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Approximation for Multi-dimensional and
Non-linear Preferences

Approximation for multi-dimensional and non-linear agents is more ur-
gent than for single-dimensional linear agents. For single-dimensional
linear agents, Chapter 3 described optimal mechanisms. Chapter 4 then
considered whether simple or practical mechanisms were approximately
optimal. In contrast Chapter 8, which presented optimal mechanisms
for agents with multi-dimensional or non-linear preferences, only solved
families of environments where the optimization problem can be suffi-
ciently simplified to be analytically tractable. In this chapter we show
that these results can be generalized to a much broader family of envi-
ronments with approximation.

Approximation can expose the implicit structure of multi-dimensional
and non-linear mechanism design problems. As a first example, for the
objective of revenue maximization, we will see that unit-demand agents
who desire one of several alternatives are similar enough to single-dimensional
representatives who compete with each other to purchase their corre-
sponding alternative on behalf of the original agent (cf. the represen-
tative environment of Definition 8.6.3 on page 297). Single-dimensional
agents are, of course, well understood by the developments of Chapter 3.
As a second example, for revenue maximization in service constrained
environments, we will see that even in environments with agents that
are highly non-revenue-linear, marginal revenue is an important quan-
tity that guides the design of (approximately) optimal mechanisms.

Approximation can also show that simple and practical mechanisms
are pretty good relative to complex and impractical optimal mecha-
nisms. For example, posted pricing mechanisms like those considered in
Chapter 4 are approximately optimal in many multi-dimensional envi-
ronments. Of course, the surplus maximization mechanism with reserve
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prices always does as well as a posted pricing (that obtains its perfor-
mance guarantee under any arrival order of the agents, i.e., obliviously).

Prior-independent approximation is also possible for agents with multi-
dimensional and non-linear preferences (cf. Chapter 5). For example,
for single-dimensional but non-linear agents the first-price auction is
(prior-independent and) often a good approximation to the optimal
mechanisms for both the objectives of welfare and revenue. For multi-
dimensional matching environments, supply limiting mechanisms, e.g.,
where the surplus maximization mechanism is used with an additional
constraint that only half the agents are served, are prior-independent
and give good approximation to the optimal revenue. Both of these re-
sults can be viewed as generalizations of the Bulow-Klemperer Theorem
(Theorem 5.2.1 on page 160). Generalizations of the (prior-free) random
sampling auction (Definition 7.4.3 on page 240) to multi-dimensional
and non-linear preferences are also known. These results, however, will
not be further discussed in this text.

9.1 Single-agent Approximation

Our first order of business will be to address the complexity of the (un-
constrained) single-agent problem for unit-demand preferences. The op-
timal mechanism for a single agent with unit-demand preferences is gen-
erally a lottery pricing that is given by menu of probability distributions
over the alternatives with corresponding prices. This optimization prob-
lem can be described by a linear program (Section 8.8.7), but does not
generally have closed-form solutions. Lottery pricings are complex and,
in many circumstances, unnatural; while deterministic pricings of the
alternatives are simple and prevalent in practice. For m-alternative en-
vironments such a deterministic pricing offers a menu with m outcomes

Chapter 9: Topics Covered.

item and bundle pricing,

multi-dimensional virtual values (revisited),

the marginal revenue mechanism (revisited),

the representative environment for unit-demand agents (revisited),
multi-dimensional posted-pricing mechanisms, and
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L]
L]
L]
e (multi-dimensional) matching markets.
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that correspond to the pricing of each alternative (as well as the trivial
outcome of obtaining none of the alternatives at a price of zero). When
the alternatives correspond to items that are for sale, such a pricing is
an item pricing.

An important special case is when the agent’s values for each alterna-
tive are drawn independently. In this case there a natural item pricing
that is a two approximation to the optimal item pricing. The importance
of this result is that the natural item pricing is given by a closed-form
solution and can be understood in terms of the single-dimensional the-
ory of virtual values developed in Chapter 3. Moreover, the optimal item
pricing approximates the revenue of optimal lottery pricing. Of course,
these two results can be combined to show that a simple item pricing
approximates the optimal lottery pricing.

An important model in between the cases where the agent’s values for
distinct alternatives are independently distributed or arbitrarily corre-
lated is the case where there are k items, m = 2% — 1 non-trivial bundles
of items, the agent’s value for each item is independently distributed,
and the agent’s value for a bundle is the sum of her values for the in-
dividual items in the bundle." In this model either posting individual
prices for each item or posting a single price for the grand bundle (i.e.,
all items together) is a constant approximation to the optimal revenue.

Some form of independence of the agent’s values for the alternatives
is required for the existence of simple approximation mechanisms. When
the agent’s values are drawn from general correlated distributions, the
above results generally cease to hold. There are not simple, intuitive
item pricings that give good approximations to the optimal item pricing.
Moreover and even for m = 2 alternatives, neither does the optimal item
pricing approximate the optimal lottery pricing nor, more generally, does
any finite menu of lotteries.

In the subsections below these results are formally developed.

9.1.1 Item Pricing

Consider mechanisms that post a price for each alternative and permit
the agent to purchase her favorite alternative at its price. When the
alternatives correspond to items, this form of mechanism is called an
item pricing. Any deterministic mechanism for a single unit-demand
agent is a deterministic pricing of alternatives.

Y The term bundle simply refers to any subset of the items.
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Identifying good item pricings is difficult. Unlike the optimal lottery
pricing which is given by the solution to a linear program, the opti-
mal item pricing problem is not convex. Specifically, convex combina-
tions of item pricings are not item pricings. One consequence of this
non-convexity is that the optimal item pricing in a symmetric environ-
ment may not be symmetric (see Exercise 9.1). Another consequence
of this non-convexity is that there is no simple description of optimal
item pricings. Therefore, the first issue we encounter in an attempt to
find an approximation for this single-agent problem is that we really
do not understand the optimal mechanism very well. We will take the
usual approach to such a situation and identify an upper bound that is
analytically tractable.

