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Bayes-Nash Approximation

This text primarily focuses on the design of incentive compatible mecha-
nisms, i.e., ones where truth telling is an equilibrium. This focus is justi-
fied in theory by the revelation principle (Section 2.10 on page 46) which
suggests that if there is a mechanism with a good equilibrium then there
is one where truth telling is a good equilibrium. Thus, nothing “good”
is lost by the restriction. In practice, though, designed mechanisms are
rarely incentive compatible, and undoing the revelation principle is not
straightforward. It is not always an easy task to identify a practical
mechanism with the same Bayes-Nash equilibrim outcome as a designed
Bayesian incentive compatible mechanisms. This chapter focuses on the
analysis of mechanisms that are not incentive compatible, and in design
criteria for them.

In the design of Bayes-Nash (i.e., non-incentive-compatible) mecha-
nisms there will be less fine grained control over the exact equilibrium
selected by the mechanism, instead we will look to identify properties
of mechanisms from which we can guarantee that any equilibrium is
approximately optimal.

Our motivating example is the first-price auction with agents with in-
dependent but non-identically distributed values. Recall that with iden-
tically distributed values the first-price auction possesses a unique sym-
metric equilibrium in which the highest valued agent always wins the
item (see Section 2.9 on page 42). This outcome is optimal from the
perspective of social surplus. Moreover, the first-price auction with the
monopoly reserve price, for values drawn i.i.d. from a regular distribu-
tion, is revenue optimal in equilibrium. For asymmetric distributions
the first-price auction is neither optimal for surplus nor revenue. We
will show that the first-price auction is an e/e−1 ≈ 1.58 approximation
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for social surplus, and the first price auction with asymmetric monopoly
reserves is a 2e/e−1 ≈ 3.16 approximation for revenue.
One of the reasons analysis of Bayes-Nash mechanisms is important is

that the ideal setting of incentive compatible mechanism design, where
a mechanism is being run in a closed system, is rare. In many practical
applications of mechanism design, agents may have the option to par-
ticipate in many mechanisms, simultaniously or in sequence. Incentive
compatibility of these individual mechanisms does not imply incentive
compatibility of the composition of mechanisms. An important develop-
ment of this chapter is a theory of composition for mechanisms. Via this
theory we will show that simultanious first-price auctions for multiple
items (albeit for single-dimensional agents) have the same performance
guarantees stated above for the first-price auction in isolation.
The conventional approach to the analysis of Bayes-Nash equilibrium,

as a first step, explicitly solves for the Bayes-Nash equilibrium. For
asymmetric environments such an analysis would require the solution to
analytically intractable differential equations. The approximation-based
approach presented herein circumvents solving for BNE by decompos-
ing the analysis into the following two parts. The first part isolates the
best-response property of Bayes-Nash equilibrium and formalizes the
intuition that either an agent gets good utility or must be facing fierce
competition. The second part identifies a revenue covering property, that
revenue exceeds an aggregate measure of the competition faced by each
agent, as a criteria to be approximated. With bounds on utility and rev-
enue, we get approximation bounds on the social surplus (the sum of
utility and revenue).
The bounds we derive on the social surplus and revenue of auctions

in Bayes-Nash equilibrium are parameterized by the extent to which
revenue covering approximately holds. This observation then gives clear
direction for optimization in mechanism design. A Bayes-Nash mecha-
nisms’s performance is proportional to it approximation with respect to
revenue covering. Bayes-Nash mechanisms should be designed to mini-
mize this approximation.

Topics Covered.

• The geometry of best response for single-dimensional agents.

• Revenue covering, a criterion for Bayes-Nash optimization.

• Analysis of welfare and revenue in Bayes-Nash equilibrium.

• Analysis of the simultaneous composition of mechanisms.



1002 Bayes-Nash Approximation

• Reserve prices in Bayes-Nash mechanisms.

X.1 Social Surplus of Winner-pays-bid Mechanisms

The first-price auction with asymmetric value distributions does not
maximize social surplus in Bayes-Nash equilibrium. For two agents and
the uniform distribution on distinct supports, the differential equations
that govern Bayes-Nash equilibrium can be solved; Example X.1, be-
low, gives the solution one special case. For more general distributions,
more than two agents, and more complex auction formats, equilibrium
is analytically intractable. A main result of this section will be the fol-
lowing bound on the social surplus of any Bayes-Nash equilibrium of the
first-price auction for any product distribution on agent values.

Theorem X.1 For any product distribution and Bayes-Nash equilib-
rium of the first-price auction, the expected social surplus is an e

e−1 ≈
1.58 approximation to the expected social surplus of the optimal outcome.

Example X.1 The equilibrium s of Alice (agent 1) and Bob (agent 2)
in the first-price auction with v1 ∼ U [0, 1] and v2 ∼ U [0, 2] is

• s1(v) =
2
3v

(

2−
√

4− 3v2
)

and

• s2(v) =
2
3v

(√

4 + 3v2 − 2
)

.

The asymmetry of strategies implies that the highest-valued agent does
not always win, i.e., the auction is inefficient. Bob wins when v2 >
(v−2

1 + 3/4)−
1/2 > v1. See Figure X.1.

In this section we will consider a generalizations of the first-price auc-
tion where the mechanism selects an allocation based on the bids and all
the winners pay their bid. As per the following definition, the first-price
auction is the winner-pays-bid highest-bids-win mechanism for single-
item environments.

Definition X.1 A winner-pays-bid mechanism

(i) solicits bids,
(ii) selects a feasible set of winners, and
(iii) charges each winner her bid.

In the winner-pays-bid highest-bids-win mechanism, the winners selected
in Step (ii) are the feasible set of agents with the highest sum of bids.
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Figure X.1 In (a) the Bayes-Nash bid strategies in the first-price auction
with the asymmetric value distribution of Example X.1 are depicted. In (b)
the Bayes-Nash allocation x(v) is depicted with v1 on the horiontal axis
and v2 on the vertical axis. In the shaded gray area the BNE allocates to
agent 1 while v2 > v1 and this allocation is inefficient.

X.1.1 The Geometry of Best Response

Consider an agent, Alice, in a winner-pays-bid mechanism. Alice wins
the auction when her bid b exceeds a critical bid b̂ which is given by the
bids of others and the rules of the mechanism. For the first-price auc-
tion this critical bid is the maximum of the other agents’ bids. Denote
the interim bid allocation rule, which maps Alice’s bid to her probabil-
ity of winning, as given the distribution of other agents’ bids and the
mechanism’s rules, by x̃(b) = Prb̂[b > b̂]. Notice that this bid allocation
rule is precisely to the cumulative distribution function of Alice’s criti-
cal bid. The expected critical bid Alice faces is a measure of the level of
competition in the auction, and is given by the area above its cumula-
tive distribution function (equivalently, the area above the bid allocation
rule).1 By the definition of the auction, Alice’s utility with value v for
any bid b is given by u(v, b) = (v − b) x̃(b). Our analysis will relate Al-
ice’s utility, her expected critical bid, and her value; each of which can
be compared geometrically (Figure X.2).

