a bet®und
using the calculations ofE[M,] = 1=2 and E[M3;] = 3=4 above to deduce thatE[X;] =
E[M;] E[My]=1-4

Finally we are ready to calculate a lower bound o&[M,].

X

k
EM]= _ EXd
1,1,1 1 1...
O+3+ 2+ 5+0+ Z+0+ 3:::
-1 bk=2c
=2t 3
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Theorem 6.11. For digital good environments and all valuation pro les, th revenue of the
random sampling pro t extraction auction is a 4-approximabn to the envy-free benchmark.

Proof. For valuation prole v, let REF be the envy-free benchmark and its revenue and
APX be the random sampling prot extraction auction and its expected revenue. From
the aforementioned analogy, the expected revenue of the oo is APX = E min(R%*R%
(where the expectation is taken over the randomized of the géioning of agents).

Assume that envy-free benchmark sells tk 2 agents at pricep, i.e., REF = kp. Of
the k winners in REF, let k’ be the number of them that are inS® and k®the number that
are in S” Since there arek® agents inS°at price p, then R®  k%. Likewise,R® k.

APX _ E[min(Ro;RO(}]
REF — kp
E[min(k%p:k*D) ]
kp
E[min(k%k%]
k

1.

i
The last inequality follows from applying Lemma 6.10 when weonsiderk 2 coins and
heads as putting an agent irS° and a tails as putting the agent inS%
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This bound is tight as is evident from the same example from wth we concluded that
the random sampling optimal price auction is at best a 4-appximation. O

One question that should seem pertinent at this point is whéter partitioning into two
groups is optimal. We could alternatively partition into three parts and run a three-agent
auction on the benchmark revenue of these parts . Of coursdyet same could be said for
partitioning into k parts for any k. In fact, the optimal partitioning comes fromk = 3,
though we omit the proof and full de nition of the mechanism.

Theorem 6.12. For digital good environments and all valuation pro les, th random three-
partitioning pro t extraction auction is a 3.25-approximation to the envy-free benchmark.

6.1.4 Lower bounds

We have discussed three auctions with known approximatioadtors 4.62, 4, and 3.25. What
is the best approximation factor possible? This questionfa@ourse, turns our framework of
approximation into one of optimality.

De nition 6.13.  The prior-free optimal auction for a envy-free benchmarlEFO® is

EFO@ (v)

argmin, ma
g IA VX A(V)

Unfortunately, this optimal auction su ers from the main drawback of optimal mecha-
nisms. In general it is quite complicated. The auctions desbed heretofore can be viewed
as simple approximations to this potentially complex optiral auction.

For the special case oh = 2, however, the prior-free optimal auction is simple. In
this case, the envy-free benchmark is EF®(v) = 2V(y. Recall that the revenue of the
second-price auction isvi,. Therefore, in this special case, the second-price auctiis
a 2-approximation to the benchmark. Is this the best possiél or is there some better
approximation factor possible by a more complicated aucti® In fact, it is the best possible.

Lemma 6.14. For any auction, there is an = 2 agent valuation pro le such that the auction
is at best a 2-approximation to the envy-free benchmark.

Proof. The proof follows a simple structure that is useful for provig lower bounds for this
type of problem. First, we consider values drawn from a rando digtribution. ;Second,

we argue that for any auctionA and v i.i.d. from F, E,[A(v)] E, EFO®(v) =2. By

the de nition of expectation this implies that there existsa valuation prole v such that
A(v) EFO@(v )=2 (as otherwise the expected values could not satisfy thisratition).
We choose a distribution to make the analysis dE,[A (V)] simple. This is important
because we have to analyze it for all auction8. The idea is to choose the distribution
for v such that all auctions obtain the same expected prot. The ditribution that satis es
this condition is the equal-revenue distribution (De nition 4.4), i.e.,F(z) =1 1=z Note
that whatever price ; 1 that A oers agent i, the expected payment made by agent
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iis ;  Prlv i] = 1. Thus, for n = 2 agents the expected prot of the auction is
E,[A(V)]=n=2.

We must now calculateE, EFO® (v) . EFO®(v) = max; ,iv( wherev, is the ith

highest valuation. In the case thain = 2, this simpli es to EFQQ(Z) (V) =2V =2min(vy; Vy).
Wenrecall that a nqn-negative random variabl&X hasE[X] = 01 Pr[X z]dz and calculate

Pr EFO®@(v)>z .

h i
Pr, EFO®(v)>z =Pr,Jv; z=2"v, z=2]

=Pr,[vy z=2]Pr,[v, z=2]

=4=7
h [
Note that this equation is only valid forz 2. Of course forz < 2, Pr EFO®(v) z =1.
h i Z1 h i
E, EFO®(v) = Pr EFO®Pv 7z dz
0z
1

=2+ ;“zdz =4:

2

h i
Thus we see that for this distribution aﬂd any auctjom, E,[A(v)] =2and E, EFO® (v) =
|

4. Thus, the inequality E,[A(v)] E, EFO®(v) =2 holds and there must exist some input
v suchthatA(v ) EFO@(v )=2. O

For n > 2 the same proof schema gives lower bounds on the approximatifactor of
the prior-free optimal auction. The main di culty of the n > 2 case is in calculating the
expectation of the benchmark. This is complicated becaugdiecomes the maximum of many
terms. E.g., forn = 3 agents, EFG? (v) = max(2Vvy; 3v(3)). Nonetheless, its expectation
can be calculated exactly.

For any auction, there is an = 2 agent valuation pro le such that the auction is at best
a 2-approximation to the envy-free benchmark.

Theorem 6.15. For any auction, there is a valuation pro le such that the au®n is at best
a 2.42-approximation to the envy-free benchmark. Furtheore, for special cases oh = 2,
3, and 4 agents the lower bound on approximation factors ameaetly 2, 13/6, and 96/215,
respectively.

It is known that there is a 13/6-approximation forn = 3 agents. It is not known whether
the 96/215 bound is tight forn = 4.
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6.2 The Envy-free Benchmark

To generalize beyond digital good environments we must berfieal about the envy-free
benchmark. First, is the envy-free benchmark meaningful imulti-unit, matroid, or downward-
closed environments? For instance, informally we would &kprior-free approximation of the
benchmark to imply prior-independent approximation for ag i.i.d. prior. Second, is it ana-
lytically tractable, i.e., is there an easy to interpret desription of envy-free optimal pricings?
Both of these issues are important.

Recall that in the digital goods example the envy-free benatark is the revenue from
the monopoly pricing of the empirical distribution given bythe valuation prole. This
seems like a reasonable benchmark as the Bayesian optimattaan for digital goods is the
monopoly pricing (for the real distribution). Recall that for irregular multi-unit auction
environments the optimal auction is not just the second-pce auction with the monopoly
reserve (in particular, it may iron). For these environmerdg the envy-free benchmark is also
more complex.

Up to this point, we have assumed that the environment is givedeterministically, e.g., by
a cost function or set system (Chapter 3, Section 3.1). A geradization of this model would
be to allow randomized environments. We view a randomized\@ronment as a probability
distribution over deterministic environments, i.e., a comex combination. For the purpose
of incentives and performance, we will view mechanism design randomized environments
as follows. First, the agents report their preferences; sww, the designer's cost function
(or feasibility constraint) is realized; and third, the mebanism for the realized cost function
is run on the reported preferences. The performance in suchopabilistic environment is
measured in expectation over both the randomization in the echanism and the environment.
Agents act before the set system is realized and thereforerin their perspective the game
they are playing in is the composition of the randomized emanment with the (potentially
randomized) mechanism.

An example of such a probabilistic environment comes from lsplay advertising.” Banner
advertisements on web pages are often sold by auction. Of ceeithe number of visitors to
the web page is not precisely known at the time the advertiserbid; instead, this number
can be reasonably modeled as a random variable. Thereforhe tenvironment is a convex
combination of multi-unit auctions where the supply is randmized.

De nition 6.16. Given an environment, speci ed by cost functiore( ), the permutation
environment is the convex combination of the environment with the idetigs of the agents
permuted. l.e., for permutation drawn uniformly at random from all permutations, the
permutation environment has cost functiore( ()).

Our goal is a prior-free analysis framework for which appraxation implies prior-independent
approximation in i.i.d. environments. Of course the expeed revenue of the optimal auc-
tion in an i.i.d. environment is una ected by random permutdions. Therefore, with respect
to our goal, it is without loss to assume a permutation envimmment. Importantly, while
a matroid or downward-closed environment may be asymmetria@a matroid permutation or
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downward-closed permutation environment is inherently sgmetric. This symmetry permits
a meaningful study of envy-freedom.

De nition 6.17.  For valuation pro le v, an outcome with allocationx and paymentsp is
envy-free if no agent prefers the outcome of another agenther own, i.e.,

8 ViXi BV B

The de nition of envy freedom should be contrasted to the Bags-Nash equilibrium con-
dition given by Fact 2.6. Importantly, Bayes-Nash equilibium constrains the outcome an
agent would receive upon a unilateral \misreport" where asnwy freedom constrains the out-
come she would receive upon swapping with another agent. Hawer, unlike the incentive-
compatibility constraints, no-envy constraints bind poirt-wise on the given valuation pro le;
therefore, there is always a point-wise optimal envy-freeutcome. The similarity of envy
freedom and incentive compatibility enables virtually idatical characterization and opti-
mization of envy free outcomes (cf. Theorem 2.7).

Theorem 6.18. For valuation pro le v (sorted withv, v, ::: V,), an outcome(x;p)
is envy free if and only if

(monotonicity) X; X, Iii X,.

(payment correspondence) there exists@g and monotone functiony( ) with y(v;) = x;
such that for alli 7

V

p=vixi y(z) dz+ po;
where usuallyp, = 0.

Notice that the envy-free payments are not pinned down presely by the allocation; in-
stead, there is a range of appropriate payments. Given our j@ative of pro t maximization,
for any monotone allocation rule, we focus on the largest ewree payments. As this pay-
ment can be interpreted as the \area above the curwg )," the maximum payments are given
when y( ) is the smallest monotone function consistent with the allcation. Formulaically
this revenue can be calculated as:

X
P = j ivj (Xj  Xj41): (6.1)
We can de ne the revenue curve, marginal revenue, virtual W@es, and their ironed
equivalents that correspond to envy-free revenue (cf. Deitions 3.11, 3.14, and 3.23). In
fact, these terms are exactly those that govern the Bayesiaptimal revenue for theempirical
distribution. The empirical distribution for a valuation pro le is the distribution with mass
i=n above valuev;,.
For envy-free revenue, the index of an agent (in the sorted der plays the same role
as quantile in the analogous de nitions of Bayesian optimainechanisms in Chapter 3 (cf.

107



180+ 180+
100 106¢
401
20
0+—+— 0 :
0 1020 90 0 20 90
(a) Revenue curveR() (b) Ironed revenue curveR( )

Figure 6.1: The revenue curves corresponding to 10 high-watl agents and 80 low-valued
agents. Depicted orR( ) are the revenues of the second-price auctions with resesveO and
2 with k = 20 units. Depicted onR( ) is the envy-free optimal revenue withk = 20 units.

De nition 3.9). For these natural de nitions, the optimal envy-free outcome in any symmet-
ric environment is the ironed virtual surplus optimizer (cf Corollary 3.27). In particular for

permutation environments the desired allocation can be aallated as follows: rst, calculate
ironed virtual values from values; second, realize the raach permutation; and third, serve
the subset of agents to maximize the ironed virtual surplus.

De nition 6.19.  For the ith index, the revenueis R; = iv,; the virtual value is ; =
R; R; 1; theironed revenueis denoted byR; and given by the evaluating atthe smallest
concave function that upper bounds the point set givent, 0g[f (i;R;) : i 2 [n]g; and the
ironed virtual valueis ;= R; R; ;.

Theorem 6.20. The maximal envy-free revenue for monotone allocation is

X X X X

i iXj = iRi(Xi Xi+1) i iXj = iRi(Xi Xi+1)

with equality if and only ifR; 6 R; ) X; = X1 :

Theorem 6.21. In symmetric environments, ironed virtual surplus maximiation (with ran-
dom tie-breaking) gives the envy-free outcome with the maxim pro t.

In a symmetric environment, ironed virtual surplus maximiation gives an allocation that
is monotone, i.e.,v; >Vv; ) X; X, as well as an allocation rule that is monotone, i.e.,
z>2% x/(2) x;(2%. The maximal envy-free payment of agent for this allocation comes
from equation (6.1) whereas the payment of the incentive cqratible mechanism with this
allocation rule comes from Corollary 2.17. These paymentsearelated but distinct.

For example, consider & = 20 unit environment and valuation pro le v that consists
of ten high-valued agents each with value ten and 80 low-vad agents each with value
two. The revenue curve for this valuation pro le is given in kgure 6.1(a). Both selling ten
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(a) Allocation rule xq, (V) and payment pyy, (2) (b) Allocation rule Xyign (V) and payment ppig (10)

Figure 6.2: The allocation rules for high- and low-valued &gts induced by the mechanism
with virtual values given in the text on the valuation pro le given in the text. The payments
are given by the area of the shaded region.

units at price ten and 20 units at price two are envy-free. Thenvy-free optimal revenue,
however, is given by selling to the high-valued agents withrgbability one and price nine
and selling to the low-valued agents with probability £8 and price two. It is easy to verify
that this outcome is envy-free and that its total revenue is 10. The ironed revenue curve
for this valuation pro le is given in Figure 6.1(b). The ironed virtual values are given by the
following function:

8
21 V< 2

(v) = S 1 v 2 [2;10); and
"10 v2[1G1):

We now calculate the revenue of the incentive compatible ntenism that serves the 20
agents with the highest ironed virtual value. In the virtualsurplus-maximizing auction, on
the valuation prole v (with ten high-valued agents and 80 low-valued agents), theigh-
valued agents win with probability one and the low-valued agnts win with probability 1/8
(as there are ten remaining units to be allocated randomly aomg 80 low-valued agents).
To calculate payments we must calculate the allocation ruléor both high- and low-valued
agents. Low-valued agents, by misreporting a high value, wiwith probability one. The
allocation rule for low-valued agents is depicted in Figuré.2(a). High-valued agents, by
misreporting a low value, on the other hand, win with probabity 11/81. Such a misreport
leaves only nine high-value-reporting agents and so thereeall remaining units to allocate
randomly to the 81 low-value-reporting agents. The allocain rule for high-valued agents
is given in Figure 6.2(b). Payments can be read from the allattion rules: a high-valued
agent pays about 8.9 and a low-valued agent (in expectatiomays 1/4. The total revenue
from ten of each is about 109. Notice that this revenue is onBlightly below the envy-free
optimal revenue.

The revenue calculation above was complicated by the factahwhen a high-valued agent
reports truthfully there are ten remaining units to allocae to the 80 low-valued agents;
whereas when misreporting a low value, there are 11 remaigirunits to allocate to 81
low-value reporting agents. Importantly: the allocation ule for high-valued agents and low-
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valued agents are not the same (compare Figures 6.2(a) an@®)). The envy-free optimal
revenue can be viewed as an approximation of the incentiverapatible revenue that is more
analytically tractable.

We now formalize the fact that the envy-free revenue is an ewomically meaningful
benchmark. The theorem below implies that, in matroid permiation environments, prior-
free approximation of the benchmark implies prior-indepeatent approximation.

Theorem 6.22. For any matroid permutation environment and any ironed viral value
function (), ironed virtual surplus maximzation's envy-free revenussiat least its incentive-
compatible revenue.

Proof. We show that the envy-free payment of agent is at least her incentive-compatible
payment. In particular if we let x;(v) be the allocation rule of the ironed virtual surplus
optimizer in the permutation environment, then forz  v;, X;(v ;;z) (as a function ofz) is
at most the smallesty(z) that satis es the conditions of Theorem 6.18. Since the imntive-
compatible and envy-free payments, respectively, correspd to the area \above the curve"
this inequality implies the desired payment inequality.

Sincex;(v ;z) is monotone, we only evaluate it aty; v; and show thatx;(v ;;V;)
X; (v). This can be seen by the following sequence of inequalities

Xi(V isv) = X (v irv)
X (V):

The equality above comes from the symmetry of the environmeand the fact that agent
i and j have the same value in prole ¢ i;v;). The inequality comes from the matroid
assumption and the fact that the greedy algorithm is optimalTheorem 4.22): when agent
i reduces her bid tov;, agentj is less likely to be blocked by. O

We are now ready to formally de ne the envy-free benchmark. d®lice that the envy-
free benchmark is well de ned in all environments not just symetric environments. For
instance, when we wish to compare a mechanisms performancetie envy-free benchmark,
it is not necessary for the environment to be symmetric.