Consider the following thought experiment. We have a seller facing a
single unit-demand agent who wishes to buy one of m items. Consider
the representative environment where this unit-demand agent is replaced
with m single-dimensional representatives with the unit-demand prefer-
ence reinterpreted as a feasibility constraint that at most one represen-
tative can be served (recall Definition 8.6.3). Would a seller prefer to be
in the original environment or in the representative environment; i.e.,
in which environment can the seller obtain a higher revenue? Intuition
suggests that the seller should prefer the representative environment as
competition between representatives should produce a higher revenue.
The following theorem shows that this intuition is correct for determin-
istic mechanisms.

Theorem 9.1.1. For a unit-demand agent with independent values, the
revenue of the optimal auction for the (single-dimensional) representa-
tive environment is at least the revenue for the optimal item pricing in
the original (unit-demand) environment.

Proof. This proof follows a common approach for this chapter. The ap-
proach is to construct from any item pricing for the original environment
an auction for the representative environment and to argue that the auc-
tion obtains at least the revenue of the item pricing.

Consider the item pricing £ = (f,,...,%,,) for the original environment.
Notice that the allocation rule of the item pricing is to serve the agent
the alternative j* that maximizes ¢ i —t i if non-negative and, otherwise,
nothing. Fixing all coordinates of the type except for j, the allocation of
alternative j is monotone in fj. Therefore, Theorem 2.5.1 implies that
the same allocation rule, for the representative environment, corresponds
to a dominant strategy mechanism. Importantly, in this mechanism, the
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representative who wins is the one who corresponds to the alternative
that the original unit-demand agent selects. The revenue in the original
environment is simply fj*; the revenue in the representative environ-
ment is the minimum bid that representative j* must make to win. This
minimum bid is at least fj*. Therefore, the auction revenue exceeds the
item-pricing revenue. (|

While revenue of the optimal lottery pricing may exceed the revenue of
the optimal item pricing, it is nonetheless interesting to consider whether
it is easy to approximate the optimal item pricing (e.g., via an item pric-
ing that is easy to find and understand). Using the optimal representative
revenue as an upper bound on the optimal item pricing revenue, we can
easily attain such a bound. In fact, the revenue of an item pricing is lower
bounded by the revenue we would obtain if the agent buys the cheap-
est priced alternative instead of her utility maximizing alternative, i.e.,
when her values for several alternatives are above their corresponding
prices, if instead of choosing to maximize ¢; — fj she chose to mini-
mize ¢;. For single-dimensional agents, Section 4.2.1 discussed the factor
by which oblivious posted pricings (i.e., tie-breaking by minimum price)
approximate optimal auctions. Theorem 4.2.3, specifically, employed the
prophet inequality (Theorem 4.2.1) to show that uniform virtual pric-
ing is a two approximation to the optimal auction. The following is a
corollary of this theorem and the above upper bound (Theorem 9.1.1).
Recall that a uniform virtual pricing ¢ gives prices (ty,...,t,,) satisfy-
ing ¢, (fj) = ¢ for all j where ¢, is the single-dimensional virtual value
function for distribution Fj of alternative j.

Corollary 9.1.2. For a unit-demand agent with independent values,
the revenue of a uniform wvirtual item pricing is a two approximation
to the optimal representative revenue (and the the optimal item-pricing
revenue).

Generally — for asymmetric type distributions — the uniform virtual
item pricing of Corollary 9.1.2 is asymmetric. From the discussion of
Section 4.4, however, we saw that that anonymous pricing is often a good
approximation to the optimal auction in the representative environment.
Specifically, the analyses of anonymous pricings given in Corollary 4.4.2,
Corollary 4.4.3, and Theorem 4.4.5 can also be combined with the unit-
demand upper bound (Theorem 9.1.1) to give bounds on the revenue
of uniform item pricing, i.e., posting the same price for each item, to
unit-demand agents. These bounds approximately extend the optimality
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of uniform item pricing for a unit-demand agents with type from the
uniform distribution on [0, 1] and, more generally, from item-symmetric
ratio-monotone distributions (Section 8.8; Definition 8.8.2).

Corollary 9.1.3. For a unit-demand agent with independent values, a
uniform item pricing is often a constant approximation to the optimal
item-pricing revenue (and the optimal representative revenue). Specifi-
cally, its approximation is at most

(i) ¢/e—1~ 1.582 for regular and identical distributions,
(i) two for identical (but irregular) distributions, and
(iil) e~ 2.718 for reqular (but non-identical) distributions.

9.1.2 Revenue Upperbounds via Amortization

Consider the single-agent unit-demand problem of designing a mecha-
nism to maximize the revenue of the seller. Deterministic mechanisms
are equivalent to the item pricings that were discussed in the previous
section whereas randomized mechanisms are equivalent to lottery pric-
ings. A lottery is a probability distribution over outcomes. For instance,
for the m = 2 alternative case, a lottery could assign either alternative
1 or alternative 2 with probability /2 each. Lotteries do not have to
be uniform, i.e., they can be biased in favor of some alternatives, and
they do not have to be complete, i.e., there may be some probability
of assigning no alternative. A lottery pricing is then a set of lotteries
and prices for each. For such a lottery pricing, the agent chooses the
lottery and price that give her highest utility given her valuation of the
alternatives (see Section 8.8.7 on page 331).

The following example shows that lottery pricings can give higher
revenue than item pricings. There are two alternatives (and one agent).
The agent’s value for each alternative is distributed independently and
uniformly from the interval [5,6]. The optimal item pricing for this en-
vironment to set a uniform price of about 5.097 for each alternative.
IL.e., the agent is offered the option to buy alternative 1 at price 5.097
or to buy alternative 2 at price 5.097. For this item pricing, the agent
buys the alternative that she values most as long as her value for that
alternative is at most 5.097. Such a two-dimensional allocation rule is
depicted in Figure 9.1(a). Now consider adding the additional option of
buying at a lower price of 5.057 a lottery that realizes to alternative 1
or alternative 2 each with probability /2. Notice that if the agent was
previously buying one of the items but is nearly indifferent between the
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(a) Item pricing. (b) Lottery pricing.