• Alice’s expected utility for any bid, denoted u(v, b) = (v − b) x̃(b), is
given by a rectangle below the bid allocation rule. Alice’s utility in
Bayes-Nash equilibrium, denoted u(v), is the largest such rectangle.

• Alice’s expected critical bid, denoted B̂ = E[b̂], is given by the area
above the bid allocation rule, i.e., B̂ =

∫∞
0 (1 − x̃(b)) db.

1 Recall, the expected value of a non-negative random variable v ∼ F is given by
E[v] =

∫∞
0 (1 − F (z)) dz, cf. Section A.3 on page 272.
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B̂ = E[b̂]
x̃(·)

u(v, b)
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Figure X.2 Geometry of best-response in the first price auction. The ex-
pected critical bid is the area (light gray) above the bid allocation rule (thin
solid line). The utility from a bid is given by the a rectangle (dark gray)
below the bid allocation rule. The value of the agent can be depicted by
the area of a rectangle (thick dashed outline).

• Alice’s value v can be compared geometrically to the above quantities
as the area of the rectangle of width v and height 1.

Intuitively, either Alice’s utility or her expected critical bid is a large
fraction of her value.

X.1.2 Utility Approximates Value

We formalize the geometric intuition that either Alice’s utility or ex-
pected critical bid is large compared to her value in the following theo-
rem.

Theorem X.2 In any Bayes-Nash equilibrium of any winner-pays-bid
mechanism and for any agent, the expected sum of her utility and her
critical bid is an e/e−1 ≈ 1.58 approximation to her value; i.e.,

u(v) + B̂ ≥ e−1/e v.

One way to prove Theorem X.2 is via a best-response argument. In
particular, BNE utility is at least the utility u(v, b) for any value v and
any deviation bid b; a careful selection of deviation gives the desired
bound. As a warm up, consider deviating to b = v/2 and observe that

u(v, v/2) + B̂ ≥ 1/2 v. (X.1)

Fix any critical bid b̂. If b̂ ≥ v/2, non-negativity of BNE utility implies
inequality (X.1). On the other hand, if b̂ ≤ v/2, then Alice wins by
bidding b = v/2 and her utility is v − v/2 = v/2 as required by (X.1).
Taking expectations of these inequalities over b̂ gives equation (X.1).
This argument is depicted geometrically in Figure X.3.
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Figure X.3 Geometry of equation (X.1): u(v, v/2) + B̂ ≥ 1/2 v. The utility
u(v, b) from deviating to b = v/2 is depicted by the dark gray area; the
expected critical bid B̂ is depicted by the light gray area; the lower bound
on B̂ is crosshatched.

Proof of Theorem X.2 Fix the critical bid b̂, and consider the utility
from deviating to a random bid b drawn from the distribution G on
support [0, e−1/e v] with density function g(z) = 1/v−z. If b̂ ≥ e−1/e v
the inequality of the theorem holds. Otherwise, the utility from such a
deviation is v − b when b ≥ b̂, zero otherwise.

u(v) ≥ u(v, b)

≥
∫ e−1/e v

b̂
(v − b) g(b) db ≥

∫ e−1/e v

b̂
1 db

= e−1/e v − b̂.

Thus, u(v) + b̂ ≥ e−1/e v. The deviation strategy is independent of b̂, so
taking expectation over b̂ yields the theorem.

X.1.3 Revenue Covering Approximation

The next part of the analysis is to bound the sum of the expected critical
bids for any feasible subset of the agents by the expected revenue of the
auction. This analysis is performed for any distribution of bids and does
not, in particular, assume that these bids are in equilibrium. For pay-
your-bid mechanisms, we may as well perform this bound pointwise for
all bid profiles. Such a non-equilibrium pointwise analysis is both easy
and versitile.

Definition X.2 A pay-your-bid mechanism M has revenue covering
approximation µ if, for any profile of bids b and any feasible allocation
y,

Revenue(b) ≥ 1
µ

∑

i
b̂i yi, (X.2)
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where, for bid profile b and mechanism M, Revenue(b) is the revenue
and b̂i is the critical bid of agent i. Mechanism M is revenue covered if
µ = 1.

Of course by taking expectations of both sides of inequality (X.2) for
and distribution of bids b ∼ G, the expected revenue is at least the
expected critical bid of any feasible set of agents y, i.e.,

Eb[Revenue(b)] ≥ 1
µ

∑

i
B̂i yi,

where B̂i = Eb[b̂i] for M as previously discussed.
Notice that in the definition of revenue covering the revenue of the

auction and the critical bids are given by the bid profile and the definition
of the rules of the mechanism. The allocation y is unrelated to the bid
profile and the rules of the mechanisms, it is only constrained by the
feasibility constraint of the single-dimensional allocation problem, as
defined in Section 3.1 on page 54. As alluded to above, analysis of the
approximation µ of revenue covering of any given mechanism in any
given environment is generally straightforward.

Theorem X.3 The first-price auction in single-item environments is
revenue covered, i.e., µ = 1.

Proof First, recall that for the first-price auction the critical bid faced
by an agent is equal to the highest of the other agents’ bids. The revenue
of the auction is the highest bid over all. Thus, the revenue of the auction
Revenue(b) = maxj bj is at least the critical bid b̂i = maxj ̸=i bj of any
agent j. Second, feasibility of y in single-item environments requires that
∑

i yi ≤ 1. Combining these observations,
∑

i
b̂i yi ≤

∑

i
Revenue(b) yi ≤ Revenue(b)

∑

i
yi

≤ Revenue(b).

Similarly, it is a relatively easy exercise to show that the winner-
pays-bid highest-bids-win mechanism for matroid environments (see Sec-
tion 4.6 on page 129) is revenue covered (µ = 1). Not all mechanisms
are revenue covered, in fact, the winner-pays-bid highest-bids-win mech-
anism for the single-minded combinatorial auction environment, one of
the canonical examples of a downward-closed environment that is not a
matroid, is not revenue covered for any µ < m; neither is the winner-
pays-bid highest-bids-win mechanism for the routing environment dis-
cussed in Section 1.1.3 on page 14 (see Exercise X.2).
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Theorem X.4 The winner-pays-bid highest-bids-win mechanism for
matroid environments is revenue covered, i.e., µ = 1.

Proof See Exercise X.3.

Example X.2 In the single-minded combinatorial auction environ-
ment there are n agents and m items. Agent i has value vi for bundle
Si ⊆ [m] (and no value for any other bundle of items). Item j may be
sold to at most one agent. It is assumed that the bundles are known
and the values are each agent’s private information. An allocation x

is feasible for a single-minded combinatorial environment no items are
allocated to multiple agents, i.e., xi = x

i
† = 1 only if Si ∪ S

i
† = ∅.

Consider winner-pays-bid highest-bids-win mechanism for the single-
minded combinatorial auction environment. This mechanism does not
generally have good surplus in BNE; moreover it does not have revenue
covering approximation µ for any µ < m. To show this we need to exhibit
an environment (given by bundles S = (S1, . . . , Sn), a bid profile b, and
feasible allocation y such that the inequality of Definition X.2 is only
satisfied if µ = m.

Consider the environment with n = m+ 1 agents with:

• agent n demanding Sn = {1, . . . ,m}, the grand bundle, and

• agent i ̸= n demanding Si = {i}, a singleton bundle.