De nition 6.23.  Given any environment, letEFO(v) denote the maximum revenue attained
by an envy-free outcome in the corresponding permutation\@eronment.

De nition 6.24.  Let v® = (vp;ViiiiVm) be the valuation pro le withvg, replaced
with a duplicate ofvy, and de ne EFO® (v) = EFO(v®).

6.3 Multi-unit Environments

We will discuss two approaches for multi-unit environments In the rst, we will give an
approximate reduction to digital good environments. This eduction will lose a factor of two
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in the approximation ratio, i.e., it will derive a 2 -approximation for multi-unit environ-
ments from any -approximation for digital goods. The second approach wibe to directly
generalize the random sampling optimal price auction to mtHunit environments. This gen-
eralization randomly partitions the agents into two part, @lculates ironed virtual valuation
functions for the empirical distribution of each part, and hen runs optimalk=2-unit auction
on each part using the ironed virtual valuation function fran the opposite part.

Our rst approach is an approximate reduction. For i.i.d., rregular, single-item envi-
ronments Corollary 4.12 shows that the second-price auatiowvith anonymous reserve is
a 2-approximation to the optimal auction. l.e., the loss in prformance from not ironing
when the distribution is irregular is at most a factor of two. In fact, this result extends to
multi-unit environments (as does the prophet inequality fom which it is proved) and the
approximation factor only improves. Given the close conngon between envy-free optimal
outcomes and Bayesian optimal auctions, it should be unsuiping that this result translates
between the two models.

Consider the revenue of the surplus maximization mechanismith the best (ex post)
anonymous reserve price. For instance, for the-unit environment and valuation pro le v,
this revenue is max y iv(;. It is impossible to approximate this revenue with a priorifee
mechanism so, as we did for the envy-free benchmark, we exiguhe case that it sells to only
the highest-valued agent at her value. Therefore, fdt-unit environments the anonymous-
reserve benchmarks max, ; iv(y. Notice that for digital goods, i.e.,k = n, the anonymous-
reserve benchmark is equal to the envy-free benchmark. Ofucse, an anonymous reserve is
envy free so the envy-free benchmark is at least the anonynssreserve benchmark.

We now give an approximate reduction from multi-unit envirmments to digital-good en-
vironments in two steps. We rst show that the envy-free bertamark is at most twice the
anonymous-reserve benchmark in multi-unit environmentsWe then show an approxima-
tion preserving reduction from multi-unit to digital-good environments with respect to the
anonymous-reserve benchmark.

Theorem 6.25. For any valuation pro le, in multi-unit environments, the envy-free bench-
mark is at most twice the anonymous-reserve benchmark.

Proof. Assume without loss of generality that the envy-free optimaevenue is derived from
selling allk units. In terms of revenue curves (De nition 6.19), the enwfree optimal revenue
for v is REF = max;  R; whereas the anonymous-reserve revenue is APX = maxR;.

Assume without loss of generality that the envy-free optimarevenue sells allk units
and irons between index < k andj > k as depicted in Figure 6.3. We will use a short
hand notation and refer to the value of a point as the value ofd y-coordinate. Accordingly,
C=REF= R\, A=R; =iV, E=R; =jvg,andD = ¥R; = kv;). Note that v v,
soR, D.

By de nition the anonymous-reserve revenue satis es APX = rax, R, soA APX and
D APXsoA+D 2APX. But, line segmentAB is certainly longer than line segment
CDsoREF=C A+D 2APX.

Finally, this inequality holds for any v therefore it also holds forv®. O
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Figure 6.3: Depiction of ironed revenue curv® for the pictorial proof of Theorem 6.25.

The solid piece-wise linear curve iR, the convex hull of R, and contains the line-segment
connecting pointA = (i;R;) and point E = (j;R;). The envy-free benchmark is achieved at
point D = (k;Ry). The dashed lines have slope;, and v.

Theorem 6.25 reduces the problem of approximating the en¥gee benchmark to that of
approximating the anonymous-reserve benchmark. There isgeneral construction for con-
verting a digital good auctionA into a limited supply auction and if A is a -approximation
to the anonymous-reserve benchmark (which is identical tché envy-free benchmark for
digital goods) then so is the resulting multi-unit auction.

Mechanism 6.3. The k-unit variant A, of digital good auctionA is the following:
1. Simulate thek + 1 st-price auction (i.e., thek highest valued agents win and payj. ).
2. Simulate A on thek winners v, ;:::; V-

3. Serve the winners from the second simulation and chargemithe higher of their prices
in the two simulations.

Implicit in this de nition is a new notion of mechanism compgaition (cf. Chapter 5,
Section 5.4.2). It is easy to see that this mechanism comptisn is dominant strategy
incentive compatible. In general such a composition is DSI@henever no winner of the
rst mechanism can manipulate her value to change the set ofimners while simultaneously
remaining a winner (Exercise 6.3). The proof of the followgtheorem is immediate.

Theorem 6.26. If A is a -approximation in digital good environments then its mukunit
variant A, is a 2 -approximation in multi-unit environments (with respect © the envy-free
benchmark).
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We can of course apply this theorem to any digital good auctip for instance, from
Theorem 6.12 we can conclude the following corollary.

Corollary 6.27. There is an multi-unit auction that is a 6.5-approximation 6 the envy-free
benchmark.

An alternative approach to the multi-unit auction problem is to directly generalize the
random sampling optimal price auction. Intuitively, the random sampling auction partitions
the agents into two parts and then derives the optimal auctio for each part and runs that
auction on the opposite part. For digital goods the optimal action for each part is just the
to post the monopoly price for the valuation pro le. Of courg, multi-unit environments the
optimal auction, e.g., for irregular distributions, may ion.

Mechanism 6.4. The random sampling (ironed virtual surplus maximization)auction for
the k-unit environment

1. randomly partitions the agents intoS® and S®(by ipping a fair coin for each agent),

2. computes ironed virtual valuation functions ®and for the empirical distributions of
S%and S®respectively, and

3. maximizes ironed virtual surplus or8®with respect to °and S°with respect to “°with
k=2-units each.

If k is odd the last unit is allocated with probability 1/2 to eacpart.

The proof of the following theorem can be derived similarlya the proof of Lemma 6.3;
we omit the details.

Theorem 6.28. For multi-unit environments and all valuation pro les, therandom sampling
auction is a constant approximation to the envy-free benclamk.

The random sampling auction shares some good properties lwibptimal mechanisms.
The rst is that the mechanism on each part is an ironed-virt@al-surplus optimization. l.e.,
in each part it sorts the agents by ironed virtual surplus andllocates to the agents greedily
in that order. This property is useful for two reasons. Firstin environments where the
supply k of units is unknown in advance, the mechanism can be implemed incrementally.
Each unit of supply is allocated to alternating partitions b the agent remaining with the
highest ironed virtual valuation. Second, as we will see ifhé next section, it can be applied
without specialization to matroid permutation and positian environments.

6.4 Matroid Permutation and Position Environments

Position environments are important as they model auctionfor selling advertisements on
Internet search engines such as Google, Yahoo!, and Bing. these auctions agents bid for
positions with higher positions being better. The feasibtly constraint imposed by position
auctions is a priori symmetric.
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De nition 6.29. A position environmentis one withn agents,m positions, each positior
described by weighty;. An auction assigns each positiof to an agenti which corresponds
to settingx; = w;. Positions are usually assumed to be ordered in non-incréag order, i.e.,
W, W, . (Often w; is normalized to one.)

Position auctions correspond to advertising on Internet sech engines as follows. Upon
each search to the search enginerganic search resultsappear on the left hand side and
sponsored search results@.k.a., advertisements, appear on the right hand side of ¢hsearch
results page. Advertisel receives a revenue of in expectation each time their ad is clicked
(e.q., if the searcher buys the advertisers product) and iheir ad is shown in positionj it
receives click-through ratew;, i.e., the probability that the searcher clicks on the ad isy;.
If the ad is not clicked on the advertiser receives no revenu&earchers are more likely to
click on the top slots than the bottom slots, hencev;  w;.;. An advertiseri shown in slot
j receives valuev;w;. Though this model of Internet advertising leaves out many etails of
the environment, it captures many others.

We now show that mechanism design for matroid permutation ®ronments can be
reduced to position auctions which can be reduced to-unit auctions. The main intuition
that underlies this reduction is provided by the following @ nition.

De nition 6.30. The characteristic weightsw for a matroid are de ned as follows: Set
v, = n i+1, for all i, and consider the surplus maximizing allocation when agerdre
assigned roles in the set system via random permutation arfteh the maximum feasible set
is calculated, e.g., via the greedy algorithm. Let; be the probability of serving agent i.e.,
by de nition, the ith highest-valued agent.

To see why the characteristic weights are important, noticéhat since the greedy algo-
rithm is optimal for matroids, the cardinal values of the agets do not matter, just the sorted
order. Therefore, e.g., when maximizing ironed virtual valk, w; is the probability of serving
the agent with the ith highest ironed virtual value.

Theorem 6.31. The problem of revenue maximization (or approximation) in @troid per-
mutation environments reduces to the problem of revenue niraization (or approximation)
in position environments.

Proof. We show two things. First, we show that for any matroid permuation environment

with characteristic weightsw, the position environment with weightsw has the same optimal
expected revenue. Second, for any such environments anyipos auction can be converted
into an matroid permutation auction auction that achieves he same approximation factor
to the optimal mechanism. These two results imply that any Bgesian, prior-independent,
or prior-free approximation results for position auctionsextend to matroid permutation

environments.

1. Revenue optimal auctions are ironed virtual surplus optiizers. Letw be the charac-
teristic weights for the given matroid environment. By the @ nition of w, the optimal
auctions for both the matroid permutation and position envionments serve the agent
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with the jth highest positive ironed virtual value with probability w;. (In both envi-
ronments agents with negative ironed virtual values are diarded.) Expected revenue
equals expected virtual surplus; therefore, the optimal @ected revenues in the two
environments are the same.

2. Consider the following matroid permutation mechanism whbh is based on the position
auction with weights w. The input is v. First, simulate the position auction and
let | be the assignment wherg; is the position assigned to agent, or j; = ? if i is
not assigned a slot. Reject all agents with j; = ?. Now run the greedy matroid
algorithm in the matroid permutation environment on inputv’= n j; +1 and output
its outcome.

Notice that any agenti is allocated in the matroid permutation setting with probablity

equal to the expected weight of the position it is assigned ithe position auction.
Therefore the two mechanisms have the exact same allocatinre (and therefore, the
exact same expected revenue). O

We are now going to reduce position auctions to single-itemutti-unit auctions. This
reduction implies that the approximation factor of a given malti-unit auction in an i.i.d. dis-
tributions can immediately be extended to matroid permutaibn and position environments.
Furthermore, the mechanism that gives this approximation @n be derived from the multi-
unit auction.

Theorem 6.32. The problem of revenue maximization (or approximation) ingsition auc-
tions reduces to the problem of revenue maximization (or apgimation) in k-unit auctions.

Proof. This proof follows the same high-level argument as the proof Theorem 6.31.
Letd, = w; w;,,; be the dierence between successive weights. Recall thatthout loss
of generalityw; =1 so d gives a probability measure overnj].

1. The expected revenue of an optimal position auction is egjuto the expected revenue
of the convex combination of optimal -unit auctions under measurel. In the optimal
position auction and the optimal auction for the above conwecombination of multi-
unit auctions the agent with the jth highest positive ironed virtual value is served
with probability w;. (In both settings agents with negative ironed virtual vales are
discarded.) Therefore, the expected revenues in the two @mnments are the same.

2. Now consider the following position auction which is badeon a multi-unit auction.
Simulate aj -unit auction on the input v for eachj 2 [m] and Ietx(” be the (thentlaIIy
random) indicator for whether agenti is allocated in simulationj . Let x; = (‘)d
be the expected allocation tqg in the convex combination of multi-unit auctions given
py measqged Reindexx in non-increasing order. Therw majorizesx in the sense that

i wI xI (and with equality for k = m). Therefore we can writex = Sw where
Sisa doubly stochastic matrix. Any doubly spchastlc matrligs a convex combination
of permutation matrices, so we can writ&s = . -P- where . . =1 and eachP- is
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a permutation matrix (Birkho {von Neumann Theorem). Finally, we pick an " with
probability - and assign the agents to positions in the permutation spe@d by P-.
The resulting allocation is exactly the desirex.

Let be the worst case, over number of unitk, approximation factor of the multi-unit
auction in the Bayesian, prior-independent, or prior-freesense. The position auction
constructed is at worst a -approximation in the same sense. O

We conclude that matroid permutation auctions reduce to pagon auctions which reduce
to multi-unit auctions. But multi-unit environments are th e simplest of matroid permutation
environments, i.e., the uniform matroid, where even the fa¢hat the agents are permuted
is irrelevant because uniform matroids are inherently symetric. Therefore, from the per-
spective of optimization and approximation all of these piglems are equivalent.

It is important to note, however, that this reduction may not preserve non-objective as-
pects of the mechanism. For instance, we have discussed tlasmonymous reserve pricing is
a 2-approximation to ironed virtual surplus maximization n multi-unit environments (e.g.,
Corollary 4.12 and Theorem 6.25). The reduction from matrdi permutation and position
environments does not imply that surplus maximization withan anonymous reserve gives
a 2-approximation in these more general environments. This because in the multi-unit
2-approximation via an anonymous reserve, the reserve isltaed to k, the number of units.
Therefore, constructing a position auction or matroid medmism would require simulat-
ing the multi-unit auction with various supply constraints and reserve prices; the resulting
mechanism would not be an anonymous reserve mechanism.

In fact, for i.i.d., irregular, position and matroid permutation environments the surplus
maximization mechanism with anonymous reserve is not geiadly a constant approxima-
tion to the optimal mechanism. The approximation factor viathe anonymous reserve in
these environments is (logn=Iloglogn), i.e., there exists matroid permutation and position
environments, and distribution such that the anonymous resve mechanism has expected
revenue that is a (log n=log logn) multiplicative factor from the optimal mechanism rev-
enue. We leave this result as an exercise with the hint that ehdistribution that gives this
result is a generalization of the Sydney opera house distuition (De nition 4.5). The same
inapproximation result holds with comparison between ther@nymous-reserve and envy-free
benchmarks.

Theorem 6.33. There exists an i.i.d. distribution (resp. valuation pro le), a matroid per-
mutation environment, and position environment such thathe (optimal) anonymous re-
serve mechanism (resp. benchmark) dog n=loglogn)-approximation the Bayesian optimal
mechanism (resp. envy-free benchmark).

Implicit in the above discussion (and reductions) is the aasption that the characteristic
weights for a matroid permutation setting can be calculatedor fundamentally, that the
weights in the position auction are precisely known. Noticiat in our application of position
auctions to advertising on Internet search engines the ptish weights were the likelihood
of a click for an advertisement in each position. These weighcan be estimated but are not
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known exactly. The general reduction from matroid permutabn and position auctions to
multi-unit auctions requires foreknowledge of these weitgh

Recall from the discussion of the multi-unit random samplig auction (Mechanism 6.4)
that, as an ironed virtual surplus maximizer, it does not reqgire foreknowledge of the supply
k of units. Closer inspection of the reductions of Theorem &3reveals that if the given
multi-unit auction is an ironed virtual surplus maximizer then the weights do not need to be
known to calculate the appropriate allocation. Simply maxnize the ironed virtual surplus.

In the de nition of permutation environments, it is assumedthat the agents are unaware
of their roles in the set system, i.e., the agents' incentigeare taken in expectation over the
random permutation. A mechanism that is incentive compatile in this permutation model
may not generally be incentive compatible if agents do knovheir roles. Therefore, matroid
permutation auctions that result from the above reductionsre not generally incentive com-
patible without the permutation. Of course the random samphg auction is a ironed virtual
surplus maximizer and ironed virtual surplus maximizers & dominant strategy incentive
compatible (Theorem 3.25).

Corollary 6.34. For any matroid environment and valuation pro le, the randon sampling
auction is dominant strategy incentive compatible and whehe values are randomly per-
muted, its expected revenue is a-approximation to the envy-free benchmark whereis its

approximation factor for multi-unit environments.

6.5 Downward-closed Permutation Environments

In multi-unit, position, and matroid permutation environments, ironed virtual surplus max-
imization is ordinal, i.e., it depends on the relative ordeof the ironed virtual values and
not their magnitudes. In contrast, the main di culty of down ward-closed environments is
that ironed virtual surplus maximization is not ordinal. Nonetheless, for downward-closed
environments variants of the random sampling (ironed virtal surplus maximization) and the
random sampling prot extraction auctions give constant aproximations to the envy-free
benchmark. We will describe only the latter result.