Figure 9.1. Depicted are the allocation regions for item pricing (¢,%) and
lottery pricing {((0, 1), 9), ((1,0), 0), (1/2,1/2), GT)} The pricing and lotter-
ies divide the valuation space into regions based on the preferred outcome of
the agent. The diagonal line that gives the lower left boundary of the region
where the lottery is preferred is the solution to the equation t; +t, = of.

two alternatives then she will prefer the lottery at the lower price. On
the other hand, without the lottery option if the agent had average value
bigger than 5.057 but no individual value over 5.097, the agent would
buy nothing. Therefore, by adding this lottery option revenue is lost for
some types of the agent and gained for others. The losses and gains can
be compared to conclude that adding the lottery increases the expected
revenue of the pricing. Figure 9.1(b) depicts the allocation rule that ad-
ditionally offers the lottery option. (A similar example is described in
detail in Section 8.8.3 beginning on page 311.)

This non-optimality of deterministic mechanisms in multi-dimensional
environments contrasts with single-dimensional environments where there
is always an optimal mechanism that is deterministic. For instance, with
a lexicographical tie-breaking rule, the virtual surplus maximization
mechanism of Chapter 3 chooses a winner deterministically. Nonethe-
less, the gap between the item pricing revenue and the lottery pricing
revenue in the example above is small. In the next few sections we will
prove that the gap between simple deterministic mechanisms remains
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small when the agent’s values for the different alternatives are indepen-
dently distributed.

Proceeding to develop a theory for approximating the optimal (possi-
bly randomized) mechanism in multi-dimensional environments, a cru-
cial step is in identifying an analytically tractable upper bound on
the revenue of the optimal mechanism. We just saw that the single-
dimensional representative environment gave such an upper bound on
optimal deterministic mechanisms (Theorem 9.1.1). The intuition for
this bound was that the increased competition of the representative en-
vironment allowed the optimal mechanism for it to obtain more revenue
than that of the original unit-demand environment. This intuition turns
out to not be entirely correct when randomized mechanisms are allowed.
In particular, there are examples where the optimal lottery pricing ob-
tains more revenue than the optimal single-item auction for the repre-
sentative environment.

The approach of multi-dimensional virtual values described in Sec-
tion 8.8 beginning on page 305 facilitates the identification of an an-
alytically tractable upper bound. Per Definition 8.8.4, a virtual value
function must satisfy three properties.

(i) Amortization of revenue: the expected virtual surplus of any mecha-
nism must exceed its expected revenue;
(ii) incentive compatibility: a point-wise virtual surplus maximizer is in-
centive compatible; and
(iii) tightness: the expected virtual surplus of the virtual surplus maxi-
mizer is equal to its expected revenue.

While identifying a virtual value function, which by definition satisfies
all three of these properties, is difficult; identifying an amortization of
revenue, i.e., a function that satisfies only the first property, is easy.
Specifically, per Definition 8.8.6 there is a canonical amortization of rev-
enue corresponding to any decomposition of the type space into paths.
Such an amortization is sufficient for identifying an upper bound on the
optimal revenue.

For product distributions the following definition of multi-dimensional
amortizations of revenue that are constructed from the single-dimensional
ironed and non-ironed virtual values will enable the bounding of the
optimal multi-dimensional mechanism’s revenue, like Theorem 9.1.1, in
terms of the optimal mechanism for the single-dimensional representa-
tive environment.

The subsequent analysis of this section will apply generally to agents
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with linear utility for subsets of k items. Linear utility for a type ¢,
allocation x, and payments p is expressed as t - x — p where ¢ - x is the
dot product 3 {t};{z};. In Section 9.1.3 this analysis will be applied to
unit-demand agents (which have been under sole consideration up to this
point; unit-demand agents are additive with the additional constraint
that at most one item is allocated). In Section 9.1.4 this analysis will
be applied to additive agents (where a bundle of items can be allocated
to the agent). In Section 9.1.5 we show that the assumption that the
distribution is independent across the items is crucial. Generally with
correlated items no simple (e.g., deterministic) mechanism approximates
the optimal mechanism.

Definition 9.1.1. For product distribution F = F| X ---x F},, the multi-
dimensional extensions of the single-dimensional non-ironed and ironed
virtual value functions are the vector fields ¢MD and QBMD, respectively,
defined as follows:

@) {6"7@0)); = ;7 ({th;0). {67 @)} = 677 ({t};), and

i) {67} = (8"}, = {1},

where item j* € argmaxj{t}j is the favorite item, item j # j* ranges
over all other items, and where ¢fD(U) and qng(v) are the single-dimensional

non-ironed and ironed virtual value functions, specifically, qbe(v) =v—
1=F;()/f,(v) and q?)fD is derived from (;5?D by ironing (see Section 3.3.5).

Theorem 9.1.4. For an agent with linear utility and values drawn from
a product distribution, the multi-dimensional extensions of the single-
dimensional non-ironed and ironed virtual value functions (¢MD and
QBMD in Definition 9.3.2) are amortizations of revenue.

The high-level approach to proving this theorem is given below with
key lemmas stated and proved later in this section.

Proof. Consider the special case of the theorem where the value for
item 1 is drawn according to distribution F} and all other values are
constant. On this special case the type space is a path (more precisely,
a line).

(i) On the path special case, Lemma 9.1.5 (which follows directly from
the analysis in Section 8.8.3, specifically Theorem 8.8.3) implies that
the vector field defined by the single-dimensional marginal price-
posting revenue on each coordinate is an amortization of revenue.
This vector field is identical to ¢™P (for the path special case).
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(ii) On the path special case, Lemma 9.1.7 implies that the vector field
defined by the single-dimensional marginal revenue on each coordi-
nate is an amortization of revenue. This vector field is identical to
(EMD (for the path special case).

(iii) Lemma 9.1.8 implies that for any threshold ¢ and single-dimensional
distribution (e.g., F}), the single dimensional non-ironed virtual value
functions, for both the distribution and the distribution conditioned
on values at least 0, are identical on values at least .

(iv) Lemma 9.1.9 extends Lemma 9.1.8 to ironed virtual value functions
where the ironed virtual value of the conditional distribution is at
most that of the unconditioned distribution.

(v) Lemma 9.1.10 shows that a vector field for a type space and distri-
bution is an amortization of revenue if there exists a partitioning of
type space such that it is an amortization of revenue on each part.