Consider the bid profile b = (0, . . . , 0, 1) and feasibile (but not highest-
bids-win) allocation y = (1, . . . , 1, 0). In other words, the agent n de-
manding the grand bundle bids bn = 1 and is not served (y1 = 0), while
singleton agents i ̸= n bid bi = 0 and are served (yi = 1).

The highest-bids-win mechanism’s revenue for bids b is only 1 as it
selects feasible outcome x = b = (0, . . . , 0, 1) that serves only the grand-
bundle agent n. Each singleton agent i ̸= n faces a critical bid of b̂i = 1
as she must beat agent n. As the sum of the feasible critical bids is
∑

i b̂i yi = m, the auction is not a revenue covering approximation for
any µ < m.

In the next sections we will see that the approximation of social surplus
(and revenue, with monopoly reserves) of a Bayes-Nash mechanism is
proportional to its revenue covering approximation µ. Thus, to design a
good Bayes-Nash mechanism it is suffices to design a mechanism with
small revenue covering approximation.
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X.1.4 Social Surplus in Bayes-Nash Equilibrium

Theorem X.2, which shows that utility approximates value, and revenue
covering approximation combine to give a bound on the Bayes-Nash
equilibrium surplus relative to any feasible outcome, including the one
that maximizes social surplus.

Theorem X.5 For any winner-pays-bid mechanism that has a rev-
enue covering approximation of µ ≥ 1, the expected social surplus in
Bayes-Nash equilibrium is an µe/e−1 approximation to the optimal social
surplus.

Proof Consider a valuation profile v and agent i. By Theorem X.2 in
BNE,

ui(vi) + B̂i ≥ e−1/e vi.

Denote by y⋆(v) = argmaxy
∑

i vi yi the surplus optimizing allocation.
Thus,

∑

i vi y
⋆
i (v) = REF(v), the optimal social surplus. Notice that

y⋆i (v) ∈ [0, 1]; thus,

ui(vi) + B̂i y
⋆
i (v) ≥ e−1/e vi y

⋆
i (v).

Sum over all agents i and invoke µ revenue covering:
∑

i
ui(vi) + µE[Revenue] ≥ e−1/e REF(v).

Take expectation over values v from the distribution F and use µ ≥ 1:

µ
(

E[Utilities] +E[Revenue]
)

≥ e−1/eE[REF(v)] .

The theorem follows from observing that the surplus of the mechanism
APX is equal to sum of the utilities of the agents and the mechanism’s
revenue.

As is evident from the statement of Theorem X.5, to show that a
winner-pays-bid auction has good welfare in Bayes-Nash equilibrium it
suffices to show that it has a revenue covering approximation. As we
saw above, the first-price auction has revenue covering approximation of
µ = 1 (Theorem X.3); thus, it is a e/e−1 ≈ 1.58 approximation to social
surplus in any Bayes-Nash equilibrium. In other words, Theorem X.1 is
proved. More generally, winner-pays-bid highest-bids-win matoid mech-
anisms are also a 1.58 approximation to social surplus (by Theorem X.4
and Theorem X.5).
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X.2 Beyond Winner-pays-bid Mechanisms

In this section we will extend the analysis of the preceding section to
mechanisms that do not have winner-pays-bid semantics. This exten-
sion will allow straightforward generalization to all-pay mechanisms and
mechanisms with complex action spaces. A motivating example of a
mechanism with a complex action space is the simultaneous first-price
auction for single-dimensional constrained matching markets, cf. Sec-
tion 4.6.1 on page 131.
In constrained matching markets there are n agents andm items. Each

agent i has a value vi for of any of the items in bundle Si ⊂ [m]. In the
simultaneous first-price auction, each agent selects which items to bid
on and how much to bid, the agents submit bids simultaneously to the
auctions, and each item is sold at the highest bid to the highest bidder.
Importantly, an agent who bids in more than one auction may win more
than one item even though she only has value for one item.
While the simultaneous first-price auction allows multi-dimensional

bids, it is still a single-dimensional game, see Section 2.4 on page 29. Just
as the Bayes-Nash equilibrium characterization for single-dimensional
games is expressed by allocation and payment rules in terms of each
agent’s valuation (Theorem 2.2 on page 31), revenue equivalence suggests
that we can equally well express the allocation and payment rule of the
BNE of any mechanism in terms of the winner-pays-bid implementation
of the BNE.

Definition X.3 Consider any mechanism M, an agent with action
space A in M, and any distribution of other agents’ actions.

• The (interim) action allocation rule xM : A→ [0, 1] maps any action
a ∈ A to a probability of allocation.

• The action payment rule pM : A → [0, 1] maps any action to an
expected payment.

• The (interim, effective) winner-pays-bid allocation rule, denoted x̃(·),
is the smallest monotone function that upper bounds the pointset
given by:2

{(
p
M

(a)/xM
(a), xM(a)

)

: a ∈ A
}

.

• The (interim, effective) expected critical bid B̂ is the area above x̃(·).

Especially for auctions like the all-pay auction, is is not well-defined to

2 Note, if the mechanism M is individually rational then (0, 0) is always in the
pointset.
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B̂
x̃(·)
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+0 +

0

Figure X.4 The pointset of equation X.3 is depicted. The effective winner-
pays-bid allocation rule x̃(·) is the smallest monotone function that upper
bounds the point set. The points strictly below xM(·) are dominated and
correspond to actions that will never be taken. The expected critical bid B̂
is given by the shaded (light gray) area.

talk about the (effective) winner-pays-bid allocation rule without impos-
ing a distribution on actions. The following definition generalizes revenue
covering approximation to mechanisms that do not have winner-pays-bid
semantics.

Definition X.4 A mechanism M has revenue covering approximation
µ if, for any product distribution on action profiles a ∼ G and any
feasible allocation y,

Ea[Revenue(a)] ≥ 1
µ

∑

i
B̂i yi,

where, for action profile a ∼ G and mechanism M, Revenue(a) =
∑

i p
M
i (a) is the mechanism’s revenue and B̂i is the expected (effective)

critical bid of agent i (from her effective winner-pays-bid allocation rule;
Definition X.3).

The developments of the previous section; specifically Theorem X.2
and Theorem X.5; extend without modification to non-winner-pays-bid
mechanisms via Definition X.3 and Definition X.4. The following theo-
rem summarizes.

Theorem X.6 For any individually-rational mechanism that has a
revenue covering approximation of µ ≥ 1, the expected social surplus in
Bayes-Nash equilibrium is an µe/e−1 approximation to the optimal social
surplus.

For example, the following theorem can be shown. From it and Theo-
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rem X.6 we conclude that the all-pay auction is a 2e/e−1 ≈ 3.16 approx-
imation to social welfare.3

Theorem X.7 In single-item environments the all-pay auction is 2 rev-
enue covered.

Proof See Exercise X.5.