Our approach to prot extraction in general downward-closd environments will be the
following. The true (and unknown) valuation pro le is v. Suppose we knew a pro les° that
was a coordinate-wise lower bound on, i.e., v Vg for alli (short-hand notation: v v9.
A natural goal with this side-knowledge would be to obtain tke optimal envy-free revenue for
v® A mechanism that obtains this revenue (in expectation ovethe random permutation)
whenever the coordinate-wise lower-bound assumption helts a pro t extractor.

Mechanism 6.5. The downward-closed pro t extractor for v°is the following:
1. Reject all agents if there exists an with v;, < vg).
2. Calculate the ironed virtual values ° for v°

3. For all i, assign theith highest-valued agent thigh highest ironed virtual value 8).
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4. Serve the agents to maximize the ironed virtual surplus.

Theorem 6.35. For any downward-closed environment and valuation pro les and v°
the downward-closed pro t extractor forv® is dominant strategy incentive compatible and if
v v°then its expected revenue under a random permutation is aa$ the envy-free optimal
revenue forv®

Proof. See Exercise 6.5. O

To make use of this pro t extractor we need to calculate &°that satis es the assumption
of the theorem that is non-manipulable. The idea is to use sad random sampling. In
particular, if we partition the agents into a sample with prdability p < 1=2 and market
with probability 1  p, then there is a high probability the valuation pro le for the sample
is a coordinate-wise lower bound on that for the sample. Furermore, conditioned on this
event, the expected optimal envy-free revenue of the sampig@proximates the envy-free
benchmark.

Mechanism 6.6. The biased (random) sampling pro t extraction mechanism fadownward-
closed environments (with parametep < 1=2) is:

1. Randomly partition the agents intdS (with probability p) and M (with probability 1 p).
2. Reject agents inS.
3. Run the downward-closed pro t extractor fovg on M.

The main lemma that enables the proof that this biased samplg pro t extraction mech-
anism performs well is very similar to Lemma 6.4.

Lemma 6.36. For X; =0, X; fori 1 an indicator variable for a indqundent biased coin

ipping to heads with probabilityp < 1=2 (tails otherwise), and sumS, = | | X;,

Prigi; S, (i S)=1 l—ppz

Proof. See Exercise 6.6. O

Theorem 6.37. For any downward-closed environment and any valuation pre, the biased

sampling pro t extraction auction withp  :21is dominant strategy incentive compatible and
its expected revenue under a random permutation is a 18.2gmpximation to the envy-free

benchmark.

Proof. We de ne the eventB that v, Vg and the eventC that the highest-valued agent
(a.k.a., agent 1) is in the market. Lemma 6.36 implies thaE[B j C]=1 p°=(1 p)°. Of
course,Pr[C=1 p.
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The expected revenue of the biased sampling prot extractio mechanism is, by the
de nition of conditional expectation,

E[EFO(vs) j CAB]Pr[C~B] = E[EFO(vs) j C]Pr[C
E[EFO(vs) j C~:B ]Pr[C"~:B]:

We now bound the terms on the right hand side in terms of EFQ( ,), the envy-free optimal
revenue on the valuation pro le without the highest-valuedagent. For the rst term,

E[EFO(vg) j CIPr[C] pEFO(v ,)Pr[C
=p(l pEFO(v y):

To see the inequality: EventC means that agent 1 is inM , the remaining valuation pro le is
v ;. Envy-free revenue is super-additive so the expectation tife envy-free optimal revenue
is super-linear. For the second term,

E[EFO(vs) j CA:B [Pr[C~:B] E[EFO(v )]Pr[:B j C]Pr[q
PE[EFO(V )]

The above inequality follows from the coarse upper bound th&EFO(vs) EFO(v ;) under
event C. Combining the bounds above we get:

E[EFO(vs) ] CABJPr[CAB]  p(l p) &5 EFO(v y):

Optimizing for p and using the inequality that EFO(v ;) EFO@(v)=2 (Exercise 6.7) we
get the desired bound in the theorem. O

Exercises

6.1 Consider the following single-agent prior-free pricing gae. There is a valuev 2 [1; h].
If you o er a price p Vv you getp otherwise you get zero.

(a) Design a randomized pricing strategy to minimize the rab of the value to the
revenue.

(b) Prove that your randomized pricing strategy is optimal. Hint: Use the lower-
bounding technique for digital-goods auctions from class.

(c) Discuss the connection between your above results ancethlaim from class that it
is impossible for a digital-goods auction to approximate # envy-free benchmark
EFO(v) = max; iv .
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6.2 Consider the design of prior-free incentive-compatible roleanisms with revenue that
approximates the (optimal) social-surplus benchmark, i.e OPT(v), when all values
are known to be in a bounded interval [1h]. For downward-closed environments, give
a (log h)-approximation mechanism.

6.3 Consider a generalization of the mechanism composition fnothe construction of the
multi-unit variant of a digital good auction, i.e., where the k + 1st-price auction and
the given digital good auction are composed (Mechanism 6.3)wo dominant strategy
incentive compatible mechanismsA and B can be composed as follows: Simulate
mechanismA; run mechanismB on the winners of mechanismA; and charge the
winners of B the maximum of their critical values forA and B.

(&) Show that the composite mechanism is dominant strategycentive compatible
if the set of winners ofA is non-manipulable in the following sense. There are
no two values for an ageni such that the sets of winners inA are distinct but
contain i.

(b) Show that the set of winners in the surplus maximization rachanism in matroid
environments is hon-manipulable.

6.4 Prove the envy-free variant of Theorem 6.33, i.e., that ther exists a valuation pro-
le and a position environment for which the anonymous resge benchmark is a
(log n=loglogn)-approximation to the envy-free benchmark.

6.5 Show that for any downward-closed environment and valuatiopro les v and v° the
downward-closed pro t extractor for v®is dominant strategy incentive compatible and
if v v°then its expected revenue under random permutation is at leathe envy-free
optimal revenue forv® I.e., prove Theorem 6.35.

6.6 Prove Lemma 6.36: ForX; =0, X; fori 1 an indicator variable for a independent
biase‘g coin ipping to heads with probability p < 1=2 (tails otherwise), and sum

2
Pr[8i; S; (i S)]=1 1—"’p
6.7 Given a valuation pro le v in sorted order, i.e.,v; V, V,,, and any (single-
dimensional) downward-closed permutation environmenthsw that the envy-free op-
timal revenue forv® = (v,;v,;::::v,) and v 5 = (Vo Vs :::V,; 0) are within a factor

of two of each other.

Chapter Notes

The prior-free auctions for digital good environments werest studied by Goldberg et al.
(2001) where the deterministic impossibility theorem andhe random sampling optimal
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price auction were given. The proof that the random samplinguction is a prior-free 15-
approximation is from Feige et al. (2005); the bound was impved to 4.68 by Alaei et al.

(2009). Prot extraction and the random sampling pro t extr action mechanism were given
by Fiat et al. (2002). The extension of this auction to three prtitions can be found in

Hartline and McGrew (2005). The downward-closed pro t extactor is from Ha and Hartline

(2011).

The lower-bound on the approximation factor of prior-free actions for digital goods of
2.42 was given by Goldberg et al. (2004). It is conjectured &l this lower bound is tight for
generaln-agent environment; however, optimal prior-free auctionkave not been identi ed
for n 4. The second-price auction is optimal fon = 2 and its approximation ratio is

= 2. The optimal three-agent auction can be found in Hartlineand McGrew (2005), its
approximation ratiois =13=6 2:17.

This chapter omitted a very useful technique for designingrpr-free mechanisms using a
\consensus mechanism" on statistically robust charactegiics of the input. In this vein the
consensus estimates pro t extraction mechanism from Goldiog and Hartline (2003) obtains
a 3.39-approximation for digital goods. This approach is sb central in obtaining a tractable
asymmetric deterministic auction that gives a good approriation (Aggarwal et al., 2005).
Ha and Hartline (2011) extend the consensus approach to dowerd-closed permutation
environments.

This chapter omitted asymptotic analysis of the random samnijmg auction which is given
Balcan et al. (2008). This analysis allows agents to be distiuished by publicly observable
attributes and agents with distinct attributes may receivedistinct prices.

The formal prior-free design and analysis framework for digl good auctions was given
by Fiat et al. (2002). This framework was re ned for generalyanmetric auction problems
and grounded in the theory of Bayesian optimal auctions by H#ine and Roughgarden
(2008). The connection between prior-free mechanism designd envy-freedom was given
by Hartline and Yan (2011).

Analysis of the random sampling auction for limited supply i(e., k-unit auctions) was
given by Devanur and Hartline (2009). This result implies por-free approximation results
for matroid permutation and position environments. This rsult is enabled by the equiv-
alence between position auctions and convex combinationk leunit auctions (for eachk)
that is described by Dughmi et al. (2009) and an equivalencestwveen matroid permutation
and position environments by Hartline and Yan (2011). Genatizations that give prior-
free auctions for downward-closed permutation environmenare given by Hartline and Yan
(2011).
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Chapter 7

Multi-dimensional Approximation

Throughout the majority of this text we have assumed that theagents' private preferences
are given by a single value for receiving an abstract servjaee., that agents' types are single
dimensional. We now turn to multi-dimensional environmerg where the agents' preferences
are given by a multi-dimensional type. E.g., a home buyer maliave distinct values for
di erent houses on the market; an Internet user may have disict values for various qualities
of service; an advertiser on an Internet search engine maylwa tra ¢ for search phrase
\mortgage" higher than that for \loan", etc.

One of the most important example environments for multi-dnensional mechanism de-
sign is that of combinatorial auctions In combinatorial auctions each agent has a valuation
function that is de ned across all bundles. l.e., if agent receives bundles f 1;:::; mgthen
she has valuev;(S). A combinatorial auction assigns to agent bundle S, and paymentp,.
For such an outcome, agent's utility is given by v(S;) p;, i.e., itis quasi-linear.

For the objective of social surplus, the single-dimensiokagent surplus maximization
mechanism (Mechanism 3.1) generalizes and is optimal. Inisghlgeneralization, agents report
their multi-dimensional preferences, the mechanism chassthe outcome that maximizes
social surplus for the reported preferences, and it chargeach agent the externality imposed
on the remaining agents. The proof of the following theorenollows in a similar fashion to
that of Theorem 3.7 and Corollary 3.8.

Theorem 7.1. For agents with (generally multi-dimensional) quasi-liree preferences, the
surplus maximization mechanism is dominant strategy incéme compatible and maximizes
the social surplus.

Even though the surplus maximization mechanism is optimalf@r social surplus), it is
sometimes infeasible to run. For instance, in many envirorgnts posted-pricing mechanisms
are used in place of auction-like mechanisms. We will showathposted-pricing mechanisms
can approximate the optimal social surplus in some relevamnvironments, though not for
general combinatorial auctions.

For the objective of prot, there are no general descriptiogs of optimal mechanisms for
environments where agents have multi-dimensional preferees. Essentially, mechanisms
for multi-dimensional environments are complex and optirzing over them does not yield
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concise or intuitive descriptions, nor does it yield practial mechanisms. In this section we
will explore approximation for the objective of prot maximization. In particular, we will
show that both surplus maximization with reserve prices angbosted-pricing mechanisms
can approximate the optimal mechanism. Furthermore, the jres in these mechanisms that
perform well can be easily calculated and interpreted.

We will use as a running example in this chapter the environme of matching markets
In a matching market there aren agents andm items (e.g., houses). Each agenthas a
value v; for housej. The agents are unit-demand, i.e., each wants at most one sy and
the houses are unit-supply, i.e., each can be sold to at mosteoagents. Agent values are
drawn independently at random, e.g., withv; ;.

7.1 Item Pricing

We start with the special case of the matching markets wheréné¢re is only one agent, i.e.,
n = 1. In this environment an important optimization problem is to identify revenue-

that generates the highest positive utility, i.e., thej that maximizesv; pj, the revenue of
the seller is maximized.

Unfortunately, there is no concise economic understandiraf optimal pricings and their
revenue. Therefore, in pursuit of goal approximately optial pricings, the rst hurdle is
in nding concise understanding of an upper bound on the remeie of an optimal pricing.
Then, if a pricing approximates this upper bound, it also apmximates the optimal pricing.

The main idea in obtaining an upper bound is from the thought x@eriment where we
imagine that instead of one agent with unit-demand preferees over them items that we
havem (single-dimensional) agents who each want their speci cdtn, but with the constraint
that at most one can be served. In this latter environment theptimal selling mechanism
would be the optimal single-item auction derived in Chaptexr 3. Notice that while, in the
pricing problem, the seller can only post a price on each itenin the auction problem,
competition between agents can drive the price up. There®yr intuition suggests that the
revenue in the (single-dimensional) auction environment ay be an upper bound on the
revenue in the (multi-dimensional) pricing environment. This is indeed the case.

Theorem 7.2. For any product distribution F = F; Fn., the expected revenue of the
optimal single-agentm-item pricing when the agent's values for the items are drawrom

F is at most that of the optimal single-itemm-agent auction when the agents' values for the
item are drawn fromF.

Proof. Any item pricing p can be converted into a single-item auctiorA, such that the
expected revenue from the item pricing is at most that of the wction. For convenience
de ne vy = pp = 0. The auction A, assigns the item to the agenf that maximizesv; .
For any xed values of the other agentsy ;, this allocation rule is monotone in agenj's
value and therefore ex post incentive compatible. It is alsteterministic, so by Corollary 2.18
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there is a critical value ; for agentj which is the in mum of values for which the agent wins
the auction; the agent pays exactly this critical value on wining. Of course ; ;.

Now notice that the allocation rule of the auctionA, is identical to the allocation rule
of the pricing p. For the pricing the agent chooses the item that maximizeg pj; for the
auction the winner is selected to maximize; p,. Furthermore, the revenue for the pricing
is exactly the p; that corresponds to thisj whereas in the auction it is ; which, as discussed,
is at leastp;. Therefore, the auctionA, obtains at least revenue of the pricing.

Therefore, the optimal auction obtains at least the revenuef the optimal pricing. O

With the upper bound from optimal single-item auctions in had, our goal of approxi-
mating the optimal pricing can be re ned to approximating this optimal single-item auction
revenue. In fact, the desired approximation result is an imediate consequence of The-
orem 4.10 for single-item auctions, i.e., that for anyr a sequential posted pricing with
constant ironed virtual prices is a 2-approximation to the ptimal single-item auction rev-
enue. Of course, the revenue of our single-agent;item environment is no worst than that
of a single-item, m-agent sequential posted pricing (because the sequentiabgbed pricing
revenue is, by de nition, from the worst possible ordering fathe agents).

Corollary 7.3. For any independent, unit-demand, single-agent environmi a pricing with
uniform ironed virtual prices is a 2-approximation to the opmal pricing revenue.

For single-agent environments item pricings are equivaleto deterministic mechanisms.
This equivalence follows from a multi-dimensional varianof Corollary 2.18 which is gener-
ally known as thetaxation principle. Therefore, an approximation to the optimal pricing
revenue is equivalently an approximation of the optimal derministic mechanism. (We defer
discussion of approximation of randomized mechanisms tocien 7.3.)

7.2 Reduction: Unit-demand to Single-dimensional Pref-
erences

It should be noted that the construction in the preceding seéon can be viewed as a reduction
from multi-dimensional unit-demand preferences to singidimensional preferences. We can
conclude that from the perspective of approximation, the miti-dimensional unit-demand
preferences are similar enough to single-dimensional gnefnces that a good approach to unit-
demand environments is to simulate the outcome of the corfsnding single-dimensional
environment. We now make that connection and the reductionrpcise. (Crucial to this
connection is the independence of the agents' values.)

Formally, consider the followinggeneral unit-demand environment There aren agents
and m services each agenthas valuey; for servicej. An outcome is an assignment of agents
to services (perhaps with some agents left unassigned). Welenote this assignment by
the indicator x with x; = 1 if i receives servicg and O otherwise. There is an arbitrary
feasibility constraint over such assignments which we deta) as before, with a cost function
c( ) which is zero or in nity for feasibility problems. We assune, without loss of generality,
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the implicit feasibility constraint that each agent can ony receive one service, i.ex such
that x; = x;q =1 for i 6 i°havec(x)= 1 .

A unit-demand environment is thus speci ed by the distributon F indexed by agent-
service pairs and the cost functiore( ) over outcomesx, also indexed by agent-item pairs.
In all of the results described herein, the agents will be irgpendently distributed; in most
of the results the items will also be independently distribied.