These points combine as follows. Partition type space into the paths
(actually lines) where the value for the favorite item is constant. For
these paths the distribution of the value for the favorite item is the
conditioned on the value being at least the value of any other item.
By (i) and conditioned on each such path, the single-dimensional non-
ironed virtual value for each coordinate is an amortization of revenue.
By (iii) the conditional single-dimensional non-ironed virtual value for
the favorite item is the same as the unconditional non-ironed virtual
value for the favorite item. Thus, the vector field (bMD defined for the
full space is an amortization of revenue on each path. Finally, by (v),
(bMD is an amortization of revenue for the full type space.

Similarly, (i), (iv), and (v) imply that ¢ is an amortization of
revenue for the full type space. O

The following notation will facilitate stating and proving the lemmas
required in the proof of Theorem 9.1.4. For our original problem type
t is drawn from the product distribution F' = F} x --- X F,,,. A path
problem is specified in quantile space by 7 : [0,1] — 7T (see Defini-
tion 8.8.1). The path induces distributions for each item F,..., F,,.
For example {7(¢)}; with quantile ¢ ~ U[0,1] is distributed according
to Fj, ie., F;({r(q9)};) = 1 — ¢. Single-dimensional price-posting rev-
enue curves for the induced distribution for each item are, e.g., P;(q) =
q{7(q)};, i-e., posted price {7(q)}, for item j bought with probability g.
The single-dimensional non-ironed virtual value for item j is (;5]le (v) =
v —1-F;()/f,(v) and, for ¢ satisfying v = {7(q)};, it equals the marginal
price-posting revenue Pj(q) = {7(q) + q7'(¢)};. (Recall that 7(q) is
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non-increasing in quantile and, thus, T’(q) is vector with non-positive
coordinates.) The revenue curve R;(g) is the smallest concave function
that upper bounds the price-posting revenue curve P;(g). The ironed
virtual value is ¢5° (v) equal to R}(q) for v = {7(q)};. With this nota-
tion and discussion, we now prove the lemmas that comprise each step
of the proof of Theorem 9.1.4.

The correctness of QSMD, the multi-dimensional extension of the single-
dimensional non-ironed virtual value functions, as an amortization of
revenue for the special case of paths is a fairly directly consequence
of Theorem 8.8.3 which shows that for paths that are monotonically
non-increasing in each coordinate of type space, the vector field of the
marginal price-posting revenues is an amortization of revenue.

Lemma 9.1.5. For an agent with value for item 1 drawn from distri-
bution F; and values for other items specified deterministically (e.g., by
distributions that are entirely a pointmass), the multi-dimensional exten-
sion of the single-dimensional non-ironed virtual value functions (quD
in Definition 9.3.2) is an amortization of revenue.

Proof. For paths, Theorem 8.8.3 characterizes the expected revenue of
any mechanism (z,p) as:

E[p(m(a))] = E[z(7(q)) - P(q)] — u(r(1))

where P'(q) = (P, (q), ..., Pp,(q)) is the vector of marginal price-posting
revenue curves corresponding to quantile g. Since utility is non-negative
for individually rational mechanisms, we obtain the bound:

Elp(r(9))] < E[x(7(q)) - P'(q)]

Observe for pointmass distributions j # 1, that the marginal price-
posting revenue is identically equal to the value of pointmass (formu-
laically we have Pj(q) = {7(q) + q7'(q)}; where {7'(¢)}; = 0); thus,
Pi(q) = jS-D({T(q)}j) = {7(q)};. For alternative 1, by the equivalence of
marginal price-posting revenues and non-ironed virtual values, we have
P/(q) = ¢7°({7(¢)}1). Thus, the vector field ¢™P is an amortization of

revenue for the path special case of the lemma. O

The one way to show the correctness of qZ;MD, the multi-dimensional
extension of the single-dimensional ironed virtual value functions, as
an amortization of revenue for the special case of paths, is to show
that under any incentive compatible mechanism the expected amortized

surplus according to (;EMD is at least that of quD. To do so we need to
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better understand the constraint imposed by incentive compatibility on
a multi-dimensional allocation rule.

Lemma 9.1.6. Fach coordinate j of the allocation rule x of an in-
centive compatible mechanism is monotonically non-decreasing in that
coordinate, i.e., H{=®)};/o{ty; > 0 for all j.

Proof. By Theorem 2.5.1 the utility u is convex and its gradient is the
allocation rule. Considering coordinate j and fixing other coordinates,
the utility u(t) is convex in {t}; and, thus, the allocation probability
{z(t)}; = 9u®/a{1}; of item j is monotonically non-decreasing in {t},.

O

Lemma 9.1.7. For an agent with type for item 1 drawn from dis-
tribution Fy and other items specified deterministically (e.g., by dis-
tributions that are entirely a pointmass), the multi-dimensional exten-
sion of the single-dimensional ironed virtual value functions @MD mn
Definition 9.3.2) is an amortization of revenue.

Proof. Denote by y(g) the multidimensional allocation rule in quantile
space, i.e., y(q) = x(7(q)) and write y'(¢q) = d'vé—(qq) as the vector of deriva-
tives of the allocation probabilities of each alternative with respect to

quantile. Write the difference in amortized surplus as:
E, 6" ((a)) = " (7(0))] - 2(7(a)) |
=E,[R'(¢) - P'(@)] - v(9)]

> 0.

The second line transforms to quantile space. The third line follows from
integration by parts. The fourth line follows from the equality of R and
P at the endpoints ¢ = 0 and ¢ = 1, the inequality R(q) > P(q) on the
interior ¢ € (0, 1), and the non-positivity of 3’ (from Lemma 9.1.6). [

We now consider any single-dimensional distribution and compare the
mapping from types to virtual values for the distribution and the distri-
bution conditioned on values exceeding a given threshold. Specifically,
we show that the non-ironed virtual values of the two distributions are
the same on values above the threshold, and the ironed virtual values
for the unconditioned distribution are at least the ironed virtual values
of the conditioned distribution. Both of these observations are relatively
straight forward.
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Lemma 9.1.8. For any single-dimensional distribution F' and any thresh-
old v, the non-ironed virtual values of the conditional distribution (on
values at least the threshold) equal those of the original distribution.