X.3 Simultaneous Composition

In this section we consider the simultaneous composition of revenue cov-
ered mechanisms and show that the composite mechanism is itself rev-
enue covered. An example to have in mind is the simultaneous first-price
auction for single-dimensional constrained matching markets that was
described at the onset of the preceding section. We impose three as-
sumptions on the environment of these mechanisms:

(i) The agents are unit-demand with respect to simultaneous allocation
across several mechanisms. In other words, an agent is considered
served if she is served by any of the individual mechanisms in the
composition, and she has no additional value for being served by
multiple mechanisms over being served in a single mechanism. She
must pay for each mechanisms in which she is served.

(ii) Each mechanism is individually rational. This assumption requires
that each agent has an action that gives non-negative utility. In par-
ticular, an agent with value zero must have an action with zero (ex-
pected) payment; we may as well assume that such an agent will also
not be served. This action effectively enables an agent to abstain from
participation in each mechanism.

(iii) The individual environments in the composition are downward closed
and the composite environment is their union environment. In other
words, if x1, . . . ,xm ∈ {0, 1}n are deterministic feasible outcomes for
M1, . . . ,Mm, respectively; then x with xi = maxj x

j
i is feasible for

M.

Definition X.5 Given m mechanisms M1, . . . ,Mj ; the simultanious
composite mechanism M for unit-demand agents is the following:

3 An improved analysis of the surplus of the all-pay auction is available by proving
a version of Theorem X.2 for all-pay-style payment rules. See Exercise X.1.



1012 Bayes-Nash Approximation

• Agent i’s action space in M is Ai = A1
i × · · ·×Am

i where Aj
i is agent

i’s action space for mechanism Mj.

• On action profile a = (a1, . . . ,am) with aj = (aj1, . . . , a
j
n), the out-

come of the mechanism is M(a) = (M1(a1), . . . ,Mm(am)).

• The action allocation rule is xM(a) with xM
i (a) = maxj x

Mj

i (aj).

• The action payment rule is pM(a) with pMi (a) =
∑

j p
Mj

i (aj).

Theorem X.8 Revenue covering approximation is closed under si-
multanious composition; i.e., if mechanisms M1, . . . ,Mm are downward
closed, individually rational, and have revenue covering approximation
µ; then their simultanious composite mechanism M has revenue cover-
ing approximation µ.

The following two lemmas, implied by downward closure and individ-
ual rationality, respectively, enable the proof of Theorem X.8.

Lemma X.9 For the union environment of m downward-closed envi-
ronments, allocation x is feasible if and only if there exists x1, . . . ,xm

feasible for the individual environments that satisfy xi =
∑

j x
j
i for all i

and j.

Proof By definition of feasibility in the union environment, if x1, . . . ,xm

are feasible for the environment of M1, . . . ,Mm, respectively, then

xi = maxj x
j
i (X.3)

is feasible for the union environment of M. Moreover, by downward
closure of each individual mechanism Mj if x is feasible, then there
exists x1, . . . ,xm with each xj feasible for Mj and

xi =
∑

j
xj
i (X.4)

for all i and j. We are able to replace the maximization in equation (X.3)
with the summation in equation (X.4) because downward closure allows
the summation to be reduced to the maximum by removing service from
an agent in all but at most one of the individual mechanisms.

Lemma X.10 For the simultaneous composite mechanism M of m
individually rational mechanisms M1, . . . ,Mm, any agent i, and any
effective winner-pays-bid b ∈ R,

(i) Agent i’s allocation probability with effective winner-pays-bid b is
greater in M than in Mj for any j, i.e., x̃i(b) ≥ x̃j

i (b).
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(ii) Agent i’s expected critical bid is smaller in M than in Mj for any
j, i.e., B̂i ≤ B̂j

i .

Proof Fix any agent i. The pointset of equation (X.3) that defines the
winner-pays-bid allocation rule for i in M contains that of Mj for all j
as one allowable bid in M is to bid only in Mj (by individual rationality
of the other mechanisms). As such, the smallest monotone function that
contains this pointset is higher for M than for Mj, i.e., x̃i(b) ≥ x̃j

i (b)
for all b. As B̂ and B̂j are defined as the area above winner-pays-bid
allocation rules x̃ and x̃j, the former is smaller than the latter.

Proof of Theorem X.8 Consider feasible allocation y for the composite
mechanism and the following sequence of inequalities with explanation
below.

µE[Revenue] ≥
∑

j
µE

[

Revenuej
]

≥
∑

j

∑

i
B̂j

i y
j
i

≥
∑

i
B̂i

∑

j
yji

=
∑

i
B̂i yi.

The first line follows from the definition of revenue as the sum of pay-
ments from all agents in all mechanisms. By Lemma X.9 and the fea-
sibility of y there exists y

1, . . . ,ym which are feasible for M1, . . . ,Mm,
respectively, and satisfy yi =

∑

i y
j
i . The second line follows from revenue

covering of Mj for each j with respect to yj. Swapping the order of sum-
mation and employing the lower bound of B̂i ≤ B̂j

i from Lemma X.10
for all i and j gives the third line. The fourth line is from the definition
of y1, . . . ,ym in terms of y. We are left with the inequality that shows
that M has revenue covering approximation µ.

X.4 Reserve Prices

We will shortly be analyzing the revenue of Bayes-Nash mechanisms like
the first-price auction. As we understand from Chapter 3 and Chap-
ter 4, reserve prices play an important role in revenue maximization.
According to the previous definition of revenue covering approximation
(Definition X.4), auctions with reserve prices are not generally approxi-
mately revenue covered. Revenue covering arguments stem from relating
the critical bid of an agent to potential payments of other agents. For
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B̂v̂

x̃(·)

+1

+0 +
0

+
v̂

Figure X.5 Geometry of best-response in a winner-pays-bid auction with
reserve v̂. The expected critical bid B̂ is the area (light gray solid and
crosshatched) above the bid allocation rule x̃(·) (thin solid line), the ex-
pected critical bid with discounted reserve is the area (light gray solid)
above its cumulative distribution function x̃

v̂
(·) (thick dashed line).

example, in the first-price auction the critical bid of an agent is the max-
imum bid of the other agents, and if this agent does not bid above this
critical bid then this maximum bid of the others is equal to the auction
revenue. With a reserve price, an agent’s critical bid may come from
either bids of others or the reserve price. When the agent does not bid
above her reserve price, the reserve price does not translate into auction
revenue. See Figure X.5.

In this section we alter the framework of analysis to account for reserve
prices. As is evident from Figure X.5, the critical bid B̂ as the area
above the bid allocation rule x̃(·) over counts the contribution to revenue
from the agent’s critical bid. One resolution to this over counting is to
explicitly discount the contribution to B̂ from the reserve. The following
definition captures this idea. Recall the bid allocation rule is equivalently
the distribution function for the critical bid; thus, to discount the reserve
is to assume the critical bid is zero whenever it would otherwise be the
reserve.

Definition X.6 The critical bid with discounted reserve is

b̂v̂ =

{

0 if b̂ ≤ v̂, and

b̂ otherwise.

The cumulative distribution function for the critical bid with discounted
reserve v̂ is x̃v̂(b) = x̃(max(b, v̂)); see Figure X.5; its expected value is:

B̂v̂ = E[b̂v̂] =

∫ ∞

0
(1 − x̃(max(b, v̂))) db.
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x̃(·)

+1

+0 +
0

+
v̂

+
v

+
b

Figure X.6 Geometric demonstration of equation (X.7). The expected dis-
counted reserve B̂ − B̂

v̂
(light gray crosshatched) is at most the expected

payment from bid b (light gray solid and crosshatched). The surplus from
bid b is the utility (dark gray area) plus the expected payment.