7.2.1 Single-dimensional Analogy

As in the pricing environment we can de ne the single-dimemsnal analog to any general
unit-demand environment. In this analog, each unit-demandgent is replaced with a single-
dimensional representative for eached desired service. tide that in the single-dimensional
analog the implicit feasibility constraint that a unit-demand agent can receive at most one
service is translated to the constraint that only one of its @presentatives can be served at
once.

De nition 7.4.  The representative environmentfor the n agent, m service unit-demand
environment given byF and c( ) is the single-dimensional environment given by and c( )
with nm single-dimensional agents indexed by coordinatigs

7.2.2 Upper bound

The restriction that only one representative of each unit-dmand agent can be served at
once induces competition between representatives. Intiiely this competition should result
in an increased revenue in the optimal mechanism for the reggentative environment over
the original unit-demand environment. Were this the whole tery, the optimal revenue in
the representative environment would be an upper bound on ¢hoptimal revenue in the
original environment. In fact it is almost the whole story. The optimal mechanism for
the representative environment (which is deterministic)d an upper bound on the optimal
deterministic mechanism for the original (unit-demand) evironment.

Detailed discussion of randomized mechanisms for multirdensional environments are
deferred to Section 7.3, where we will see that, while a rantized mechanism for the
unit-demand environment can obtain more revenue than the ¢éimal mechanism for the
representative environment, it is only by a constant factomore, e.g., a factor of two for
single-agent environments. Therefore, a constant timesahievenue of the optimal mechanism
for the representative environment is an upper bound on theptimal (randomized) unit-
demand mechanism. Such a bound is su cient for obtaining ca@tant approximations via
the reduction described here.

Theorem 7.5. For any independent, unit-demand environment, the optimaleterministic
mechanism's revenue is at most that of the optimal mechanidior the single-dimensional
representative environment.

Proof. The proof of this theorem is similar to that of Theorem 7.2. SeExercise 7.2. [
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Item1l Item 2 Item 1 Iltem 2

Agentl v;;=4 v,=5 Agentl p; ;=2 pp=4
Agent2 v, =10 v,,=8 Agent2 (p;1=5) ppr=14
(a) agent values (b) agent speci ¢ item prices

Figure 7.1. The tables above depict agent values and postedges in a two-agent two-item

matching environment. When agent 1 arrives before agent Zheén agent 1 buys 1, agent 2
buys 2, and the revenue is 6 (purchace prices depicted in bfalde). If the agents arrive in

the opposite order a higher revenue is obtained.

7.2.3 Reduction

The goal of this section it to reduce the problem of designirgmechanism that approximates
the optimal unit-demand mechanism to a single-dimensionalgent approximation problem.
Following the techniques developed in Chapter 4 it may thenépossible to instantiate the
reduction by solving the single-dimensional-agent approration problem.

For the unit-demand single-agent item-pricing example of éstion 7.1, Corollary 7.3,
which states that item pricing can approximate the Bayesiamptimal auction in the single-
agent unit-demand environment, follows from Theorem 4.1Qyhich states that sequential
posted pricings, i.e., where the agents arrive in any ordeapproximate the optimal multi-
agent single-item auction. To see why this is, compare theetbreaking rules in these two
environments. In the unit-demand pricing problem the item g allocated that maximizes
v; . Inthe sequential posted pricing problem ties are broken iworst-case order, i.e.,
to maximize p;. Clearly, the expected revenue from multi-dimensional pring is no worse
than that of the single-dimensional pricing.

Extend the de nition of sequential posted pricings to unitdemand environments with
multiple agents (i.e., to generalize item prices). A sequeal posted pricing is given by
pricesp with p; the price o ered to agenti for servicej. After the valuations are realized,
the agents arrive in sequence and take their utility maximing service that is still feasible,
given the actions of preceding agents in the sequence. Theewue of such a process clearly
depends on the sequence and we pessimisticly assume the tacase. See Figure 7.1 for an

example.

De nition 7.6. A sequential posted pricings an pricing of services (specialized) for each
agent with the semantics that agents arrive in any order andKe their favorite service that
remains feasible. The revenue of such a pricing is given by tWorst-case ordering.

Consider the sequential posted pricing problem in both theriginal unit-demand envi-
ronment and the representative single-dimensional envinment. Suppose you had the choice
of being the seller in one of these two environments, givenetsame distribution and costs,
which environment would you choose? I.e., which environmiegives a higher expected rev-
enue? Whereas when considering auction problems, you wouydcefer the representative
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environment because of the increased competition, for semtial posted pricings there is
no benet from competition. In fact, the seller in the repreentative environment is at a

disadvantage because the agents are in a worst case order amete are more possible or-
derings of the agents in thenm-agent representative environment than ther-agent original

environment.

Theorem 7.7. The expected revenue of a sequential posted pricing for utdimand envi-
ronments is at least the expected revenue of the same pricingthe representative single-
dimensional environment.

Proof. Compare sequential posted pricings for unit-demand envinments (i.e., with n unit-
demand agents) with sequential posted pricings for their peesentative environments (i.e.,
with nm single-dimensional agents). The di erence between thesed environments with
respect to sequential posted pricings is that in the repres&tive environment the nm agents
can arrive in any order whereas in the original environmentie an agent arrives and considers
the prices on services ordered by utility. Thus, the set of ders in which the nm prices
are considered in the representative environment contairtee set of orders in the original
environment. For worst-case sequences, then, the reprasg¢ine environment is worse. [

Combining this lower bound with the upper bound from Theoren¥.5 we have our re-
duction: approximation of the optimal mechanism by multi-dmensional sequential posted
pricing reduces to that of single-dimensional sequentialopted pricing.

Corollary 7.8. If a sequential posted pricing is approximately optimal irhe representative
(single-dimensional) environment it is approximately ojtal in the original (unit-demand)
environment.

7.2.4 Instantiation

It remains to instantiate the reduction from sequential poted pricing approximation in unit-
demand environments to single-dimensional environmentse., we need to show that there
are good sequential posted pricing mechanisms for singiednsional environments. Here
we will give such an instantiation for independent, regularmatching markets, i.e., where
the services are items, and each item has only one unit of siyp

The representative environment for matching markets is on&here there arenm agents
and agentij with value v; Fj desires itemj. For any original agenti and all j at
most one representativaj can win. For any itemj and all i at most one representativej
can win. The virtual surplus maximization mechanism, denetd VSM, is optimal for this
single-dimensional environment.

Let g>" be the probability that VSM serves representativej . Let p/>" = F; Y(1 ¢>")
be the corresponding price at which, if posted to represenize ij , would be accepted with
probability /*. Now consider the pricingp; = F; *(1 q;) for g, = ¢/°V=2. These
probabilities and prices can be calculated, for instanceylsimulating the optimal mechanism.
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De nition 7.9.  For representative matching market environments, theimulation prices
p, satisfy g = F; a %Pr [the optimal mechanism serves ]) for all i and .

We claim that sequential posted pricing with the simulatiorprices give an 8-approximation
to the optimal mechanism's revenue. The theorem is proven two steps, the rst gives an
upper bound on the revenue of the optimal mechanism in termd the above prices and
probability, the second gives a lower bound on the sequernitiaricing revenue in terms of the
same. As will be evident from the proof, this bound is not tigh improving the bound is left
for Exercise 7.3.

Theorem 7.10. For regular distributions in the representative matching erket environ-
ment, the sequential posted pricing with the simulation mesp is an 8-approximation to the
revenue of the optimal mechanism.

Lemma 7.11. For regular distributions in the representative maghing arket environment,

the expected revenue of the optimal mechanisk'SM, is at most ; p;>" g/>".

Proof. The proof of this lemma follows from a standard approach. Casider an \uncon-
\VSM

strained" mechanism that allocates to each representativg with probability at most g;
but is not constrained by the original feasibility constraits, i.e., that only one representative
ij of each agent is served and that each itenj is only allocated to at most one represen-
tative ij . In such an unconstrained environment the representativedo not interact at all.

Furthermore, by regularity and the fact that the original pi\j’SM are at least the monopoly

price, the optimal unconstra,_iped mechanism simply posts joe pi\j’s'\" to each representative

ij . Its expected revenue is  p/>"¢/*™. Finally, VSM, the optimal mechanism for the
constrained environment, is a valid solution to the unconsiined environment, therefore the

optimal unconstrained mechanism revenue gives an upper balion its revenue. O

Lemma 7.12. For regular distributions in the representative matching @arket environment,
thlg expected revenue from the sequential posted pricing loé¢ simulation prices is at least
1

1 pi\j/SM 0‘\J_/SM.
Proof. If the sequential posted pricing is able to make an o er to age ij then its expected
revenue isg;p;  q>Vp/>"=2. This inequality follows because they = ¢*™=2 and

Pi pi\j’s'\" (since prices only increase with a lower selling probabift. We now show that
the probability that the sequential posted pricing is able ® make the o er to representativeij
is at least 4. As a consequence the expected revenue from representsiivis g >V py>™ =8;
and summing over all representativeg gives the lemma.

To show that the probability that it is feasible to o er service to representativeij is
at least 1=4, consider the worst-case ordering for this probability,.e., the ordering where
representativeij is last. Representativeij can be served if for alj °6 j representativesj 4
are not served, and for ali®6 i representativesi are not served. The rst event certainly
happens ifvis < pjq foralli°6 i and the second if/; o < p; o for all j°6 j. We now show that
each of these events happens with probability at least2; since the events are independent
the probability that both occur is at least 1=4.
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Consider the event that allv,q <p;q for all i°6 i (the probability of the other event can
be analized with the same approach). With respect to this exethe possibility that vis  py

is a bad event that happens with probabilityqs . Th%probability of any Bf these bad events

occuring can be bounded using the union bound by ,0qq. Of course, ioq\’JjS'\" 1 since

the optimal mechanism allocates to gne of thes8 representatives with probability at most
one (by the feasibility constraint) so oqq  1=2. Therefore, probability that none of the
bad events happen is at least=2. O

This instantiation of the reduction above covers matching @mrkets with regular distribu-
tions. Similar instantiations can be applied to generalizeons that include irregular distribu-
tions and environments with feasibility constraints indued by matroids. Sequential posted
pricings do not give good approximations in general downwaiclosed environments.

7.3 Lottery Pricing and Randomized Mechanisms

Thus far in this chapter we have showed that there are pricingnechanisms that approxi-
mate the optimal deterministic mechanism in multi-dimenginal unit-demand environments.
These results are a little unsatisfying because we would tigdike a mechanism that approx-
imates the optimal, potentially randomized, mechanism. Ean in the simple single-agent
environments described previously in this chapter, the ophal mechanism may not be a
deterministic pricing of items. Instead, it might price rardomized outcomes, a.k.a., lotteries.

This distinction raises a sharp contrast with (Bayesian) sigle-dimensional environments
where there is always an optimal mechanism that is determstic. For instance, with a
lexicographical tie-breaking rule, the ironed virtual syslus maximization mechanism has a
deterministic allocation rule.

Consider the single-agent unit-demand problem of desiggira mechanism to maximize
the revenue of the seller. Deterministic mechanisms are éeplent to item pricings whereas
randomized mechanisms are equivalent tottery pricings. A lottery is a probability distri-
bution over outcomes. For instance, for then = 2 item case, a lottery could assign either
item 1 or item 2 with probability 1/2 each. Lotteries do not have to be uniform, i.e., they
can be biased in favor of some items, and they do not have to bantplete, i.e., there may be
some probability of assigning no item. A lottery pricing is hen a set of lotteries and prices
for each. For such a lottery pricing, the agent then choosekbe lottery and price that give
her highest utility for her given valuations for the items.

The following example shows that lottery pricings can give igher revenue than item
pricings. There are two items (and one agent). The agent's kee for each item is distributed
independently and uniformly from the interval [56]. The optimal item pricing for this
environment to set a uniform price of 997 for each item. l.e., the agent is o ered the
option to buy item 1 at price 5.097 or to buy item 2 at price 5.08. The agent then buys
the item that she values most as long as her value for that itens at most 5097. Such
an allocation rule is depicted in Figure 7.2(a) withp = 5:097. Now consider adding the
additional option of buying at price 5057 a lottery that realizes to item 1 or item 2 each
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(a) Item pricing. (b) Lottery pricing.

Figure 7.2: Depicted are the allocation regions for item ping (p;p) and lottery pricing
f((0;1); p); ((1;0); p); (3; 2); P)g. The pricing and lotteries divide the valuation space into
regions based on the preferred outcome of the agent. The diagl line that gives the lower
left bound%ry of the region where the lottery is preferred ishe solution to the equation
Vit Vo, = p.

with probability 1 =2. Now if the agent is nearly indi erent between the two itemghen she
will buy the lottery and pay the lower price. Without the lott ery option if the agent had
average value bigger than 5.057 but no individual value ovér.097, the agent would buy
nothing. Therefore, by adding this lottery option revenues lost for some valuations of the
agent and gained for others. One can calculate these lossad gains to conclude that the
lottery pricing increases the expected revenue. Figure T} with p° = 5:057 depicts the
allocation rule that additionally o ers the lottery option .

We would like to have a theory for approximating the optimal possibly randomized)
mechanism in multi-dimensional environments. Again, a caial step in this endeavor is in
identifying an analytically tractable upper bound on the opimal mechanism. Recall for the
single-agent environment that the single-dimensional repsentative environment gave such
an upper bound on optimal deterministic mechanisms (Theome 7.2). The intuition for this
bound was that the increased competition over the represeiive environment allowed the
optimal mechanism for it to obtain more revenue than that of he original unit-demand en-
vironment. This intuition turns out to not be entirely correct when randomized mechanisms
are allowed. In particular, there are examples where the dptal lottery pricing obtains more
revenue than the optimal single-item auction for the represtative environment.

To get some intuition for the failure of single-item auctios to provide an upper bound for
lottery pricings consider them = 2 item environment and the fair lottery which assigns item
1 or 2 each with probability 1/2. What is the value that the aget has for this lottery? It
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is the average of the agent's values. Averages of independeandom variables concentrate
around their expectations, therefore, the agent's value ffdahis lottery has less randomness
(in particular, a lower standard deviation) than her value oér either of the individual items.
A lottery pricing mechanism can take advantage of this sortfaconcentration. (In fact, later
in this chapter we will apply this same intuition to environments with additive valuations,
i.e., the value for a bundle of items is the sum of independéytdistributed values for each
item in the bundle.)

We now show that the advantage that a lottery pricing has ovea single-item auction in
the representative environment is at most a factor of two.

Theorem 7.13. For any product distribution F = F; F.., the expected revenue of the
optimal single-agent, lottery pricing when the agent's was for the items are drawn fronfF

is at most twice that of the optimal single-itemm-agent auction with the agents' values for
the item drawn fromF.

Proof. Our goal is to take a lottery pricing L and construct an auctionM | for the repre-
sentative environment such that the sum of its revenue withhte revenue of the second-price
auction is at least the revenue of the original lottery priaig. Both the constructed auc-
tion M | and the second-price auction revenues can be bounded fronoed by the optimal
auction revenue; therefore, twice the optimal auction revele is at least the revenue of the
lottery pricing.

We constructM | as follows. Consider a valuation pro lev for WhiCB the multi-dimensional
agent selects lotteryl = ((a;:::;0y); p)- This agent receives utility ; viq p. As usual
we denote by [) the index of the jth highest value, i.e., v, i1 V. For such a
valuation proIJ,e M | serves representative (1) with probabilityq;, and charges this repre-
sentative p s GVj (@lways). This representative's utility is therefore peréctly aligned
with our original multi-dimensional agent. Since the origial agent preferred this lottery
over all others, so does the representative; i.V | is incentive canpatible.

By de nition revenue of M | in the above environment isp sy 9V Consider the
second part of this formula. This is the rebate we need to giwvepresentative (1) in order
to incentivize the representative to prefer this lottery oer all others. By de nition the total
p,robability to which the original agent is served by this lotery is at most one. Therefore,

is1) 4V Vo, the second highest value. The revenue &  is at leastp v(;. Recall
that the revenue of the second-price auction is exactly, . Taking expectations over all
valuation pro les, the expected revenue oM | is at least that of the original lottery pricing
less that of the second price auction. Rearranging gives thesired inequality. O

A similar theorem can be proven in environments with multipt agents such as that
of matching markets. The proof uses matroid properties anché basic intuition from the
single-agent case, above. We omit the full proof from this xé

Theorem 7.14. For independent, matching market environments, the optirh@andomized)
mechanism's revenue is at most ve times that of the optimal eohanism for the single-
dimensional representative environment.
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7.4 Beyond Independent Unit-demand Environments

Up to this point the chapter has focused on independent undemand environments, i.e.,
ones where there is some set of services available, each adesires at most one service,
and the agent's value for each service are independent randeariables. Unfortunately, not
much is known about general distributions of preferencesn particular, environments where
an agent desires more than one service or environments whareagent's value for distinct
services are correlated. There are two notable exceptioms)e from each of these classes.