Proof. Denote the single-dimensional mapping from quantiles to values
by v(q) = F~'(1 — ¢). Non-ironed virtual values for the original distri-
bution are ¢°°(v(q)) = P'(q) = v(q) + q¥/(q). Let § satisfy v(§) = ©
where conditioning on values exceeding © corresponds to conditioning
on quantiles lying below ¢. Denote the conditioned distribution by F' f,
Thus, the marginal price-posting revenue for the conditional distribution
is diqPT (q) = VT(q) + qdl'f(q)/dq. The mapping from values to quantiles
for the conditional distribution scales as v'(q) = v(q§). Notice that
Wl @)fag = dvad)/ag = q§v/(q4). Thus, £P'(q) = v(gd) +¢d+/'(¢d) =
P'(qq). O

Lemma 9.1.9. For any single-dimensional distribution F' and any thresh-
old o, the ironed virtual values of the conditional distribution (on values
at least the threshold) are at most those of the original distribution.

Proof. Let ¢ be the quantile corresponding to ¥. Compare the price-
posting revenue curve P on the full quantile interval [0,1] with the
price-posting revenue curve on the truncated interval [0, §]. The smallest
concave function that upper bounds P on [0,1] (namely, R) is at least
the smallest concave function that upper bounds P on [0, q|. Specifi-
cally, if there is an ironed interval that contains ¢, the ironed curve for
the truncated interval will be lower than the ironed curve for the full
interval. This lower curve will have a smaller derivative (corresponding
to a smaller ironed virtual value). On the other hand, for ironed inter-
vals that do not contain §, the concave upper bound on the truncated
interval and the full interval are the same. Thus, the marginal revenue
at any quantile on the truncated interval is no more than the marginal
revenue on the full interval.

By the arguments of Lemma 9.1.8 this relation between the marginal
revenues for the truncated interval [0, §] and the full interval [0, 1] cor-
respond to the same relation for the ironed virtual value functions. [

The final ingredient of the proof of Theorem 9.1.4 is to show that a
vector field is an amortization of revenue on the full type space if it is an
amortization of revenue on each part of a partition of type space. This
statement is formalized and proved as follows.
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Lemma 9.1.10. Given type space T, distribution over types F, parti-
tioning of types into subspaces T = SWyus@y .. ., and conditional
® of types in subspace s for each ¢; a vector field ¢
is an amortization of revenue for T and F if it is an amortization of
revenue for S and £ for each L.

distributions F

Proof. Fix any incentive compatible mechanism (z, p) for the whole type
space 7. This mechanism is incentive compatible for each of its subspaces
as each type t € 7 not preferring the outcome of each type s € 7 to her
own implies that t € T © does not prefer the outcome of s € T to her
own. The revenue of this mechanism is the convex combination of the
revenue of the mechanism on each subspace. The amortization of qb(z) on
type space T with distribution F) implies that ¢ is an amortization
of revenue for type space 7 and distribution F'. Specifically:

E[p(t)] =) Elp(t)|t e s Prlte 5]
<> Elo) )t SO Pr[t € sY]
=E[¢(t) - z(t)]. O

9.1.3 Item Pricing versus Lottery Pricing

We now show that the advantage that a lottery pricing has over a single-
item auction in the representative environment is at most a factor of two
and that the advantage lottery pricing has over item pricing is at most a
factor of four. These two results are corollaries of the following theorem.

Theorem 9.1.11. For a unit-demand agent with independent values,
the sum of revenues of the second price auction with and without lazy
monopoly reserves in the single-dimensional representative environment
upper-bounds the revenue for the optimal lottery pricing for the original
unit-demand environment.

Proof. Denote by REF the optimal amortized surplus of the multi-
dimensional extension of the single-dimensional ironed virtual value func-
tions (¢ from Definition 9.3.2) with a unit-demand constraint. Let
FAVE denote the optimal amortized surplus according to ¢ from only
selling the favorite item. L.e., FAVE is the optimal amortized surplus ac-
cording to vector field ¢"*VE that equals ¢ on the coordinate of the
favorite item and is zero on other the coordinates of non-favorite items.
Notice that FAVE is identically the revenue from the second-price auc-

tion with lazy monopoly reserves: the virtual surplus of the second price
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auction with lazy monopoly reserves is the non-negative virtual value
of the representative with the highest value. Let NONFAVE denote the
optimal amortized surplus according to (EMD without selling the favorite
item (but possibly selling any of the other items). I.e., NONFAVE is the
optimal amortized surplus according to (ENONFAVE that equals éMD on
the coordinate of the non-favorite items and is zero on the coordinates
of the favorite item. Notice that NONFAVE is the revenue of the second
price auction in the representative environment. Of course the optimal
amortized surplus REF is at most the optimal amortized surplus from
selling the favorite item FAVE plus the optimal amortized surplus from
selling the non-favorite items NONFAVE. Thus, the theorem holds. O

Corollary 9.1.12. For a unit-demand agent with independent values,
the revenue of the optimal auction for the single-dimensional representa-
tive environment is a two approzimation to the revenue for the optimal
lottery pricing for the original unit-demand environment.

Proof. The proof of this corollary follows from Theorem 9.1.11 and the
fact the the optimal revenue for the representative environment upper
bounds the second-price revenue with and without lazy reserves. O

Corollary 9.1.13. For a unit-demand agent with independent values,
a uniform virtual pricing is a four approximation to the optimal lottery
Pricing.

Proof. The proof of this corollary follows from Corollary 9.1.12 and
Corollary 9.1.2, the latter of which states that a uniform virtual pricing
is a two approximation to the optimal mechanism for the representative
environment. |

As with the previous comparison to optimal item pricing, uniform
item pricings also give constant approximations to the optimal lottery
pricing under various distributional assumptions.

Corollary 9.1.14. For a unit-demand agent with independent values,
a uniform item pricing is often a constant approximation to the optimal
lottery revenue. Specifically, its approzimation is at most

(i) 2¢/fe—1 ~ 3.164 for regular and identical distributions,
(i1) four for identical (but irreqular) distributions, and
(iil) 2e ~ 5.437 for regular (but non-identical) distributions.