X.4.1 Surplus Approximates Value

We now lift the utility approximation of value result of Theorem X.2 for
mechanisms without reserves to mechanisms with reserves.

Theorem X.11 In any Bayes-Nash equilibrium of any mechanism and
for any agent with value v exceeding her reserve v̂, the expected sum of
her surplus and her critical bid with discounted reserve is an e

e−1 ≈ 1.58
approximation to her value; i.e.,

v x(v) + B̂v̂ ≥ e−1/e v. (X.5)

Proof Theorem X.2 states

u(v) + B̂ ≥ e−1/e v. (X.6)

In BNE, an agent with v ≥ v̂ will bid b ≥ v̂ as any lower bid results in
zero utility. Recall that the expected payment of an agent with equilib-
rium bid b is p(v) = b x̃(b); geometrically as b ≥ v̂ this payment exceeds
the amount of B̂ discounted by the reserve (Figure X.6). Thus,

p(v) + B̂v̂ ≥ B̂. (X.7)

Recall that surplus is utility plus payment, i.e., v x(v) = u(v) + p(v).
The proof concludes by adding equation (X.6) to (X.7).

X.4.2 Revenue Covering Approximation

For the appropriate definition of revenue covering approximation with
reserves, revenue covering without reserves implies revenue covering with
reserves.
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Definition X.7 A mechanism with reserves has revenue covering ap-
proximation µ if the revenue covering approximation condition (Defini-
tion X.4) holds with respect to expected critical bids with discounted
reserves.

Theorem X.12 Revenue covering approximation is closed under re-
serve pricing; i.e., if a mechanism M without reserves has revenue cov-
ering approximation µ, then with reserves it has revenue covered approx-
imation µ.

Proof The revenue covering condition with reserves is only weaker as
B̂v̂

i ≤ B̂i for all agents i.

X.4.3 Social Surplus in Bayes-Nash Equilibrium

Theorem X.13 For any individually-rational mechanism with reserves
that has revenue covering approximation µ ≥ 1, the expected social sur-
plus in Bayes-Nash equilibrium is an e/e−1 (1 + µ) approximation to the
optimal social surplus with the same reserves.

Proof Denote the reserves by v̂ = (v̂1, . . . , v̂n). Consider a valuation
profile v. By Theorem X.11, in BNE any agent i with vi ≥ v̂i satisfies,

vi xi(vi) + B̂v̂i
i ≥ e−1/e vi.

Denote by y
⋆(v) = argmaxy

∑

i:vi≥v̂i
vi yi the surplus optimizing al-

location with reserves v̂ (with y⋆i (v) = 0 for i with vi < v̂i). Thus,
∑

i vi y
⋆
i (v) = REF(v), the optimal social surplus with reserves v̂. No-

tice that y⋆i (v) ∈ [0, 1]; thus,

vi xi(vi) + B̂v̂i
i y⋆i (v) ≥ e−1/e vi y

⋆
i (v).

The above equation was derived for agent i with vi ≥ v̂i; however, it
holds trivially for i with vi < v̂i as y

⋆
i (v) = 0 for such agents. Sum over

all agents i and invoke µ revenue covering,
∑

i
vi xi(vi) + µE[Revenue] ≥ e−1/e REF(v).

Take expectation over values v from the distribution F ,

E[Surplus] + µE[Revenue] ≥ e−1/eE[REF(v)] .

The surplus of an individually-rational mechanism always exceeds its
revenue; the theorem follows.
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An example consequence of Theorem X.13 is the following. Moreover,
analogous corollaries hold for the winner-pays-bid highest-bids-win ma-
troid mechanism and the simultaneous composition of revenue covered
mechanisms.

Corollary X.14 For any product distribution on values, first-price
auction with reserves has Bayes-Nash equilibrium surplus that is an
2e/e−1 ≈ 3.16 approximation to the optimal surplus with the same re-
serves.

This approach for treating reserves applies to any mechanism that can
be interpreted as having a reserve price. Importantly, our definition of re-
serves is in value space; while reserves, in the definition of a mechanism,
bind in bid space. For the first-price auction and the simultanious com-
position thereof, these are the same thing. For all-pay auctions, however,
the value at which a bid-based reserve binds is endogenous to the equi-
librium. For all-pay auctions, any bid-based reserves and BNE induce
value-based reserves for which Theorem X.13 holds.

X.5 Analysis of Revenue

We will adapt the framework for Bayes-Nash analysis of the surplus of
mechanisms with reserves to analyze the revenue of Bayes-Nash equi-
librium in mechanisms with monopoly reserves. Recall from Chapter 3
that the expected payment in BNE (and thus revenue) from an agent
with value v ∼ F satisfies Ev[p(v)] = Ev[φ(v)x(v)] with virtual value
function given by φ(v) = v− 1−F (v)

f(v) (see Section 3.3.1 on page 61). The
approach will be to adapt Theorem X.11, which bounds an agent’s BNE
surplus in terms of her value, to bound an agent’s BNE virtual surplus
in terms of her virtual value. Our analysis is necessarily restricted to
regular distributions where the virtual value function φ(·) given above
is monotone non-decreasing (see Definition 3.4 on page 64)

Theorem X.15 In any Bayes-Nash equilibrium of any mechanism
and for any agent with value v exceeding her reserve v̂ and with non-
negative virtual value φ(v), the expected sum of her virtual surplus and
her critical bid with discounted reserve is an e/e−1 ≈ 1.58 approximation
to her virtual value; i.e.,

φ(v)x(v) + B̂v̂ ≥ e−1/eφ(v). (X.8)
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Proof The definition of virtual values for revenue as φ(v) = v− 1−F (v)
f(v)

implies that v ≥ φ(v) or, in other words, φ(v)/v ≤ 1. Thus, relative to
the surplus and value terms of inequality (X.5) of Theorem X.11, the
virtual-surplus and virtual-value terms of (X.8) are scaled downward.
Equivalantly, the expected-critical-bid term on the right-hand side is
relatively scaled upward. Thus, the inequality (X.8) of the present the-
orem is implied by Theorem X.11.

The following theorem is proved as was Theorem X.13 but with the
following key differences. The proof begins with the virtual surplus ap-
proximation of virtual value bound of Theorem X.15 instead of the anal-
ogous bound of Theorem X.11. It finishes by observing, as virtual surplus
and revenue are equal in expectation, that expected virtual surplus plus
expected revenue is exactly twice the expected revenue. Additionally,
the theorem is stated for monopoly reserves and agents with regular dis-
tributions which necessarily excludes from analysis agents with negative
virtual value.

Theorem X.16 For agents with regularly distributed values and any
mechanism with monopoly reserves that has revenue covering approx-
imation µ ≥ 1, the expected revenue in Bayes-Nash equilibrium is an
e/e−1 (1 + µ) approximation to the optimal revenue.