The rst exception is for \common base value" distributions i.e., ones where the agents
value for a servicg isvo+v; andforO j m, v, are independent. The valuey, is referred
to as the base value because it o sets the values for each seev To this environment
most of the preceding theorems can be extended, albeit withovge approximation factors.
Unfortunately, the proofs of these extensions are brute+ie and do not yield much additional
understanding of the structure of good mechanisms in the conon base value model.

The second exception is for additive preferences, i.e., wlé¢he agent's value for a bundle
of services is the sum of the agent's value for each servicegadn the agent's value for each
individual service is independently distributed. In this @vironment, again for simple reasons,
the optimal mechanism can be approximated. Sums of indepesmdt random variables tend
to concentrate around their expectation. Therefore, it is pssible to o er an agent a posted
price for the grand bundle of items that is close to but belowhie this expectation and nearly
the full surplus can be extracted.

Beyond these two cases, not much is known about approximatebptimal mechanisms
for general preferences. A major challenge in this researatea is in identifying reasonable,
analytically tractable upper bounds on the optimal multi-dmensional mechanism.

7.5 Optimal Lottery-pricing via Linear Programming

While there is little economic understanding of optimal mdwanisms when agents' prefer-
ences are multi-dimensional that does not necessarily metrat the optimization problem
is intractable. For the distributions on preference discised heretofore, e.g., when the value
that an agent has for various items is distributed indepenatly, then an exponentially large
type space can be described succinctly. In particular, eagingle-dimensional distribution
need only be described. For such a distribution, a mechanistinat was brute-force, i.e., its
calculation explicitly considers every type in the type spae, would be intractable.

On the other hand, if the type space is small enough that the sliribution can be given
explicitly, i.e., each type is given with its associated pimability, then mechanisms that are
brute-force in the type space may be reasonable. For time-item, single-agent environment,
for instance, the optimal lottery pricing in such a situation can be easily calculated.

denote byv the N m matrix of values; letv; be the agent's value for itemj when her
type ist; and let , be the probability her type ist. We can write the optimization problem
now as a linear program. The linear program will associate thieach typet a lottery given
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by a price p, and the probabilities for receiving each of then items (X;4;: :'P;xtm). Notice
that the agent's utility with type t for the lottery predesignated for typet®is Vg X P
The linear program will maximize expected payments (weightd by the distribution) subject
to incentive constraints, individual rationality constraints, and probabilities summing to at
most one (feasibility).

Maximize:
X
. th (expected revenue)
Subject to:
8t;t « ViXg o P NViXe o Pe (incentive compatibility)
8t ViXg o P 0 (individual rationality)
8t X 1 (feasibility)

It is easy to see that when the type space and distribution argiven explicitly that this
program can be easily solved for the optimal set of lotterids o er.

Lottery pricings correspond to fractional solutions of thdinear program above; when the
variablesx; are integer these are simply (determinstic) item pricingsCalculating optimal
item pricings in correlated environments, i.e., solving tls mixed-integer program where
X; S are constrained to be integral, is extremely challengingfor this problem, obtaining
any approximation factor that is asymptotically better than linear in the number of items
is computationally intractable under reasonable assummns. Of course, a linear factor
approximation is trivial. Formally:

Theorem 7.15. Under complexity-theoretic assumptions, the problem of mputing prices
that o(m)-approximate the revenue of the optimal item pricing is corafationally intractable.

The computational intractability of a problem, and this perspective is discussed more in
Chapter 8, suggests that there is inherent inability to makemportant structural observa-
tions.

Exercises

7.1 Consider the design of prior-free incentive-compatible roeanisms with revenue that
approximates the (optimal) social-surplus benchmark, i.eOPT(v), when all values are
known to be in a bounded interval [1h]. For general (multi-dimensional) combinatorial
auctions, i.e., there arem items and each agent has a valuev;(S% 2 [1;h] for each
subsetS® S = f1;:::;mg of the m items, give a prior-free (log h)-approximation
mechanism.
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7.2 Prove Theorem 7.5: For any independent, unit-demand envinmnent, the optimal de-
terministic mechanism's revenue is at most that of the optiml mechanism for the
single-dimensional representative environment.

7.3 Recall that Theorem 7.10 shows that for the representative abching market envi-
ronment, a sequential posted pricing gives an 8-approximan to the optimal (single-
dimensional) mechanism. This bound can be improved.

(a) Give an improved bound.

(b) Assume that the agents are identically distributed (butnot necessarily the items)
and give an improved bound.

(c) Assume that both the agents and the items are identicallgistributed and given
an improved bound.

7.4 Consider the design of prior-independent mechanisms for (iti-dimensional) unit-
demand agents. Suppose there areagents andm = n houses and agent's value for
housej is drawn independently from a regular distributionF; . (l.e., the agents are i.i.d.,
but the houses are distinct.) Give a prior-independent meemism that approximates
the Bayesian optimal mechanism. What is your mechanism's pximation factor?

Chapter Notes

There is a long history of study of multi-dimensional pricig and mechanism design in eco-
nomics. Wilson's textNonlinear Pricing is a good reference for this area (Wilson, 1997).

Algorithmic questions related to item-pricing for unit-denand agents were initiated by Aggarwal et al.
(2004) and Guruswami et al. (2005) in an environment where ¢éhagent's values are corre-
lated. The hardness ofo(m)-approximation for such anm-item environment, i.e., Theo-
rem 7.15, is due to Briest (2008). On the other hand Briest etl.a2010) show that optimal
lottery pricings can be calculated via a linear program thats polynomially big in the support
of the (correlated) distribution of the agent's valuations

Approximation for item-pricings when the agent's values a& independent were rst stud-
ied by Chawla et al. (2007) where a 3-approximation was given The 2-approximation
via prophet inequalities that is presented in this chapters due to Chawla et al. (2010a).
Cai and Daskalakis (2011) show that it is computationally tactable to construct a pricing
that approximates the revenue of the optimal pricing to witlin any multiplicative factor.
The example presented herein that shows that a lottery pring can give more revenue than
the optimal item pricing was given by Thanassoulis (2004). ditery pricings and the the-
orem that shows that the optimal lottery pricing is at most a fctor of two more than the
optimal mechanism's revenue in the single-dimensional mggentative environment is due to
Chawla et al. (2010Db).

The study of sequential posted pricing mechanisms in multimensional environments
that is discussed in this chapter is given by Chawla et al. (A@a); these sequential posted
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pricings are constant approximations to the optimal determmistic mechanisms. Alaei (2011)
gives a re ned analysis and approach. Extensions of thesesu#is to bound the revenue of
the sequential posted pricing in terms of the optimal (randmized) mechanism's revenue are
from Chawla et al. (2010b). Neither the bound of two (for sinig-agent lottery pricing) or
ve (for matching markets) is known to be tight.

Extensions from product distributions to the common base Vae environment are given
in Chawla et al. (2010b). Briest et al. (2010) study generalmngironments with correlated
values and show that when more tham = 4 services are available then the ratio between
the optimal lottery pricing (i.e., randomized mechanism) ad the optimal item pricing (i.e.,
deterministic mechanism) is unbounded. This contrasts stily with environment with in-
dependent values where Theorem 7.13 shows that the ratio is most two. Finally, the
independent additive values case, where pricing the granditdle gives an asymptotically
optimal revenue, was studied by Armstrong (1996).
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Chapter 8

Computational Tractability

In many relevant environments optimal mechanisms are comfationally intractable. A
mechanism that is computationally intractable, i.e., wheg no computer could calculate the
outcome of the mechanism in a reasonable amount of time, seeto violates even the loosest
interpretation of our general desideratum of simplicity.

We will try to address this computational intractability by considering approximation. In
particular we will look for an approximation mechanism, on¢hat is guaranteed to achieve a
performance that is close to the optimal, intractable, mea@mism's performance. A rstissue
that arises in this approach is that approximation algoritims are not generally compatible
with mechanism design. The one approach we have discussedsttiar, following from gen-
eralization of the second-price auction, fails to generilta convert approximation algorithms
into dominant-strategy incentive-compatible approximaion mechanisms.

Dominant-strategy incentive-compatible and prior-free rachanisms may be too demand-
ing for this setting. In fact, without making an assumptionson the environment the ap-
proximation factor of worst case algorithms can be provablyoo far from optimal to be
practically relevant. We therefore turn to Bayesian mechaesm design and approximation.
Here we give a reduction from BIC mechanism design to algdrih design. This reduction is
a simple procedure that converts any algorithm into a Bayesh incentive-compatible mecha-
nism without compromising its expected social surplus. Ifie algorithm is is tractable then
the resulting mechanism is too. We conclude that under the Bl implementation concept
incentive constraints and tractability constraints can becompletely disentangled and any
good algorithm or heuristic can be converted into a mechamis

8.1 Tractability

Our philosophy for mechanism design is that a mechanism thas not computationally
tractable is not a valid solution to a mechanism design probim. To make this criterion
formal we review the most fundamental concepts from computanal complexity. Readers
are encouraged to explore these topics in greater detail gide this text.

De nition 8.1. P is the class of problems that can ®olved in polynomial time (in the
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\size of the input").

Recall, from Chapter 4 the greedy algorithm for optimizingndependent sets in a matroid.
This algorithm sorts the agents by value, and then greedilyn this order, tries to add the
agents to an independent set. Sorting take®(n logn) and checking independence is usually
fairly easy. Therefore, this algorithm runs in polynomial ime.

De nition 8.2. NP s the class of problem that can beeri ed in polynomial time.

NP stands for non-deterministic polynomial timein that problems in this class can be
solved by \guessing” the solution and then verifying that inleed the solution is correct. Of
course, non-deterministic computers that can guess the cect solution do not exist. A real
computer could of course simulate this process by iteratingver all possible solutions and
checking to see if the solution is valid. Unfortunately, nobdy whether there is an algorithm
that improves signi cantly on exhaustive search. Exhaustie search, for most problems,
requires exponential runtime and is therefore consideredttiactable.

Consider the problem of verifying whether a given solutionotthe single-minded combi-
natorial auction problem has surplus at leastv. If we were given an outcome that for
which Surplusf/;x) V it would be quite simple to verify. First, we would verify wheher
it is feasible by checking ali and i°with x; = Xjo =1 (i.e., all pairs of served agents) that
§i \ So=; (i.e., their bundles do not overlap). Second, we would callete the total welfare

i\gxi to ensure that it is at leastV. The total runtime of such a veri cation procedure is
Oo(n“).

While the eld of computer science has failed to determine véther or not NP problems
can be solved in polynomial time or not, it has managed to conte terms with this failure.
The following approach allows one to leverage this collee#i failure to argue that a given
problem X is unlikely to be polynomial-time solvable by a computer.

De nition 8.3. A problemY reduces(in polynomial time) to a problemX if we can solve
any instancey of Y with a polynomial number (in the size of) of basic computational steps
and queries to a blackbox that solves instancesxof

De nition 8.4. A problem X is NP -hard if all problemsY 2 NP reduce to it.
De nition 8.5. A problem X is NP -completeif X 2 NP and X is NP -hard.

The point of these de nitions is this. Many computer sciensts have spent many years
trying to solve N P -complete problems and failed. When one shows a new problnms NP -
hard, one is showing that if this problem can be solved, thew€an alIN P problems, even the
infamously di cult ones. While showing that a problem cannad be solved in polynomial time
is quite di cult, showing that itis NP -hard is usually quite easy (if it is true). Therefore it
is quite possible to show, for some new problex, that under the assumption thatN P -hard
problems cannot be solved in polynomial time (i.,eNP & P), that X cannot be solved in
polynomial time.

We will make the standard assumption thatNP & P which implies that NP -hard
problems are computationally intractable.
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8.2 Single-minded Combinatorial Auctions

Consider the example environment of single-minded combiioaial auctions. This environ-
ment is important as it is a special case of more general awani settings such as the FCC
spectrum auctions (for selling radio-frequency broadcasights to to cellular phone com-
panies) and sponsored search auctions (for selling adveeinents to be show along side on
search-results page of Internet search engines). In singiéinded combinatorial auctions each
agenti has a valuev, for receiving a bundleS; of m distinct items. Of course each item can
be allocated to at most one agent so the intersection of the sleed bundles of all pairs of
served agents must not intersect.

The optimization problem of single-minded combinatorial actions, also known asveighted
set packingis intractable. We state but do not prove this result here.

Theorem 8.6. The single-minded combinatorial auction problem isl P -complete.

8.2.1 Approximation Algorithms

When optimally solving a problem isNP -hard the standard approach from the eld of
algorithms is to obtain a polynomial time approximation alg@rithm, i.e., an algorithm that
guarantees in worst-case to output a solution that is withina prespeci ed factor of the
optimal solution.

As a rst step at nding an approximation algorithm it is ofte n helpful to look at simple-
minded approaches that fail to give good approximations. Tesimplest algorithmic design
paradigm is that of static greedy algorithms Static greedy algorithms for general feasibility
settings follow the following basic framework.

Algorithm 8.1. A static greedy algorithmis
1. Sort the agents by some prespeci ed criterion.
2. X 0 (the null assignment).

3. For each agent (in this sorted order),
if (x ;;1)is feasible,x; 1.
(l.e., servei if i can be served along side previously served agents.)

4. Output X.

The rst failed approach to consider isgreedy by valugi.e., the prespecied sorting
criterion in the static greedy template above is by agent vaksv;. This algorithm is bad
because it is an (m)-approximation on the followingn = m + 1 agent input. Agents i, for
O i m,haveS = figandyv, = 1; agent m+1 hasv,,; =1+ and demands the

B =1+ . Greedy-by-value orders agentn + 1 rst, this agent is feasible and therefore
served. All remaining agents are infeasible after agemh + 1 is served. Therefore, the
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(@) m small agents. (b) 1 small agent.

Figure 8.1: Challenge cases for greedy orderings as a fumctof value and bundle size.

algorithm serves only this one agent and has surplus 1 + Of course OPT serves then
small agents for a total surplus ofm. The approximation factor of greedy-by-value is the
ratio of these two performances, i.e., ().

Obviously what went wrong in greedy-by-value is that we gavereference to an agent
with large demand who then blocked a large number of mutualgompatible small-demand
agents. We can compensate for this by instead sorting by vaper-item, i.e.,v;5S;j. Greedy
by value-per-itemalso fails on the followingn = 2 agent input. Agents 1 hasS; = f1g and
v; = 1+ and agent 2 hasv, = m demands the grand bundleS, = f1;:::;mg. See
Figure 8.1(b) with A =1+ andB = m. Greedy-by-value-per-item orders agent 1 rst, this
agent is feasible and therefore served. Agent 2 is infeasilalfter agent 1 is served. Therefore,
the algorithm serves only agent 1 and has surplus 1 + Of course OPT serves agent 2 and
has surplus ofm. The approximation factor of greedy-by-value-per-item ishe ratio of these
two performances, i.e., (m).

The aw with this second algorithm is that it makes the oppodsie mistake of the rst
algorithm; it undervalues large-demand agents. While we gectly realized that we need to
trade o value for size, we have only considered extremal exgles of this trade-o. To get
a better idea for this trade-o0 , consider the cases of a sirgllarge-demand agent and either
m small-demand agents or 1 small-demand agent. We will leavieet values of the two kinds
of agents as variable®\ for the small-demand agent(s) and for the large-demand agent.
Assume, as in our previous examples, thahA > B > A . These settings are depicted in
Figure 8.1.

Notice that any greedy algorithm that orders by some functio of value and size will
either prefer A-valued or B-valued agents in both cases. Thé-preferred algorithm has
surplus Am in the m-small-agent case and surplug in the 1-small-agent case. TheB-
preferred algorithm has surplusB in both cases. OPT, on the other hand, has surplusmA
in the m-small-agent case and surpluB in the 1-small-agent case. Therefore, the worst-case
ratio for A-preferred isB=A (achieved in the 1-small-agent case), and the worst-casdioa
for B-preferred ismA=B (achieved in the m-small-agent case). These performances and
worst-case ratios are summarized in Table 8.1.

If we are to use the static greedy algorithm design paradigmeaneed to minimize the
worst-case ratio. The approach suggested by the analysistbé above cases would be trade
0 A versusB to equalize the worst-case ratios, i.e., wheB=A = mA=B. Herem was a
stand-in for the size of the large-demand agent. Thereforthe greedy algorithm that this
suggests is to order the agents by.= jSj. This algorithm was rst proposed for use in
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\ m small agents 1 small agent worst-case ratio

OPT mA B (n.a.)
A-preferred mA A B=A
B -preferred B B mA=B

Table 8.1: Performances of\- and B -preferred greedy algorithms and their ratios to OPT.

single-minded combinatorial auctions by Daniel Lehmann, iadan O'Callaghan, and Yoav
Shoham and is often referred to as the LOS algorithm.