The following theorem improves on the first part of Corollary 9.1.14
and approximately extends the optimality of uniform pricing for ratio
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monotone distributions (Theorem 8.8.7 on page 318) to environments
where the agent’s values for each alternative is independently, identi-
cally, and regularly distributed. The main idea in the proof of this theo-
rem is that the amortization of revenue given by the multi-dimensional
extension of the favorite alternative projection (Definition 8.8.8) can be
used to show that the sum revenues of the second-price auction and the
optimal uniform pricing upper bound the optimal lottery revenue.

Theorem 9.1.15. For a unit-demand agent with independently, iden-
tically, and regularly distributed values, a uniform item pricing is a
2e—1/e—1 =2 2.58 approximation to the optimal lottery pricing revenue.
For k = 2 alternatives, the bound improves to /3 = 2.33.

Proof. See Exercise 9.2. O

9.1.4 Additive Values

Consider selling m = 2F _ 1 alternatives that correspond to non-trivial
bundles of k items to an agent who has additive values for the items. In
other words, the agent’s value for a bundle of items is the sum of the
agent’s values for the individual items in the bundle. Thus, agent’s type
is given by a k-tuple which expresses the value that she assigns to each
item. Like in the previous sections, the agent’s values for each item will
be independently but not identically distributed.

Item pricing is a natural and prevalent selling mechanism for such
an environment. An item pricing specifies a price for each item and the
agent then chooses to buy all the items for which her value exceeds the
price. This mechanism is used predominantly in retail, both online and
and in brick and mortar stores.

Bundling all of the items together is also a common selling mechanism.
As an example, online movie and music streaming services often charge
a flat monthly rate that allows any movie or song in the online catalog
to be viewed or listened to. Intuitively, bundle pricing can be better
than item pricing for additive agents. The agent’s value for a bundle is
the sum of her value for each item in the bundle and, given that the
agent’s values for the items are independent, her value for the bundle is
more concentrated around its expectation than the individual items are.
Bundle pricing is often able to take advantage of this concentration to
extract most of the surplus.

In this section we show that one of these two common approaches is
always pretty good.
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Theorem 9.1.16. For an additive agent with values for each item drawn
independently, either selling the items separately at the optimal price for
each item or bundling the items together and optimally setting the bundle
price is a six approximation to the revenue of the optimal mechanism.

As usual, the proof of this theorem comes from comparing an up-
per bound on the revenue of the optimal mechanism to the revenue
of an approximation mechanism. One such upper bound is given by
the amortized surplus of the multi-dimensional extension of the single-
dimensional ironed virtual value functions (Definition 9.3.2; Theorem 9.1.4).
Recall that this amortization of revenue is defined by vector field éMD
with {GMP(1)}+ = 650 ({t),+) and ("D (1) = {1}, for j* = argmax, {1},
and j # 5~

It will be helpful to separate the upper bound of the optimal revenue
from the identified amortization into three parts as each part will be
analyzed using different methods. One part is the contribution to the
amortization from the favorite item. The other two parts partition non-
favorite-item values into high values and low values by decomposition
threshold ©¢. The threshold v is chosen to be low enough that the bound
it imposes on values below it implies that the sum of those values con-
centrates, and high enough that the contribution to the amortization
from non-favorite-item values above it is small.

Lemma 9.1.17. For an agent with additive values drawn from a product
distribution and decomposition threshold ¥, the revenue of the optimal
mechanism REF is upper bounded by the sum of three terms:

e CORE: the expected surplus from values that are at most v,

e TAIL: the expected surplus from non-favorite-items with values at least
v, and

e FAVE: the expected amortized surplus from non-negative favorite-item
amortized values.

Proof. This lemma follows from mapping the types to the amortized val-
ues given by the multi-dimensional extension of the single-dimensional
ironed virtual value functions (Definition 9.3.2) and considering the out-
come that optimizes amortized surplus. This outcome allocates to the
agent each item j for which the jth coordinate of the amortized value is
non-negative. CORE and TAIL decompose the amortized surplus for the
non-favorite items while FAVE accounts for the favorite items. (There
may be incidental double counting of amortized value from favorite
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items in FAVE with the amortized values from values less than ¢ in

CORE.) O

Our approximation mechanism, APX, has expected revenue that is
the maximum of the expected revenue from optimally pricing individual
items, ITEM, and the expected revenue from optimally pricing the grand
bundle, BNDL; i.e., APX = max(ITEM, BNDL). We will now bound
the individual terms of the bound on REF < CORE + TAIL + FAVE
by the individual components of APX, namely ITEM and BNDL, for
decomposition threshold chosen to be v = ITEM.

Lemma 9.1.18. The revenue from selling only the favorite item is no
more than the revenue from item pricing: FAVE < ITEM.

Proof. FAVE sells the agent her favorite item at that item’s monopoly
price. ITEM sells the agent each item at the item’s monopoly price. The
latter has higher amortized surplus and thus exceeds the former. [l

Lemma 9.1.19. For decomposition threshold v = ITEM, the surplus
from high-valued non-favorite items is at most the revenue from item
pricing: TAIL < ITEM.

Proof. This proof is based on identifying item pricings within the cal-
culation of TAIL and upper bounding their revenue by the revenue of
the optimal item pricing ITEM. Consider the contribution of item j to
TAIL. Item j with value v > v contributes to TAIL when it is not the
favorite item. Thus, its contribution to TAIL is

TAIL;(v) = v - Pry_p {aﬂ #35, {t} > U:|
v - E,SNFH{jJr : {t}jf > U}H

= “the revenue from uniformly pricing with price v”
<ITEM.

IN

The total contribution from item j for all values v > ¢ = ITEM is thus

TAIL; < ITEM -Pr,_p [v > ITEM]
J

= “the revenue from posting price ITEM for item j”
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Summing over all items
TAIL = TAIL;
Zj J

“the revenue from uniformly pricing with price ITEM”

<
<ITEM. O

The final step in the proof of Theorem 9.1.16 is bounding CORE in
terms of the revenues of item pricing ITEM and bundle pricing BNDL.
This bound is based on showing that CORE, a sum of the agent’s values,
is concentrated. When an item j contributes to CORE it is bounded
from above by 9. To show that CORE concentrates, we show that the
contribution of each item to the variance of CORE is low. Specifically,
the variance of a distribution is bounded by twice the product of its
range and its monopoly revenue.