Again, this theorem can be applied to any of the revenue covered mech-
anisms previously discussed. The following corollary is for the first-price
auction, there are similar corollaries for the winner-pays-bid highest-
bids-win matroid mechanism and the simultanious composition of mechansins.

Corollary X.17 For any regular product distribution on values, the
first-price auction with monopoly reserves has Bayes-Nash equilibrium
revenue that is an 2e/e−1 ≈ 3.16 approximation to the optimal revenue.

In Section 5.2 on page 159 we saw that with sufficient competition
the surplus maximizing mechanism (without reserves) approximates the
revenue optimal mechanism (e.g., Theorem 5.4). Similar sufficient com-
petition results extend to revenue covered mechanisms. One such defini-
tion of sufficient competition is that there are at least two agents from
each distribution that are in direct competition with each other. The
following theorem is an example.

Theorem X.18 For any regular product distribution on values with
at least two agents with values drawn from each distinct distribution,
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the first-price auction has Bayes-Nash equilibrium revenue that is an
3e/e−1 ≈ 4.75 approximation to the optimal revenue.

Proof See Exercise X.6.

X.6 Revenue Covering Optimization

We have seen that the revenue covering approximation of a mechanism
governs its Bayes-Nash approximation with respect to both social sur-
plus and revenue. We now consider the problem of optimizing the rules of
a mechanism to minimize its revenue covering approximation. The moti-
vating example will be that of single-minded combinatorial auctions. We
saw that the winner-pays-bid highest-bids-win mechanism for m-item
single-minded combinatorial auctions is not a revenue covering approx-
imation of µ for any µ < m (Example X.2). Faced with this negative
result, the question remains to identify a winner-pays-bid mechanism
that obtains a non-trivial revenue covering approximation. Importantly,
such a mechanism will have to choose a suboptimal, in terms of sum of
bids, set of winners.
The running example for this section will be a single-minded combi-

natorial auction environment for n agents and m items. Each agent i has
value vi for obtaining bundle Si ⊂ [m]. Two agents that desire the same
item, i.e., i and i† with Si ∪ S

i
† ̸= ∅, cannot simultaneously be served.

The section culminates by showing that a winner-pays-bid mechanism
based on a simple greedy heuristic has a revenue covering approximation
of
√
m.

X.6.1 Non-bossiness, Approximation, and Greedy
Algorithms

The difficulty of single-minded combinatorial auctions is that one agent
can block many other agents that could be simultaneously served. It
could be optimal to serve the blocked agents, but in equilibrium the
blocking agent bids enough to dissuade any of the blocked agents from
individually deviating to win. In Example X.2 this situation was exhib-
ited with one agent demanding the grand bundle [m] and many agents
each demanding a single item; the grand-bundle agent then blocked all
the singleton agents. When the grand-bundle agent bids 1, and the sin-
gleton agents bid 0, then the deviation bid that any singleton agent
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must make to win is 1. Since their values in the example are 1, this
deviation does not improve the singleton agent’s utility. Of course, the
singleton agents would win if the sum of their bids exceeds the grand-
bundle agent’s bid of 1. Thus, as as one of the singleton agent increases
her bid — though, all other bids unchanged, she continues to lose — the
critical bids of all other singleton agents are reduced. This bad property
is precisely what inhibits revenue covering approximation. The following
definition formalizes the non-exhibition of this property.

Definition X.8 A mechanism is subcritically non-bossy if for any bid
profile b, critical bids b̂, and any other bid profile where losers may in-
crease their bids up to their critical bids, i.e., b† with b†i ∈ [bi,max(bi, b̂i)],
the same set of agents win under b and b†.4

To solve the combinatorial auction problem we are going to have to
replace the highest-bids-win allocation rule with an allocation rule that
is does not maximize the sum of the bids of the agents served. There are
two potential loses from such an allocation rule. First, there is the direct
loss from the fact that the allocation rule chooses a suboptimal set of
bids. Even if there is a feasible set of agents with high bid sum, its revenue
could be low. Second, there is the indirect loss from strategization on the
part of the agents. The highest-bids-win allocation rule suffers no direct
losses, but prohibitively in indirect losses. On the other hand, the first-
price auction for the grand bundle, i.e., where only one agent ever wins
her desired bundle, suffers prohibitive direct losses but, as the first-price
auction is revenue covered, suffers no indirect losses with respect to the
optimal mechanism that only serves one agent). Ideally both direct and
indirect losses should be kept small. The following definition formalizes
a bound on the direct loss in terms of approximation.

Definition X.9 A mechanism (APX) with ex post bid allocation rule
x̃(b), which maps a profile of bids to an allocation, is a β approximation
to highest-bids-win (REF) if

APX(b) =
∑

i
bi x̃i(b) ≥ 1/β maxx bi xi = REF(b).

We now show that in a subcritically non-bossy mechanism the only

4 This definition adopts the convention that ties in the bid allocation rule, when
any loser increases her bid to equal her critical bid, are broken in favor of the
current winners. The arguments below can be made without this tie-breaking

convention by considering b
† with losers bidding b†i ∈ [bi,max(bi, b̂i − ϵ)] for an

arbitrarily small ϵ.
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loss in surplus is the direct loss from the non-optimality of the bid allo-
cation rule, i.e., there is no indirect loss.

Theorem X.19 A winner-pays-bid subcritically non-bossy mechanism
that is a β approximation to highest-bids-win has a revenue covering
approximation of µ = β.

Proof Fix a bid profile b, the critical bid profile b̂, and any feasible al-
location y. Denote the bid allocation rule by x̃(b) = (x̃1(b), . . . , x̃n(b)) ∈
{0, 1}n. Denote the maximum subcritical bid profile b† with b†i = max(bi, b̂i).
Subcritical non-bossiness requires allocation to be unchanged if all losers
increase their bids to their critical values, i.e., x̃(b†) = x̃(b).
The following sequence of equations implies that the mechanism has

revenue covering approximation µ = β; formal justification for each
equation follows.

Revenue(b) =
∑

i
bi x̃i(b)

=
∑

i
b†i x̃i(b)

=
∑

i
b†i x̃i(b

†)

≥ 1

β

∑

i
b†i yi

≥ 1

β

∑

i
b̂i yi.

The first equation is by definition of winner-pays-bid mechanisms. The
second equation is the equality of bi and b†i = max(bi, b̂i) where winning
(x̃i(b) = 1) implies bi ≥ b̂i. The third equation is by subcritical non-
bossiness, as discussed above. The fourth equation follows by the β-
approximation optimality of x̃(·) on b†. The fifth and final equation
follows from the definition of b†i = max(bi, b̂i) ≥ b̂i. We conclude that
the mechanisms has a revenue covering approximation of µ = β.

Theorem X.19 shows that to find winner-pays-bid mechanisms that
are revenue covered it suffices to find a subcritically non-bossy mech-
anism that is a good approximation to highest-bids-win. A greedy al-
gorithm is one that sort the agents by some priority and then serve
each agent if it is feasible to do so given the agents previously served
by the algorithm. Greedy algorithms are a standard design methodol-
ogy in the field of approximation algorithms and they have important
consequences for mechanism design. For example, we saw in Section 4.6
on page 129 that greedy algorithms are optimal in ordinal environments
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such as those given by a matroid set system. Subsequently, we will see
that greedy algorithms are approximately optimal in some environments
and mechanisms based on them are wining-bids non-bossy.