Algorithm 8.2.  Sort the gents by value-per-square-root-size, i.e\=/,-,=p jSij, and serve them
greedily while supplies last.

Theorem 8.7. The greedy by value-per-square-root-size algorithm ispa?-approximation
algorithm (wherem is the number of items).

Proof. Let APX represent the greedy by value-per-square-root-galgorithm and its surplus;
let REF represent the optimal algorithm and its surplus. Letl be the set selected by APX
and | Dbe the set selected by REF. We will proceed with aharging argumento show that
if i 2 1 blocks some set of agents; | then the total value of the blocked agents is not
too large relative to the value of agent. p

Consider the agents sorted (as in APX) by;= jS;j. Foranagenti 2 | notto be served
by APX, it must be that at the time it is considered by LOS, anoter agenti has already
been selected thablocksi , i.e., the demand setsS; and S; have non-empty intersection.
Intuitively we will charge i with the loss from not accepting thisi . We de ne F; as the set
ofalli 21 thatare charged toi as described above. Of special note,iif 2 I, i.e., it was
not yet blocked when considered by APX, we charge it to itself.e., F, = fi g. Notice that
the setsF; partition the agents| of REF.

The theorem follows from the inequalities below. Explanadhs of each non-trivial step
are given afterwards.

X X X
REF = vV, = v, (8.1)
% X g
pﬁ iSi | (8.2)
i21 " Fi
X
p? m=jF;j (8.3)
i21 Y 2F,
p T
= P miFj (8.4)
. I 1
vipﬁz pﬁ APX : (8.5)
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Line (8.1) follows becausé; partition | . Line (8.2) follows becausé 2 F; implies that
i precedes in the greedy ordering and therefore;, v, jS j= jS;j. Line (8.3) follows
because the demand setS, of i 2 F; are disjoint (beq:ause they are a subset &f which
is feasible and therefore disjoint). Thus we can bound , 2F, iSij m. The square-root
function is concave and the sum of ) conc%veﬂncti@ is maﬁ'zed Wheanach term is equal,
i.e., whenS, = m=jF;j. Therefore, 2F, 1S ] | 2F, m=jF;j = mjF;j. This last
equality gives line (8.4). Finally, line (8.5) follows beaasejF;j j S;j which holds because
eachi 2 F; is disjoint but blocked by i because each contains some demanded itemSn
Thus, S; contains at leastjF;j distinct items. O

The as witnessed by the theorem above, thB greedy by valueHsguare-root-size algo-
rithm gives a non-trivial approximation factor. A~ m-approximation, though, hardly seems
appealing. Unfortunately, it is unlikely that there is a polynomial time algorithm with better
worst-case approximation factor, but we do not provide prddn this text.

Theorem 8.8. Under standard complexity-theoretic assumption'sno polynomial time algo-
rithm gives ano(" m)-approximation to weighted set packing.

8.2.2 Approximation Mechanisms

Now that we have approximated the single-minded combinat@l auction problem without
inBentive constraints, we need add these constraints baak and see whether we can derive
a m-approximation mechanism.

We rst note that we cannot simply use the formula for externdties from the surplus
maximization mechanism for payments when we replace the apial algorithm OPT with
some approximation algorithmA. l.e.,x = A(v) and p, = A(v ;) A ;(v) is not incentive
compatible. An example demonstrating this with the greedy lgorithm can be seen bym
agents each demanding the singleton bundle5; = fig with valu% v; =1 and a nal agent
m+1 demanding the gr%nd bundleS,,,; = f1;:::;mgwith value ™ m+ (See Figure 8.1(a)
with A = 1and B = " m+ ). On such an input the greedy algorithm APX accepts
only agent m + 1. However, when computing the payment with the externaly formula
Pm+1 = APX(V (m+1y) APX (1) (V) We getp,; = m. This payment is higher than
agentm + 1's value and the resulting mechanism is clearly not inceive compatible.

Mirroring our derivation of the monotonicity of the surplus maximization mechanism in
Chapter 3 Section 3.2, the BNE characterization requires ela agent's allocation rule be
monotone, therefore any incentive compatible mechanism siube monotone. Even though,
in our derivation of the greedy algorithm no attempt was madéo obtain monotonicity, it is
satis ed anyway.

Lemma 8.9. For each agenti and all values of other agents ;, the i's allocation rule in
the greedy by value-per-square-root-size algorithm is nodone ini's valueyv;.

e, assuming that NP -complete problems cannot be solved in polynomial time by aandomized algo-
rithm.
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Proof. It su ces to show that if i with value v; is served by the algorithm orv andi increases
her bid to b > v; then they will continue to be served. Notice that the set of ailable items
IS non-increasing as each agent is considered.i lincreases her bid she will be considered
only earlier in the greedy order. Since itemS; were available when is originally considered,
they will certainly be available ifi is considered earlier. Therefora, will still be served with

a higher bid. O

The above proof shows that there is a critical value, for i and if v, > ; theni is served.
It is easy to identify this critical value by simulating the dgorithm on v ;. Let i° be the
earliest agent in the simulation to demand and receive an itefrom S;. Notice that if i comes
after i°then i will not be served becaus&, will no longer be completely available. However,
if i comes beforé® then i can and will be served by the algorithm. Therngoré's ﬁritical
value is the ; for which v, = ; would tie agenti®in the ordering. l.e., ; = Vo iSij= @

We conclude by formally giving the approximation mechanisnnduced by the greedy by
value-per-square-root-size algorithm and the theorem arabrollary that describe its incen-
tives and performance.

Mechanism 8.1. The greedy by value-per-square-root-size mechanism is:
1. Solicit and accept sealed bids.
2. X = GVPSYDb), and
3. p = critical values for GVPSS onb,

where GVPSS denotes the greedy by value-per-square-ragg-slgorithm.

Theorem 8.10. The greedy by value-per-square-root-size mechanism is duwent strategy
incentive compatible.

Corollary 8.11. The greedy by value-per-square-root-size mechanism giargsm-approximation
to the optimal social surplus in dominant strategy equilim.

At this point it is important to note that again we have gotten lucky in that we attempted
to approximate our social surplus objective without incenve constraints and the approxi-
mation algorithm we derived just happened to be monotone, vi¢h is all that is necessary
for the mechanism with that allocation and the appropriate pyments to be incentive com-
patible. If we had been less fortunate and our approximatioalgorithm not been monotone,
it could not have been turned into a mechanism so simply. We gdude this section with
three important questions.

Question 8.1. When are approximation algorithms monotone?

Question 8.2. When an approximation algorithm is not monotone, is it posiie to de-
rive from it a monotone algorithm that does not sacri ce any bthe original algorithm's
performance?
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Question 8.3. For real practical mechanism design where there are no gogopegoximation
algorithms, what can we do?

To get a hint at the answer to the rst of these questions, we rte that the important
property of the LOS algorithm that implied its monotonicity was the greedy ordering. We
conclude that any static greedy algorithm that orders agestas a monotone function of their
value is monotone. The proof of this theorem is identical tohiat for LOS (Lemma 8.9).

static greedy algorithm that sorts the agents in a non-inasing order off;(v;) is monotone.

8.3 Bayesian Algorithm and Mechanism Design

In the preceding section we saw that worst case approximatidfactors for tractable algo-
rithms can may be so large that they do not distinguish betweegood algorithms and bad
ones. We also noted that mechanisms must satisfy an additi@nrequirement beyond just
having good performance; the allocation rule must also be matone. For the example
of combinatorial auctions we were lucky and our approximatn algorithm was monotone.
Beyond greedy algorithms, such luck is the exception rathénan the rule. Indeed, the entan-
glement of the monotonicity constraint with the original agroximate optimization problem
that the designer faces suggests that approximation mechiam design, from a computational
point of view, could be more di cult than approximation algorithm design.

Imagine a realistic setting where a designer wishes to desig mechanism for some en-
vironment where worst-case approximation guarantees do thprovide practical guidance in
selecting among algorithms and mechanisms. Without someré&knowledge of the environ-
ment, improving beyond the guarantees of worst-case appimation algorithms is impossi-
ble. Therefore, let us assume that our designer has accesatmepresentative data set. The
designer might then attempt to design a good algorithm for tis data set. Such an algorithm
would have good performance on average over the data set. &ctf in most applied areas
of computer science this methodological paradigm for algtthm design is prevalent.

Algorithm design in such a statistical setting is a bit of an &; however, the topic of
this text is mechanism design not algorithm design. So let usssume that this algorithmic
design problem is solved. Our mechanism design challengéhisn to reduce the mechanism
design problem to this algorithm design problem, i.e., to shw that any algorithm, with
access to the true private values of the agents, can be turnedo a mechanisms, where the
agents may strategize, and in equilibrium the outcome of thenechanism is as good as that
of the algorithm. Such a result would completely disentanglthe incentive constraints from
the algorithmic constraints. Notice that the approach of tle surplus maximization mecha-
nism (Chapter 3) approach solves this mechanism design pfeim for an optimal algorithm
designer; here we solve it for aad hocalgorithm designer.

The statistical environment discussed above is well suiteid the Bayesian mechanism
design approach that has underlied most of the discussion this text. The main result of
this section is the polynomial-time constructive proof oftie following theorem.
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Theorem 8.13. For any single-dimensional agent environment, any produdistribution F,
and any algorithmA, there is a BIC mechanismA satisfyingE, ¢ A(v) E, [A(V)].

8.3.1 Monotonization

Let x(v) denote the allocation produced by the algorithm on inputv. For agenti the
algorithms interim allocation rule isx;(vi) = E, g[Xi(Vv) j vi]. Recall, this is the probability
that we allocate toi wheni has valuev; and the other agents' values are drawn from the
distribution. If x;() is monotone non-decreasing then there exist a payment ruleia the
payment identity in the BIC characterization (Corollary 2.16), such that truthtelling is a
best response for (assuming others also truthtell). Ifx;() is non-monotone then there is
no such payment rule. Therefore the challenge before us itpotential non-monotonicity
of x;( ). Our goal will be to construct anx;( ) from x;( ) with the following properties.

1. (monotonicity) x;( ) is monotone non-decreasing.
2. (surplus preservation)e, g [Vixi(vi)] E, g [ViXi(v)].
3. (locality) No other agentj can tell whether we runx;(v;) or x;(v;).

That the rst two conditions are needed is intuitively clear. Monotonicity is required for
Bayesian incentive compatibility. Surplus preservations required if our construction is to
not harm our objective. The requirement of locality is more wbtle; however, notice that
if no other agent can tell whether we are running;( ) or x;( ) then we can independently
apply this construction to each agent.

We will assume that the distribution F; is continuous on its support and we will consider
the allocation rule in quantile-space (cf. Chapter 3 Sectin3.3.1). The transformation from
value space to quantile space, recall, is given iy = 1 F;(v;). We denote the value
associated with a given quantile as;(q) = F; (1 ¢q) and we express the allocation rule in
guantile space as¢;(g) = x;(vi(g)). Notice that the quantile of agenti is drawn uniformly
from [0; 1].

We will focus for the sake of exposition on a two agent case andme the agents Alice
and Bob. Our goal will be to monotonize Alice's allocation rie¢ without a ecting Bob's
allocation rule. Our discussion will focus on Alice and for atational cleanliness we will
drop subscripts. Alice's quantile isq  UJ[0; 1], her value isv(q), her allocation rule (in
guantile space) isx(q). We assume thatx( ) is not monotone non-increasing and focus on
monotonizing it.

Resampling and Locality

Notice rst, if the allocation rule for Alice is non-monotore over some intervald; b then one
way to make it monotone in this interval is to treat her the exat same way regardless of
where her value lies within this interval. This would resultin a constant allocation in the
interval and a constant allocation is non-decreasing, as sleed. There are many ways to do
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this, for instance, ifq 2 [a;d we can runx(q)) instead ofx(q). (Back in valuation space, this
can be implemented by ignoring Alice's valug and inputing v°= v(c” into the algorithm

instead.) Unfortunately, if we did this, Bob would notice. The distribution of Alice's input

would no longer beF, for instance it would have no mass on intervalg; b and a point mass
on g’ See Figure 8.2(b).

0 1 0 a b ¢ 1

(a) allocation rule x(q). (b) allocation rule xo(q).

Figure 8.2: The allocation rulex(q) and x%q) constructed by runningx(g) when q2 [a; 4.

Notice second, there is a very natural way to x the above cohsiction to leave the
distribution of Alice's input to the algorithm unchanged. Instead of the arbitrary choice
of inputing ¢’ into the algorithm we can resample the distributionF on interval [a;H. In
quantile space this is corresponds precisely with uniforgnpicking o from [a; . Formally,
the proposed transformation is the following. Ifg 2 [a;H then resampleq® Ula; 4. If
q62a; i then simply setq”= g. Now run x(¢) instead ofx(g), i.e., simulate the algorithm
with input v°= v(d) in place of Alice's original value. Letx%q) denote the allocation rule
of the simulation as a function of Alice's original value prbability. Notice that for q624a;
we havex¥q) = x(0). FIgor g2 [a; b, Alice receives the average allocation probability for &
interval [a; H, i.e, ;X ;x(r) dr. See Figure 8.3(a).

Notice third, this approach is likely to improve Alice's exgcted surplus. Supposg(q) is
increasing on §&; i, meaning higher values are less likely to be allocated théow values, then
this monotonization approach is just shifting allocation pobability mass from low values to
higher values.

Interval Selection and Monotonicity

The allocation rule x{ ) constructed in this fashion, while monotone overaf i, may still
fail to be monotone. Though intuitively it should be clear that the resampling process can
replace a non-monotone interval of the allocation rule witla constant one, we still need to
ensure that the nal allocation rule is monotone. Of speciatote is the potential discontinuity
of the allocation rule at the end-points of the interval. R

Notice rst, that x%q) is monotone if and only if its integral, X {q) = ~ ;' x{r)dr, is convex.
We will refer to X Yq) and X (g) (de ned identically for x(q)) as cumulative allocation rules
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0 a b 1 0 a b 1

(a) allocation rules x(q) and xo(q). (b) cumulative allocation rules X (g) and X O(q).

Figure 8.3: The allocation rulex(q) (dashed) andx¥q) (solid) constructed by drawingq®
U[a; i and running x(g%) when q 2 [a;4. Corresponding cumulative allocation rulesx ()
(dashed) andX %q) (solid).

Notice second, the implication forx {q) of the resampling procedure orX (g). Consider
someq aasx(q) = xY0), clearly X (g) = X {g). In particular X (a) = X {a). Now calculate
X (b) and X {b). These are equal toX (a) plus the integral of the respectrveﬁllocatron rules
on [a; 1. Of coursex¥q) is constant on ;i and equal, by de nition, to b T a x(r)dr The
integral of a const¢§1t function |§ simply the value of the fuation times the length of the
interval. Therefore x Ar)dr = x(r)dr We conclude thatX (b) = X (b() Therefore, for
alg b X(g=X (q) as x(q) = x %q) for all suchg. Thus, X (g) and X Yq) are identical on
[0;a] and b;1]. Of coursex¥q) is a constant function on ;i so therefore its integral is a
linear function; therefore, it must be the linear function hat connects &; X (a)) to (b; X (b))
with a straight line. See Figure 8.3(b).

Notice third, our choice of interval can be arbitrary and wil always simply replace an
interval of X (g) with a straight line. Let X () be the smallest concave function that upper
boundsX (). Let k be the number of contiguous subintervals of {@] for which X (g) 6 X (q)
and let I; be thejth interval. Let | = (I4;:::;1). The following resampling procedure
implements cumulative allocation ruleX (). If g2 I; 21 then resampleq  U[l;] (the
uniform distribution on 1;), otherwise setq = q. This Is implemented by running the
algorithm on the value corresponding tay, i.e, v = v(qg). The resulting allocation rule x(q)
is 22 which, by the convexity ofX (), is monotone. See Figure 8.4,

Surplus Preservation

Notice that X (), as the smallest concave function that upper boundX (), satis es X (q)
X (g). This dominance has the following interpretation: highewalues have receive higher
service probability. We formalize this argument in the fobbwing lemma.

Lemma 8.14. For x() and x() (as de ned in the construction above),E[v(g)x(0)]

Ev(9)x(a)].
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0 a b 1 0 a b 1

(a) allocation rule x(q). (b) cumulative allocation rule X (q).