Lemma 9.1.20. The variance of a distribution F' on support [0, h] with
monopoly revenue R* is at most 2 h R,

Proof. The variance E[(v — E[v])?] of a random variable is upper bounded
by its second moment E[v®]. A distribution F on range [0, k] with monopoly
revenue R* is stochastically dominated by the equal revenue distribu-
tion on [R*, h] which has distribution function F(z) = 1 — B’/=, density
function f7(z) = £'/22, and a pointmass of '/ at h. Thus, the second
moment of F' is upper bounded by the second moment of F' T, which is:

h h
E, ,i[v’] =1 B/ + / 22 f1(z)dz = hR* + / R*dz <2h RO
R* R*
Lemma 9.1.21. For decomposition threshold v = ITEM, the surplus
from low-valued items is at most the revenue from item pricing plus three
times the revenue from bundle pricing: CORE < ITEM +3 BNDL.

Proof. First, the variance of CORE is at most 2 ITEM?. For each item
J, consider truncating distribution F; at ¢ by moving probability mass
from all v > 9 to zero; call this truncated distribution FJT. By defini-
tion CORE = E i _ .t {Zj{tT}j] This operation bounds the resulting
distribution by ¢ and only lowers its monopoly revenue. Therefore, by
Lemma 9.1.20, the variance of the truncated distribution is at most twice
© times the monopoly revenue of the original distribution, namely 2 ¢ R;.
As CORE is the expectation of the sum of values contributed from each
item, the variance of this sum is bounded by the sum of the bounds on
the variances of each of these values, i.e., 20 y R;. The decomposition
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threshold 9 is assumed in the lemma to be the optimal item pricing
ITEM and, by definition, ITEM = Zj R;. Thus, the variance of the

sum of values that contribute to CORE is at most 2 ITEM?

Second, a posted price of o' = CORE — ITEM for the grand bundle
is accepted with probability at least 1/3. By Cantelli’s inequality (Math-
ematical Note on page 356) we bound the probability that the agent
accepts the bundle price by

Pr, . {Zj{t}j > CORE — ITEM] >Pr, {Zj{t}j > CORE — ITEM}
2 ITEM” 1
2 ITEM? + ITEM? 3’

Concluding, BNDL > 1/3(CORE —ITEM). Rearranging, we have the
statement of the lemma: 3 BNDL +ITEM > CORE. O

The proof of Theorem 9.1.16 simply puts the preceding lemmas to-
gether.

Proof of Theorem 9.1.16. Combining Lemma 9.1.17, Lemma 9.1.18, Lemma 9.1.19,
and Lemma 9.1.21 with o = ITEM and with approximation mechanism
APX = max(ITEM, BNDL), we have

REF < FAVE + TAIL + CORE
< ITEM +ITEM +3 BNDL + ITEM
<6 APX. O

9.1.5 Inapproximability for Correlated Distributions

Previously in this section we showed that, for an agent with values for
items drawn from an independent distribution and either unit-demand
or additive preferences, simple mechanisms like item pricings are a con-
stant approximation to the revenue-optimal mechanism (which generally

Mathematical Note. Cantelli’s inequality, also known as the one-sided
Chebyshev inequality gives a tail bound on a random variable Z with
mean p and variance o as

2

Pr[X >pu—N>1-—
(X >p—A > T

for non-negative \.
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prices lotteries, i.e., randomized allocations). In this section we show
that, generally for correlated distributions, no simple mechanism is a
good approximation to the optimal mechanism.

We will discuss first the case of an additive agent where type ¢t and
outcome and payment (z, p) gives utility t-o—p where t-z = 3 {t}; {z},
is the dot product between t and z, both treated as vectors. At the end
of the section we extend the result to unit-demand agents.

The main idea behind this construction is finding a sequence of al-
locations z € [0,1]* such that (a) the dot product of the allocation
with itself is significantly greater than the dot product of an allocation
with any previous allocation in the sequence and (b) the minimum differ-
ence between these terms, defined as the “gap” below, is non-decreasing.
These properties are helpful because they will enable the construction
of a corresponding sequence of types and prices such that (a) the type
that corresponds to an outcome does not prefer earlier outcomes in the
sequence and (b) later outcomes in the sequence are higher priced.

Definition 9.1.2. Given a sequence of allocations € = (x1,zq,...) in
[0, l]k, a sequence 8 = (01,0,,...) in [0,k] is a gap sequence for x if it
satisfies

5i§xi‘xi_ﬁri‘xif
for each i and it <i. The gap sequence’s total gap is § =, 0;.

Lemma 9.1.22. For a sequence of allocations & and its corresponding
gap sequence 9, an agent with type t = v x; prefers outcome (x;,p;) with
p; = v0; to the outcome of any previous allocation at any mon-negative
price.

Proof. Type t’s utility for outcome (z;, p;) is v (x;-z;—9;). Type t’s utility
for any previous outcome (z,,p;+) in the sequence is upper bounded
by her surplus for the outcome vx; - z+. By the definition of gap d;,
x; - x; — 0; > x; - w1 thus, she prefers outcome (z;,p;). O

Lemma 9.1.23. If a sequence of allocations has mon-decreasing gap,
then for a non-decreasing sequence of values (vy,vy,...), prices of the
form p; = v; 0; are non-decreasing.

Proof. Immediate. O

Example 9.1.1. Consider the all-bundles sequence € = (x1,...,%,,)
with all m = 2% — 1 non-trivial bundles of the k items ordered from
smallest to largest bundle size, i.c., by 3 {x;};.



3584 pproximation for Multi-dimensional and Non-linear Preferences

To identify a gap sequence & for x, notice that the dot product 2ol for
vectors in {0, l}k, representing bundles of the k items, simply counts the
number of items that are contained in both bundles. Thus, we can choose
0; = 1: A bundle x; with size £ has z; -x; = £ and x; - x+ < L —1 for
all i’ < i. For the second part, notice that the bundle x + must have only
have the same or fewer items number of items in it. In both cases, the
number of items in common with x; is at most £ — 1. (This construction
is tight, there is an it < with zixg=0-1)

The total gap of the sequence is § =Y ", 6; =m = ok 1.