Definition X.10 For any downward-closed environment and any pro-
file of priority functions ϑ = (ϑ1, . . . ,ϑn), the greedy-by-priority algo-
rithm:

(i) Sort the agents in decreasing order of priority ϑi(vi) (and discard all
agents with negative priority).

(ii) Initialize x← 0 (the null assignment).
(iii) For each agent i (in sorted order), set xi ← 1 if (1,x−i) is feasible.

(I.e., serve i if i can be served alongside previously served agents.)
(iv) Output allocation x.

Theorem X.20 The greedy-by-priority bid allocation rule is subcriti-
cally non-bossy.

Proof Fix a profile of bids b, critical bids b̂, and maximum subcritical
bid profile b

† with b†i = max(bi, b̂i). Consider varying a single losing bid
i on the range [0, b̂i] and simulating the algorithm. Wherever this bid
arises in the sorted order of agents by priority, since bi ≤ b̂i, it must
be infeasible to serve the agent. Thus, this agent is discarded and all
decisions by the algorithm to serve or not to serve any other agents are
unaffected. The same holds for all losing agents simultaneously. For any
winning i, b†i = bi which is unchanged; for any losing agent i, b† = b̂i
which is unchanged. Thus, the bid allocation rule is subcritically non-
bossy.

X.6.2 Single-minded Combinatorial Auctions

We now instantiate the approach of the preceding section to design a
single-minded combinatorial auction that has a non-trivial revenue cov-
ering approximation. Theorem X.19 and Theorem X.20 imply that to
find a winner-pays-bid mechanism that is revenue covered, it suffices to
identify a profile of priority functions ϑ such that the greedy-by-priority
algorithm obtains a good approximation to highest-bids-win. We now
consider this task and identify an priority for which greedy-by-priority
is a β =

√
m approximation and, thus, has a revenue covering approxi-

mation of µ =
√
m.

We begin by considering two extremal approaches, both of which yield
only m approximation, and then look at trading off these extremes to
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get the desired
√
m approximation. The first failed approach to consider

is greedy by bid, i.e., the prespecified sorting criterion in the static greedy
template above is by agent bids, i.e., the priority function is the identity
ϑi(bi) = bi. This algorithm is bad because it is an m approximation
on the following n = m + 1 agent input. Agents i, for 0 ≤ i ≤ m, have
Si = {i} and bi = 1; agentm+1 has bm+1 = 1+ϵ and demands the grand
bundle Sm+1 = {1, . . . ,m} (for some small ϵ > 0). See Figure X.7(a)
with A = 1 and B = 1 + ϵ. Greedy-by-bid orders agent m+ 1 first, this
agent is feasible and therefore served. All remaining agents are infeasible
after agent m + 1 is served. Therefore, the algorithm serves only this
one agent and has surplus 1 + ϵ. Of course highest-bids-win serves the
m small agents for a total surplus of m. The approximation factor of
greedy-by-bid is the ratio of these two performances, i.e., m.
Obviously what went wrong in greedy-by-bid is that we gave prefer-

ence to an agent with large demand who then blocked a large number
of mutually-compatible small-demand agents. We can compensate for
this by instead sorting by bid-per-size, i.e., ϑ(bi) = bi/|Si|. Greedy by
bid-per-size also fails on the following n = 2 agent input. Agents 1 has
S1 = {1} and b1 = 1 + ϵ and agent 2 has b2 = m demands the grand
bundle S2 = {1, . . . ,m}. See Figure X.7(b) with A = 1 + ϵ and B = m.
Greedy-by-bid-per-item orders agent 1 first, this agent is feasible and
therefore served. Agent 2 is infeasible after agent 1 is served. Therefore,
the algorithm serves only agent 1 and has surplus 1+ϵ. Of course highest-
bids-win serves agent 2 and has surplus of m. The approximation factor
of greedy-by-bid-per-item is the ratio of these two performances, i.e., m.
The flaw with this second algorithm is that it makes the opposite

mistake of the first algorithm; it undervalues large-demand agents. While
we correctly realized that we need to trade off bid for size, we have only
considered extremal examples of this trade-off. To get a better idea for
this trade-off, consider the cases of a single large-demand agent and
either m small-demand agents or 1 small-demand agent. We will leave
the bids of the two kinds of agents as variables A for the small-demand
agent(s) and B for the large-demand agent. Assume, as in our previous
examples, that mA > B > A. These settings are depicted in Figure 8.1.
Notice that any greedy algorithm that orders by some function of bid

and size will either prefer A-bidding or B-bidding agents in both cases.
TheA-preferred algorithm has surplusAm in them-small-agent case and
surplus A in the 1-small-agent case. The B-preferred algorithm has sur-
plus B in both cases. The Highest-bids-win outcome, on the other hand,
has surplus mA in the m-small-agent case and surplus B in the 1-small-
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(a) m small agents.
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1 1 3 · · · m
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B

(b) 1 small agent.

Figure X.7 Challenge cases for greedy orderings as a function of bid and
bundle size.

agent case. Therefore, the worst-case approximation for A-preferred is
B/A (achieved in the 1-small-agent case), and the worst-case approxima-
tion for B-preferred is mA/B (achieved in the m-small-agent case). These
performances and worst-case ratios are summarized in Figure X.8.

m small agents 1 small agent approximation
highest-bids-win mA B 1

A-preferred mA A B/A
B-preferred B B mA/B

Figure X.8 Performances of A- and B-preferred greedy algorithms and their
approximation to highest-bids-win in worst-case over the two cases.

If we are to use the greedy algorithm design paradigm we need to
minimize the worst-case ratio. The approach suggested by the analysis of
the above cases would be trade off A versus B to equalize the worst-case
approximation, i.e., when B/A = mA/B. Herem was a stand-in for the size
of the large-demand agent. The suggested algorithm is greedy by bid-per-
square-root-size which orders the agents by the priority ϑ(bi) = bi/

√
|Si|.

The tradeoff above can be observed explicitly in the in the proof of
Theorem X.21, below.

Theorem X.21 For m-item single-minded combinatorial auctions en-
vironments, the greedy by bid-per-square-root-size algorithm is a β =

√
m

approximation to highest-bids-win.

Proof Let APX represent the greedy by bid-per-square-root-size algo-
rithm and its surplus; let REF represent the optimal algorithm and its
surplus. Let I be the set selected by APX and I⋆ be the set selected by
REF. We will proceed with a charging argument to show that if i ∈ I
blocks some set of agents Ci ⊂ I⋆ then the sum of bids of the blocked
agents is not too large relative to the bid of agent i.
Consider the agents sorted (as in APX) by bi/

√
|Si|. For an agent i⋆∈ I⋆

not to be served by APX, it must be that at the time it is considered
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by the greedy algorithm, another agent i has already been selected that
blocks i⋆, i.e., the bundles Si and Si

⋆ have non-empty intersection. Intu-
itively we will charge one such agent i with the loss from not accepting
agent i⋆. We define Ci as the set of all i⋆ ∈ I⋆ that are charged to i as
described above. Of special note, if i⋆ ∈ I, i.e., it was not yet blocked
when considered by APX, we charge it to itself, i.e., Ci

⋆ = {i⋆}. Notice
that the sets Ci for winners i ∈ I of APX partition the winners I⋆ of
REF.
The theorem follows from the inequalities below. Explanations of each

non-trivial step are given afterwards.