Figure 8.4: The allocation rulex(q) (solid) and cumulative allocation rule X (g) (solid)
constructed by taking the convex hull ofX (q) (dashed). Interval | = [a;q is de ned as

fg: X(a) 6 X(g)g.

Proof. We show that E[v(q)(x(g) x(q))] is non-negative.

Zq
Ev(@(x(a) x(d)] = 0v(0|)(><(q) x(9)) dg
h i, Z1
= v(Q(X (0 X(q)): v (X () X (d)) dg:

0

The second line follows from integrating by parts. Of coursev( ) is decreasing so/¥ ) is
non-positive, X (q) = X (g) for q2f 0;1g, and X (q) X (g) is non-negative; therefore, in the
second line above the rst term is zero and the second term i®n-negative. O
Reduction

The general reduction from BIC mechanism design to algorith design is the following.

Mechanism 8.2. Construct the BIC mechanismA from A as follows.

1. For each agent, identify intervals of non-monotonicity | ; by taking the convex hull of
the cumulative allocation rule (in quantile space).

2. For each agent, if v; 2 1 21 ; resamplev;, F;[lI] otherwise setv; v;. (Here F[l]
denotes the conditional distribution of; 2 | for F;.)

3.x A ().

4.p payments from payment identity forx( ).

This mechanism satis es our requirements of monotonicitysurplus preservation, and
locality. These lemmas follow directly from the constructin and we will not provide further
proof. Theorem 8.13 directly follows.
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Lemma 8.15. The construction of A from A is monotone.
Lemma 8.16. The construction of A from A is local.

Lemma 8.17. The construction of A from A is surplus preserving.

8.3.2 Blackbox Computation

It should be immediately clear that the reduction given in tle preceding section relies on
incredibly strong assumptions about our ability to obtain tosed form expressions for the al-
location rule of the algorithm and perform calculus on thesexpressions. In fact theoretical
analysis of the statistical properties of algorithms on ragiom instances is exceptionally dif-
cult and this is one of the reasons that theoretical analysi of algorithms is almost entirely
done in the worst case. Therefore, it is unlikely these assptions hold in practice.

Suppose instead we cannot do such a theoretical analysis bu¢ can make blackbox
gueries to the algorithm and we can sample from the distribign. While we omit all the
details from this text, it is possible get accurate enough emates of the allocation rule that
the aforementioned resampling procedure can be approxineatarbitrarily precisely. Because
this approach is statistical, it may fail to result in absolue monotonicity. However, we can
take the convex combination of the resulting allocation rd@ with a blatantly monotone one
to x these potentially small non-monotonicities.

Naturally, such an approach may lose surplus over the origihalgorithm because if the
small errors it makes. Nonetheless, we can make this lossidrily small. For convenience
in expressing the theorem the valuation distribution is nanalized over [Qh]. The following
theorem results.

Theorem 8.18. For any n-agent single-dimensional agent environment, any produdistri-
bution F over [0; h]", any algorithm A, and any , there is a BIC mechanismA satisfying
E, £ A (V) E, [A(v)] . Furthermore if A is polynomial time inn, then A polyno-
mial time in n, 1=, and logh.

While this construction seems to be a great success, it is imgpant to note where it fails.
Bayesian incentive compatibility is a weaker notion of inggive compatibility than dominant
strategy incentive compatibility. Notably, the construction only gives a monotone allocation
rule in expectation when other agents' values are drawn fromime distribution. It is not,
therefore, a dominant strategy for the agents to bid truthflly. So while we have veri ed
that BIC mechanism design is computationally equivalent toBayesian algorithm design.
Are these both computationally equivalent to DSIC mechanim design? This question has
been partially answered in the negative; the conclusion lmg that there is loss in restricting
attention to dominant strategy mechanisms in computationtly bounded environments.

8.3.3 Payment Computation

Recall that the payment identity requires ghat a monotone dbcation rule x;(v;) be accompa-
nied by a payment rulep;(v;) = viX;(V;) Ovi X;(z)dz. At rst glance, this appears to require
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having access to the functional form of the allocation rule Again, such a requirement is
unlikely to be satis ed. This problem, however, is much easi than the monotonization
discussed in the previous section because the payment ruldyomust satisfy the payment
identity in expectation. We show how to do this with only two Hackbox calls to the algo-
rithm.

We compute a random variableP; with expectation E[P;] = p;(v;). We will do this for
the two parts of the payment identity separately.

Algorithm 8.3. The blackbox payment algorithmfor A computes paymen®P; for agenti
with valuev; as follows:

1 if i wins in x;(v;)

1. X.
' 0 otherwise.

l.e., X; is an indicator variable for whetheri wins or not when runningA (v).

2. Z; UJ[0;v;] (drawn at random).

1 if i wins in x;(Z;)

3. Y, .
0 otherwise.

l.e., Y; is an indicator variable for whetheri would win or not when simulating the
algorithm on A(v ;;Z,).

4, Pi Vi(Xi Y|)

We rst note that this payment rule is individually rational in the following strong sense.
For any realization v of agent values and any randomization in the algorithm and panent
computation, the utilities of all agents are non-negativeThis is clear because the utility of
an agent is her value minus her payment, i.ev;X; P; = v;Y;. SinceY; 2 f 0; 1g, this utility
is always non-negative. Oddly, this payment rule may resulinh a losing agent being paid,
i.e., there may bepositive transfers This is because the random variableX; and Y; are
independent. We may instantiateX; = 0 and Y; = 1. Agent i then loses and has a payment
of v, i.e.iispaidy;.

Lemma 8.19. The blackbox payment computation algorithm satis &[P;] = p;(Vv;).

Proof. This follows from linearity of expectation and the de nition of expectation in the
following routine calculation. First calculate E[Y;] notating the probability density function
for Ziisf; (z) =1=v for Z; U[0;v].
Z,
ElVil=  x(2)fz(2)dz
0z



Now we calculateE[P;] as,

E[P]= E[viX;] E[vY]
= ViX; (V) \fE[Yi]
Vi
= viX;(v) X;(z)dz: O
0
This construction was slightly odd because a loser may be daa positive transfer. This
can be partially addressed. There is a slightly more compéited construction wherein all

losers have payments identically equal to zero, but winnersay be paid to receive service.
We leave the construction as an exercise.

8.4 Computational Overhead of Payments

The focus of this chapter has been on ascertaining the exteiat which mechanism design is,
computationally, more di cult than algorithm design. Positive results, such as our reduction
from BIC mechanism design to algorithm design enable des&s a generic approach for the
computer implementation of a mechanism.

We conclude this chapter with a esoteric-seeming questiohat has important practi-
cal consequences. Notice that when turning a monotone algbm, either by externality
paymentsp, = OPT(v ;) OPT ;(v) or by our blackbox payment calculation of random
variable P;, the number of calls to the algorithm isn + 1. One call to compute the outcome
and an additional call for each agent to compute that agent'sayment. One question is then,
from a computational point of view, whethern times more computation must be performed
to run a mechanism than it takes to just compute its allocatia.

A more practically relevant viewpoint on this question is whther repeatability of the
algorithm is necessary. We know from our BIC characterizatn that any mechanism must
be monotone. However, approaches described thus far forazdhting payment have required
that the algorithm be repeatable by simulation as well.

This repeatability requirement poses severe challengessome practical contexts. Con-
sider an online advertising problem where there is a set of \adtisers (agents) who each
have an ad to be shown on an Internet web page. An advertiser \served" if her ad is
clicked on. Each advertiseli has a private valuev; for each click she receives. Each ad
has aclick-through ratec;, i.e., a probability that the ad will be clicked if it is shown If the
mechanism designer knew these click-through rates in adwa the surplus maximizing rule
would be to show the advertiser with the highest;c,. Unfortunately, these click-through
rates are often unknown to the mechanism designer and the amitisers. The mechanism
can attempt to use any of a number of learning algorithm to lea advertiser click-through
rates as it shows ads. Many of these learning algorithms arefact monotone, meaning the
higheri's value v; the more clicksi will receive in expectation. Unfortunately it is di cult
to turn these learning algorithms into incentive compatibd mechanisms because there is no
way to go back in time and see what would have happened if a drent advertiser had been
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shown. What is needed here is a way to design a mechanism fronrmanotone algorithm
with only a single call to the algorithm.

8.4.1 Communication Complexity Lower Bound

For single-dimensional agent problems with special struate (i.e., on the cost function of the
designer,c( )) it is possible to design an algorithm that computes paymes at the same time
as it computes the allocation with no signi cant extra comptational e ort. For instance, for
optimizations based on linear programming duality, a topiave will not cover here, thedual
variablesare often exactly the payments required for the surplus maxiization mechanism.
It is likely that such a result does not hold generally. Howear, the conclusion of our
discussion of computational tractability earlier in this t©iapter was that proving lower bounds
on computational requirements is exceptionally dicult. We therefore analyze a related
guestion, namely thecommunication complexityof an allocation rule versus its associated
payment rules. To analyze communication complexity we ima&ge that each of ourn agents
has a private input and the agents collectively want to compe some desired function.
Each agent may perform an unlimited amount of local comput&n and can broadcast any
information simultaneously to all other agents. The challege is to come up with a protocol
that the agents can follow so that at the end of the protocol &hgents know the value of the
function and the total number of bits broadcast is minimized In this exercise, agents are
assumed to be non-strategic and will follow the chosen pratol precisely.
As an example consider g@ublic goodwith cost C. In this setting we must either serve

all agents or none of them. If we serve all of them we incur theost of C. This is a
single-dimensional agent environment with cost functionigen by

8 P

2C ifP X, =n

c(x) = >O if ,x=0
"1 otherwise.

Notice that it is infeasible to serve one agent and not anotheThis problem arises naturally.
Assume the government is considering whether or not to buila bridge. It costsC to build
the bridge. Naturally the government only wants to build thebridge if the total value of
the bridge to the people exceeds the cost. Of course, if theidge is built then everyone
AN Use it. For the objective of social surplus, clearly we g to serve the agents whenever
Vi C.

Consider the special case of the above problem with two agsneach with an integral
value ranging between 0 andC. Let k = log C be the number of bits necessary to represent
each agent's value in binary. To compute the surplus maximizy outcome, i.e., whether to
allocate to both agents or neither of them, the following pitocol can be employed:

1. Agent 1 broadcasts hek bit value v;.

2. Agent 2 determines whethew; + v, C and broadcasts 1 if it is and O otherwise.
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0 (o]} vi C
Agent 1

Figure 8.5: As a function of agent 1's valuext-axis) and agent 2's value \{-axis) and the the
region of allocation (gray) of the surplus maximizing mechasm for the public project with

cost C is depicted. Valuation prole v = (vy;V,) is depicted by a point and the payments
p = (ps;p2) can be calculated by following the accompanying arrows.

Notice that the total number of bits broadcast by this proto®l is k + 1 and both parties
learned the desired outcome.

Now suppose we also wish the communication protocol to conipuhe incentive com-
patible payments for this monotone allocation rule whereifoth agents must learnp; and
p,. How many bits of communication are required? Notice that ithe case that we serve the
agents,p; = C v, andp, = C v;. Importantly, there is a uniquep for each uniquev that
is served. There areC?=2 such payment vectors in total. The broadcast bits must uniggly
determine which of these is the correct outcome. Given such a large number of payment
vectors the most succinct representation would be to numbehem and write the index of
the desired payment vector in binary. This takes a number ofits that is logarithmic in the
number of payment vectors possible. In our case this is I&@f=2). Of course,C = 2* so the
number of bits is Z 1. Agent 1 hask bits, but the other k 1 bits should be communicated
from Agent 2, and vice versa. Therefore a total ofk 2 bits must be communicated for
both agents to learnp.

We conclude that in this two-agent environment about twice & many bits are required
to compute payments than to compute the outcome. We summasdzthis in the following
lemma.

Lemma 8.20. There exists a two-agent single-dimensional agent envirnant where the
communication complexity of computing payments is twicedahof computing the allocation.

The above two agent example can be generalized to aragent environment where the
communication complexity of payments isn times more than that for computing the allo-
cation. The single-dimensional agent problem that exhilbst such a separation is contrived,
i.e., there is no natural economic interpretation for it. The real challenge in this generaliza-
tion is in determining an environment where the allocationan be computed with very low
communication. We omit the proof and construction.
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Theorem 8.21. There exists ann-agent single-dimensional agent environment where the
communication complexity of computing payments rstimes that of computing the allocation.

The conclusion of the above discussion on the communicaticomplexity of computing
payments is that there are environments where payments areliaear factor harder to com-
pute. If we wish to take any algorithm and construct paymentsve can expect that the
construction, in worst-case, will require a linear factor mre work, for example, by invoking
the algorithm n + 1 times as is done by the payment algorithms previously disssed. No-
tice, however, that the above lower bound leaves open the pdslity that subtle changes
to the allocation rule might permit payments to be calculatd without such computational
overhead.

8.4.2 Implicit Payments

The main result of this section is to describe a procedure faéaking any monotone algo-
rithm and altering it in a way that does not signi cantly decrease its surplus and enables
the outcome and all payments to be computed implicitly from asingle invocation of the
algorithm.

The presentation in this text will focus on the Bayesian seihg as the approach and result
are the most relevant for application to any algorithm. (Thee is a similar approach, that we
do not discuss, for achieving the same avor of result withdwa prior distribution.) Therefore,
assume as we did in preceding sections that agents' value® alistributed according to a
product distribution that is continuous on its support, i.e, each agent's density function is
strictly positive.

Two main ideas underlie this approach. Recall that the bladdox payment computation
drewZ; U[0; ] and de ned Y; as an indicator forx;(Z;). The expected value of thisy; is
then related to (;'i Xi(z)dz. The rst idea is that there is nothing special about the unibrm
distribution; we can do the exact same estimation with any adinuous distribution, e.g.,
with F,. The second idea is that if with some small probability we redrawV,’ F; and
input that into the algorithm instead of v; then this changes the allocation rule in an easy
to describe way. It multiplies it by (1 ) and adds a constantE x;(V,3 . For the purpose
of computing payments, which is a function of the integral ofhe allocation rule, adding a
constant to it has no e ect.

Notice in the de nition of the implicit payment mechanism, below, that the algorithm A
is only called once.

Mechanism 8.3. For algorithm A, distribution F, and parameter > 0, the implicit pay-
ment mechanismA? is

1. for all i:
€)) Draw(Z F

v; with probability 1

(b) V° .
Z otherwise.
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2. X% A (VY:
8
EViXiO |f \/iO: Vi
0
3. for all i: P? S %(5 if VP<v,
"0 otherwise.

As you can see, the implicit payment mechanism sometimesisah on v, into and some-
times it draws a completely new valua/®and inputs that to A instead. The actual payments
are a bit strange. If it inputs i's original value and serves then i is charged her value. If
it inputs a value less thani's original value and serves then i is given a very large rebate,
as and f (V9 should be considered very small. If we do not seniethen i pays nothing.
Furthermore, if the implicit payment mechanism inputs a valie greater thani's value and
allocate toi then i also pays nothing.

Such a strange payment computation warrants a discussion tsthe point of this exercise
in the rst place; it seems like such a crazy payment rule wodl completely impractical.
Recall, though, that our search for a BIC mechanism was one ekistence. We wanted
to know if there existed a mechanism in our model (in this casevith a single call to the
algorithm) with good BNE. We have veri ed that. In fact, BIC mechanisms are often not
practical. The omitted step is in nding a practical mechansm with good BNE, and this
means undoing the revelation principle to ask what other mernatural mechanism might
have the same BNE but also satisfy whatever additional praicility constraints we may
require. This nal step of mechanism design is often overl&ed, and it is because designing
non-BIC mechanisms with good properties is di cult.

With such practical considerations aside, we now prove thanonotonicity of A (in a
Bayesian sense) is enough to ensure thaf is BIC. Furthermore, we show that the expected
surplus of A is close to that ofA.

Lemma 8.22. For v F, if the allocation rule x;( ) for A is monotone, then the allocation
rule x( ) for A° is monotone.

Proof. From each agent's perspective we have not changed the distribution of othegents'
values. Furthermorexqv)=(1 ) x(v)+ E,o° x(V9Y , i.e., we have scaled the algorithms
allocation rule by (1 ) and added a constant. Therefore, relative to prior distribaition F,
if A was monotone before the®\° is monotone now. (Furthermore, ifA was monotone in
an dominant strategy sense before then the implicit paymemhechanism is monotone in an
dominant strategy sense now.) O

Lemma 8.23. For agenti with valuev,, E P? = pX(v;) satisfying the payment identity.