REF =
∑

i
⋆∈I

⋆ bi⋆ =
∑

i∈I

∑

i
⋆∈Ci

bi⋆ (X.9)

≤
∑

i∈I

bi√
|Si|

∑

i
⋆∈Ci

√

|Si
⋆| (X.10)

≤
∑

i∈I

bi√
|Si|

∑

i
⋆∈Ci

√
m/|Ci| (X.11)

=
∑

i∈I

bi√
|Si|

√

m |Ci| (X.12)

≤
∑

i∈I
bi
√
m =

√
m ·APX . (X.13)

Line (X.9) follows because Ci partition I⋆. Line (X.10) follows because
i⋆ ∈ Ci implies that i precedes i⋆ in the greedy ordering and therefore
b⋆i ≤ bi

√
|S

i
⋆|/
√

|Si|. The demand sets Si
⋆ of i⋆∈ Ci are disjoint (because

they are a subset of I⋆ which is feasible and therefore disjoint). Thus, we
can bound

∑

i
⋆∈Ci

|Si
⋆| ≤ m. The square-root function is concave and

the sum of a concave function is maximized when each term is equal,
i.e., when |Si

⋆| = m/|Ci|. Therefore,
∑

i
⋆∈Ci

√

|Si
⋆| ≤

∑

i
⋆∈Ci

√
m/|Ci|

and line (X.11) follows. Line (X.12) follows from independence of the
inner summand on i⋆. Finally, line (X.13) follows because the bundle Si

⋆

of each agent i⋆∈ Ci is disjoint but contain some demanded item in Si

and, therefore, |Ci| ≤ |Si|.

We conclude the section with the following corollary. The first part
is a consequence of Theorem X.19, Theorem X.20, and Theorem X.21.
The second part is a consequence of the first part and Theorem X.5. The
third part is a consequence of the first part and Theorem X.16.

Corollary X.22 For m-item single-minded combinatorial auction en-
vironments, the winner-pays-bid greedy-by-value-per-square-root-size mech-
anism has revenue covering approximation µ =

√
m; its surplus in

Bayes-Nash equilibrium is an e/e−1
√
m approximation to the optimal
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surplus; and with monopoly reserves and regular distributions its rev-
enue is an e/e−1 (1 +

√
m) approximation to the optimal revenue.

Exercises

X.1 Consider an all-pay auction and show an analogous utility value
covering to Theorem X.2. Specifically, in BNE,

u(v) + B̂ ≥ 1/2 v,

where B̂ is the expected critical bid of the agent. Combine this
result with revenue covering (with respect to the all-pay-bid allo-
cation rule) to show that the expected social surplus of the all pay
auction is a two approximation to the optimal social surplus.

X.2 Consider the single-dimensional routing environment discussed in
Section 1.1.3 on page 14 where there is a graph G = (V,E), each
agent i has a message to send from source vertex si ∈ V to target
vertex ti ∈ V (public knowledge) and a private value vi for sending
such a message. A feasible outcome is given by an edge disjoint
collection of paths in the graph. Show that the winner-pays-bid
highest-bids-win mechanism is not µ ≤ d revenue covered where
d is the diameter of the graph, i.e., the maxumum over pairs of
vertices of the shortest path between the pair.

X.3 Show that the winner-pays-bid highest-bids-win auction for ma-
troid environments is 1 revenue covered, i.e., prove Theorem X.4.

X.4 Consider the single-minded combinatorial auction problem of Ex-
ample X.2. The optimization problem of selecting the feasible set
of agents with the highest sum of bids corresponds to the weighted
set packing problem which is NP-hard (cf. Section 1.1.3 and Chap-
ter 8). The following greedy algorithm is known to be a

√
m ap-

proximation, i.e., it always finds a feasible subset of agents with
bids that sum to at least a

√
m fraction of the sum of the optimal

feasible set of bids (see Theorem 8.2 on page 245).

(a) Sort the bids bi by bi/|Si|.
(b) Considering the bids in this order, accept a bid if it is feasible

with previously accepted bids.

Prove that the mechanism that selects winners with this greedy
algorithm and charges each winner her bid has revenue covering
approximation

√
m.
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X.5 Show that with respect to the effective winner-pays-bid allocation
rule (Definition X.3) the all-pay auction is 2 revenue covered, i.e.,
prove Theorem X.7.

X.6 Prove Theorem X.18. Consider a single-item environment with
agent values drawn from regular distributions with least two agents
with values drawn from each distinct distribution. Show that the
first-price auction has Bayes-Nash equilibrium revenue that is an
3e/e−1 ≈ 4.75 approximation to the optimal revenue.

Chapter Notes

Vickrey (1961) posed the question of solving for the equilibrium in the
first-price auction and two agents with values drawn from the uniform
distribution with asymmetric supports. The solution when the lower
bound of the supports is the same, as in the U [0, 1] and U [0, 2] case of
Example X.1, was given by Griesmer et al. (1967). The general case of
two agents with arbitrary uniform distributions was solved by Kaplan
and Zamir (2012).
The quantification of the disutility of equilibrium versus the social sur-

plus maximizing outcome is known as the price of anarchy. This topic of
study was initially proposed by Koutsoupias and Papadimitriou (1999).
It was applied to (full information) congestion games by Roughgarden
and Tardos (2002), cf. the routing game of Section 1.1 on page 2. Rough-
garden (2012a) abstracted the canonical price of anarchy analysis as
what is referred to as the smoothness framework. Roughgarden (2012b)
and Syrgkanis and Tardos (2013) generalize this smoothness framework
to games of incomplete information and auctions, respectively. There has
been extensive study of the price of anarchy of specific auction games to
which detailed reference is omitted. This text focuses on an adaptation
of the smoothness paradigm to single-dimensional agents that was given
by Hartline et al. (2014).
The proof that the sum of utility and critical bid approximate an

agents value for first-price auctions that is given in this text is from
Syrgkanis and Tardos (2013); an alternative geometric argument can be
found in Hartline et al. (2014). The improved analysis of the all-pay auc-
tion of Exercise X.1 is based on Syrgkanis and Tardos (2013). A smooth-
ness framework for analyzing the simultaneous composition of auctions
was first given by Syrgkanis and Tardos (2013); the analysis given here
is the refinement of Hartline et al. (2014) for single-dimensional agents.
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The analysis of revenue in Bayes-Nash equilibrium is from Hartline et al.
(2014).
The relationship between revenue covering approximation and greedy

algorithms is a recasting of the main result of Lucier and Borodin (2010)
into the analysis framework of Hartline et al. (2014).
The analysis of Syrgkanis and Tardos (2013) is more general than

the one presented here primarily in that it allows for multi-dimensional
agent preferences. They also give numerous results that are not covered
here, one such result is for the sequential composition of mechanisms,
i.e., when mechanisms are run one after the other.