Proof. Since our allocation rule for agent is xX(vi)) = (1 ) x;(v)+ E x(V) where
the nal term is a constant. We must show thatE[P;]=(1  )pi(v) = p(vi).
De ne indicator variable A for the event that V° = v; and B for the event V;° < v;.

0,
With these de nitions, P; = ;XA 1— %/B‘F The expectation of the rst term is easy to
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analyze:

EvXA =Pr[A=1 EvX’jA=1
=1 )vix(v):

This is exactly as desired. Now we turn to the second term. Faonvenience we ignore the
constants until the end.

E XB=f;(\)

PriB=1 E XX (V) jB=1
Fi(v) E X=f(v)iB=1":

Notice B = 1 implies that we drawn V\°  F;[0; v;] which has density functionf;(z)=F;(V;).
Thus, we continue our calculation as,

“vx@ f(2)

= Fi(v, — dz
M R Rw
Vi
= X;(z)dz:
0
Combining this with the constant multiplier 1— and the calculation of the rst term, we
conclude thatE[P,]=(1  )p(v;) = p(v;) as desired. O

From the two lemmas above we conclude thaf® is BIC. To discuss the performance
of A° (i.e., surplus) we consider two of our general single-dimginnal agent environments
separately. We consider the general costs environment basa it is the most general and
the general feasibility environment because it is easier @thus permits a nicer performance
bound.

Lemma 8.24. For any distribution F and any general feasibility settingE A°(v) (1
) E[A(V)]:

Proof. This follows from considering each agent separately and ngilinearity of expectation.
Our expected surplus from is

E.,, ViXiO(Vi) =1 ) Eylvixi(v)l+  E, vl Ey [Xi(v)]
1 ) Eylvixi(vi)l (8.6)

The nal step follows because the second term on the right-hd side is always non-negative
and thus can be dropped. O

Lemma 8.25. For any distribution F and any n-agent general costs settinge A°(v)
E[A(v)] hn whereh is an upper bound on any agent's value.
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Proof. This proof follows by noting that the algorithm always runs @ an input that is
random from the given distribution F. Therefore, the expected costs are the same, i.e.,
E, c(x%v)) = E,[c(x(v))]. However, the expected total value to the agents is deased
relative to the original algorithm. Our expected surplus fomii is

E,, ViXiO(Vi) 1 ) Eyvixi(vi)l
(1 ) Eylvixi(vi)l+  Eylvixi(v)] h
= Ey, [vixi(v)] h

The rst step follows from equation (8.6), we can then add théwo terms on the right-hand
side because the negative one is higher magnitude than thespive one. The nal result
follows from summing over all agents and the expect costs. O

The following theorems follow directly from the lemmas abev

Theorem 8.26. For any single-dimensional agent environment with generebsts, any prod-
uct distribution F over [0; h]", any Bayesian monotone algorithmA, and any > 0, the
implicit payment mechanismA® is BIC and satises E, ¢ A%V) E, [A(v)] hn.

Theorem 8.27. For any single-dimensional agent environment with generddasibility con-
straints, any product distribution F, any Bayesian monotone algorithmA, and any > 0,
the implicit payment mechanismA® is BIC and satis es E,  A%v) a )E, [A(V)].

We conclude this section by answering our opening questioli.we are willing to sacri ce
an arbitrarily small amount of the surplus, we do not requirealgorithms to be repeatable to
turn them into mechanisms. Our only requirement is monotouwity.

Exercises

8.1 Section 8.3 we showed that we can turn a non-monotone algdwih for any single-
dimensional agent environment into a BIC mechanism that hast least the same
expected social surplus. Consider another important objie in computer systems:
makespan Suppose we have machines andm jobs. Each machind is a sel sh agent
with privately known slowness-parametejv;j and each jobj has an intrinsic lengthw; .
The time it takes i to perform job j is jv;w;] gnd we view this as a cost to agenit.?
The load on machine for a set of jobsJ isjvij ;,; w;. A scheduling is a partitioning
of jobs among the machines. Lel; be the jobs assigned to machine II_l,'he makespan
of this scheduling is the maximum load of any machine, i.e., a® jv;j i20, W The
goal of a scheduling algorithm is to minimize the makespanM@kespan is important
outside of computer systems as \minimizing the maximum lodds related to fairness.)

2\We are putting these quantities in absolute values becausef ithe private value represents a cost, it is
most consistent with the course notation to viewv; as negative.
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8.2

8.3

8.4

This is a single-dimensional agent environment, though thwtconrga for each agent is
not a binary x; 2 f 0; 1g. Instead ifi is allocated jobsJ; then x; = 20, W - Of course
X;(v;) is, as usual,E, g[x;(v) j vi]. The agent's cost for such an outcome j;x;(V;)j.

Show that the method of Mechanism 8.2 for monotonizing a hamonotone algorithm
fails to preserve the expected makespan. (Hint: All you need do is come up with
an instance and a non-monotone algorithm for which expectetiakespan increases
when we apply the transformation. Do not worry about the vales being negative nor
about the allocation being non-binary; these aspects of theoblem do not drive the
non-monotonicity result.)

The blackbox payment algorithm (Algorithm 8.3) sometimes rakes positive transfers
to agents. Give a di erent algorithm for calculating paymems with the correct expec-
tation where (a) winners never pay more than their value andb the payment to (and

from) losers is always identically zero. The number of callgur payment algorithm

makes to the allocation algorithm should be at most a constaifin expectation).

Dominant strategy incentive compatible mechanisms can be@mbined.

(a) Consider the following algorithm:
Simulate greedy by value (i.e., sorting by;).
Simulate greedy by value-per-item (i.e., sorting by, =S;j).
Output whichever solution has higher surplus.
Prove that the resulting algorithm is monotone.

(b) We say a deterministic algorithm isindependent of irrelevant alternativesvhen
X(V ;i) = x(v i;V% i Xi(V i;vi) = xi(v i;Vi%;

i.e., the outcome is invariant on the value of a winner or lose Prove that
the algorithm A that runs k deterministic monotone independent-of-irrelevant-
alternatives algorithmsA:::; A, and then outputs the solution of the one with
the highest surplus is itself monotone.

Consider the following knapsack problem: each agent has avatte valuev; for having
an object with publicly known sizew; inserted into a knapsack. The knapsack has
capacity C. Any set of agents can be served if all of their objects t sinitaneously in
the knapsack. We denote an instance of this problem by the tig (v;w; C). Notice
that this is a single-dimensional agent environment with i function:

( P
o(x) = if ix_iwi C
1 otherwise.

The knapsack problem iN P -complete; however, very good approximation algorithms
exist. In fact there is apolynomial time approximation scheméPTAS). A PTAS is an
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family of algorithms parameterized by > 0 whereA is a (1+ )-approximation runs
in polynomial time in n, the number of agents, and £ .

PTASs are often constructed from pseudo-polynomial time gbrithms. Let V be an
upper bound on the value of any agent, i.eyY v; for all i, and assume all agent
values are integers. For the integer-valued knapsack preph there is an algorithm
with runtime O(n®V). (Constructing this algorithm is non-trivial. Try to do it on
your own, or look it up in an algorithms text book.) Notice tha this is not fully
polynomial time asV is a number that is part of the input to the algorithm. The \size"
of V is the amount of space it takes to write it down. We ordinarilywrite numbers
on a computer in binary (or by hand, in decimal) which therefre has size loy. An
algorithm with runtime polynomial in V is exponential in logv and, therefore, not
considered polynomial time. It ispseudo-polynomial time

A pseudo-polynomial time algorithm,A, for surplus maximization in the integer values
setting can be turned into a PTASA for the general values setting by rounding. The
construction:

v? v, rounded up to the nearest multiple ofV =n.

v®  vh=(V ), an integer between 0 andh= .
Simulate A (v®w; C), the integer-valued pseudo-polynomial time algorithm.
Simulate the algorithm that allocates only to the highest valed agent.
Output whichever solution has higher surplus.
Notice the following about this algorithm. First, its runtime isO(n*= ) when applied to
the O(n?V) pseudo-polynomial time algorithm discussed above. Sechiitis a (1+ )-

approximation if we setV = max; v;. (This second observation involves a several line
argument. Work it out yourselves or look it up in an algorithns text book.)

In this question we will investigate the incentives of this ppblem which arise because
we do not know a good choice df in advance.

(a) Suppose we are given somé. Prove that A , for any , is monotone.

(b) Suppose we do not know in advance. A logical choice would be to choosé =
max; v; and then run A . Prove that this combined algorithm is not monotone.

(c) For any given , derive an DSIC (1 + )-approximation mechanism from any
integer-valued pseudo-polynomial time algorithm. Your gorithm should run in
polynomial time in n and 1= . (Hint: The hard part is not knowing V.)

Chapter Notes

Richard Karp (1972) pioneered the use oNP -completeness reductions to show that a
number of relevant combinatorial optimization problems, ncluding set packing, areNP -
complete. Lehmann et al. (2002) and Nisan and Ronen (2001)rimduced the concept of
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computationally tractable approximation mechanisms. Thesingle-minded combinatorial
auction problem is an iconic single-dimensional agent mefism design problem.

There are several reductions from approximation mechanisghesign to approximation
algorithm design (in single-dimensional settings). Brie¢st al. (2005) show that any poly-
nomial time approximation scheme (PTAS) can be converted o an (dominant strat-
egy) incentive compatible mechanisms. The reduction from 18 mechanism design to
Bayesian algorithm design that was described in this text veagiven by Hartline and Lucier
(2010); Hartline et al. (2011) improve on the basic approach-or the special case of single-
minded (and a generalization that is not strictly single-dnensional) combinatorial auctions
Babaio et al. (2009a) give a general reduction that obtaina O(clogh) approximation mech-
anism from any c-approximation algorithm whereh is an upper-bound on the value of any
agent.

Several of the above results have extensions to environmemtith multi-dimensional agent
preferences. Speci cally, Dughmi and Roughgarden (201asw that in multi-dimensional
additive-value packing environments any PTAS algorithm ca be converted into a PTAS
mechanism. The result is via a connection between smoothedbdysis and PTASes: A PTAS
can be viewed as optimally solving a perturbed problem instae and any optimal algorithm
is incentive compatible via the standard approach. Hartlia et al. (2011) and Bei and Huang
(2011) generalized the construction of Hartline and Lucig010) to reduce BIC mechanism
design to algorithm design in general multi-dimensional @ronments. Notably, the approach
is brute-force in the type space of each agent.

The unbiased estimator payment computation was given by Aner et al. (2003). The
communication complexity lower bound for computing paymeds is given by Babaio et al.
(2008). Babaio et al. (2010) developed the approximationgchnique that permits payments
to be computed with one call to the allocation rule (i.e., thalgorithm). This result enables
good mechanisms in environments where the algorithm cannoé repeated, for instance, in
online auction settings such as the one independently cotsied by Babaio et al. (2009b)
and Devanur and Kakade (2009).
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Appendix A

Mathematical Reference

Contained herein is reference to mathematical notations dnconventions used throughout
the text.

A.1 Big-oh Notation

We give asymptotic bounds using big-oh notation. Upper bows are given with O, strict
upper bounds are given witho, lower bounds are given with , strict lower bounds are given
with !, and exact bounds are given with . Formal de nitions are given as follows:

De nition A.1.  Function f (n) is O(g(n)) if there exists ac > 0 and ng > 0 such that
8n>ny; f(n) con):

De nition A.2.  Function f (n) is ( g(n)) if there exists ac > 0 and ny > 0 such that
8n>ngy f(n) cgn):

De nition A.3.  Function f (n) is ( g(n)) ifitis O(g(n)) and ( g(n)).

De nition A.4.  Function f (n) is o(g(n)) if it is O(g(n)) but not ( g(n)).

De nition A.5.  Function f (n) is ! (g(n)) ifitis ( g(n)) but not ( g(n)).

A.2 Common Probability Distributions

Common continuous probability distributions areuniform and exponential Continuous dis-
tributions can be speci ed by their cumulative distribution function, denoted by F, or its
derivative f = F° the probability density function

De nition A.6.  The uniform distribution on support[a;, denotedU[a; H, is de ned as
having a constant density functiorf (z) =1=(b a) over]a; .
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For example, the distribution U[0O; 1] has distribution F(z) = z and density f (z) = 1.
The expectation of the uniform distribution on R; 4 is izb The monopoly price for the
uniform distribution is max(b=2; a) (See De nition 4.1).

z

De nition A.7.  The exponential distribution with rate  has distributionF(z) =1 e
and densityf (z) = e ?. The support of the exponential distribution ig0;1 ).

The exponential distribution with rate  has expectation £ and monopoly price £ .
The exponential distribution has constanthazard rate .

A.3 Expectation and Order Statistics

The expectationof a random variablev ~ F is its \probability weighted average." For
continuous random variables this expectation can be calaied as
YA 1
E[v] = zf(z)dz: (A.1)
1
For continuous, non-negative random variables this expeation can be reformulated as
Z 1
E[v] = (1 F(2)dz (A.2)
0

which follows from (A.1) and integration by parts.
An order statistic of a set of random variables is the value of the variable thatiat a
particular rank in the sorted order of the variables. For inance, when a valuation pro le

denoted v, is an order statistic. A fact that is useful for working out &amples with the
uniform distribution.

Fact A.8. In expectation, i.i.d. random variables chosen uniformlyrém a given interval
will evenly divide the interval.

A.4 Integration by Parts

Integration by parts is the integration analog of the produtrule for di erentiation. We will
denote the derivative of a function%g(z) by g¥z). The product rule for di erentiation is:

[9(2) h(2)]°= d(2) h(2) + 9(2) h12): (A.3)

The formula for integration by parts can be derived by integating both sides of the equation
and rearranging.

Z Z
g%2) h(z) dz = g(z) h(z) 9(z) h%z) dz: (A.4)
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As an example we will derive (A.2) from (A.1). Plugg(z) =1 F(z) and h(z) = z into
equation A.4.
Z 1
zf(z)dz
OZ 1

E[v]

h(z) g1z) dz
h° i, Zi
h(z)o(z) + h%z) 9(2) dz
0. o
h I Z,
z(1 F(2) + 11 F(2)dz
Z, °© o
(1 F(2)dz:

0

The last equality follows because (1 F(z)) is zero at both zero andl .

A.5 Hazard Rates

The hazard rateof distribution F (with density f) is h(z) = *&%; (See De nition 4.16).

The distribution has a monotone hazard ratgd MHR) if h(z) is monotone non-decreasing.
A distribution is completely speci ed by its hazard rate viathe following formula.

RZ
F(z)=1 e 1 M@
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equal-revenue distribution, 66

backwards induction, 68

base (of a matroid), 86 dominant strategy, 26
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circuit externality, 47
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complete information game, 25
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correlated (distribution), 28 incentive compatible
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irregular (distribution), 54

lazy monopoly reserves, 8lex
lottery (mechanism), 9

marginal revenue, 51
matching market, 124
matroid, 76

base, 86

graphical, 78

transversal, 77

uniform, 77
mechanism design, 18
minimum spanning tree, 45
mixed strategy, 27, 41ex
monopoly price, 64
monotone hazard rate, 74
monotone hazard rate (MHR), 163
multicast auction, 45

Nash equilibrium, 27
NP-complete, 17
NP-hard, 17

onto (strategy), 30

pairing

auction, 92

mechanism, 92
payment rule, 29
permutation environment, 106
position auction, 41lex
position environment, 114
predictive, 18
prescriptive, 18
prior distribution, 28
prior-independent approximation, 91
prisoner's dilemma (game), 25

product distribution, seeindependent (distri-

bution)
prot, 44
pro t extractor, 101
digital goods, 101
downward closed, 117

prophet inequality, 68{70
public project, 60ex
pure strategy, 27

guantile, 48
quasi-linear, 123

random sampling auction, 98

random sampling pro t extraction auction

digital goods, 102
rank (matroid), 77
regular (distribution), 52
representative environment, 126
residual surplus, 44, 60ex
revelation principle, 39
revenue curve, 49
revenue monotonicity, 79, 81lex
routing environment, 45

second-price routing mechanism, 17
second-price auction, 12
with agent-speci c reserves, 64
with reserve price, 53
sequential posted pricing, 71, 127
simulation prices, 129
single-item auction (problem), 10
single-item environment, 45
social surplus, 44
Stackelberg game, 84
Steiner tree, 45
strategy, 27
strategy pro le, 26, 27
Sydney opera house distribution, 67

taxation principle, 125
tie-breaking, 58
tractable, 18

transfers, 12
transversal matroid, 77
truthtelling, 39

uniform distribution, 161
uniform ironed virtual price, 71
uniform matroid, 77
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VCG, 47
Vickrey-Clarke-Groves, 47
virtual surplus, 51

virtual value, 51

winner determination, 17
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