Our goal now is to use a sequence of allocations with high total gap
to define a distribution over types where both item pricing and grand
bundle pricing have small revenue but a more complex pricing has high
revenue. To do so, we will be defining a type ¢; and a price p; for every
allocation z; in the sequence and choosing a suitable distribution over
types F' given by probability mass function f; = Pr, p[t =¢;]. The
allocations and prices give a menu from which each type would select
the outcome that maximizes its utility.

The construction will satisfy three properties: the expected revenue for
item pricing is low; the expected revenue from outcomes in the sequence,
if each type chooses its corresponding outcome, is high; and the ith type
t; prefers the ith outcome (z;,p;) to all lower priced outcomes. The
revenue from the optimal mechanism is at least the revenue from the
constructed menu which is at least the revenue that would be obtained
of each type selected its corresponding outcome.

Theorem 9.1.24. For a single-agent k-item environment and any se-
quence of allocations x in [0, 1]k with non-decreasing gaps 8 (Definition 9.1.2),
there is a type distribution for an additive agent such that the revenue
from pricing k individual items or bundling the k items together is at
most 2k while the optimal revenue is the total gap § =, 0;.

Proof. The construction of the type distribution is the following:

i
Ui:27

ti:'l}

fi=2""

i Lis



9.1 Single-agent Approximation 359

Consider the menu of outcomes {(x1,p1), (x2,p2),...} with p; defined
as:

Pi = v; 0;.

By Lemma 9.1.22, the ith type does not prefer the outcome of any
of the previous types it <. By Lemma 9.1.23, the prices of outcomes
of subsequent types are non-decreasing. Consequently, each type ¢ con-
tributes at least p, = v; §; to the revenue. The expected revenue is at
least >, p; fi =, vid0; fy =3_;0; = 0.

Now consider the revenue from posting a price for item j. The value of
the agent for item j is v; {x;}; < v; with probability f;. The probability
that the agent buys item j if it is priced at v; = 2" is at most Dot [ <
27! Thus, the expected revenue from the item is, for any price, at
most 2. Summing over all k items, the total revenue of any item pricing
is bounded by 2k.

The argument for bounding the revenue from posting a price for
the grand bundle is similar. Type t;’s value for the grand bundle is
v; >_;{xi}; < vi k. The probability that the agent has value at most v; k
for the grand bundle is at most Zﬂm‘ fi < 271 The revenue from any
pricing of the grand bundle is at most 2k. [l

The following corollary, which shows that simple pricing can be ex-
ponentially bad, is immediate from applying Theorem 9.1.24 to the all-
bundles sequence of Example 9.1.1 which has total gap § = ok — 1.

Corollary 9.1.25. For single-agent k-item additive-values environments,
there is a correlated distribution on the agent’s values for the items such

that neither pricing individual items or pricing the grand bundle is bet-

ter than a 2k_1/2k approzimation to the optimal pricing of the 2k 1

non-trivial bundles.

The all-bundles allocation sequence gives a separation between the
revenues of simple pricings, of either individual items or the grand bun-
dle, and the pricing of the m = 2% —1 non-trivial bundles (all determinis-
tic allocations). The optimal mechanism, however, may price randomized
allocations, i.e., lotteries. The following theorem shows that there is an
infinite separation in revenue between simple mechanisms with a finite
number of outcomes and complex mechanisms with an infinite number
of (randomized) outcomes even in the special case where there are only
k = 2 items. The proof is based on constructing an infinite sequence of
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allocations which has infinite gap. For this sequence, unlike the one de-
scribed above, the gaps are decreasing; however, they decrease at a slower
rate than the values are increasing in the construction of Theorem 9.1.24
and, thus, prices are decreasing as is sufficient for the theorem’s proof.

Theorem 9.1.26. For single-agent 2-item additive-value environments,
there is a correlated distribution on the agent’s values for the items such
the expected revenue of the optimal mechanism is infinite, while any
mechanism that prices only a finite number of allocations has only finite
revenue.

Thus far this section has considered agents with additive valuations.
Specifically the agent’s value for an allocation is linear and given by ¢ -z
for allocations x that satisfy the supply constraint {z}; < 1 for each
item j. The main results of this section; specifically Theorem 9.1.24,
Corollary 9.1.25, and Theorem 9.1.26; extend to unit-demand agents for
which, relative to an additive agent, the supply constraint is tightened
so that at most one of the k items is allocated, i.e., > {z}; < 1. Given
a mechanism for additive agents it can be converted to a mechanism for
unit-demand agents by dividing the allocation probabilities and prices
by k, the number of items. This change reduces the revenue of the mech-
anism by exactly a factor of k. As the values of the agent are defined as a
scaled allocation, i.e., t; = v; x;, in the construction of Theorem 9.1.24;
reducing the allocation probabilities by a factor of k also reduces the
agent’s values for individual items by a factor of k which reduces the
revenue of any item pricing by a factor of k. Thus, the approximation
factor of Theorem 9.1.24 is unchanged in its modification to unit-demand
agents.

Theorem 9.1.27. For any sequence of allocations x in [0, 1]k and non-
decreasing gaps & with total gap 6 = Y, 0; (Definition 9.1.2), there is
a type distribution for a unit-demand agent such that the revenue from
item pricing is at most 2 while the optimal revenue is 9/k.

As both Corollary 9.1.25 and Theorem 9.1.26 are proved by exhibit-
ing sequences of allocations with large total gap and applying Theo-
rem 9.1.24; both of these results extend to unit-demand agents.

Theorem 9.1.28. For single-agent 2-item unit-demand environments,
there is a correlated distribution on the agent’s values for the items such
the expected revenue of the optimal mechanism is infinite, while any
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mechanism that prices only a finite number of allocations has only finite
revenue.

9.2 Multi-agent Approximation in Service
Constrained Environments

This section considers the approximation of optimal mechanisms for
agents with multi-dimensional and non-linear preferences in service con-
strained environments (Definition 8.3.1). One example of such an en-
vironment is that of selling a single item to one of several agents with
public budget preferences (Example 8.2.1). Another example is selling a
single item that has multiple configurations (i.e., alternatives) to one of
several unit-demand agents (for example, a digital movie download that
can be with or without subtitles in various languages).

Recall from Section 8.4 beginning on page 265 that, when the single-
agent problems are revenue linear, there is a relatively simple mecha-
nism that is optimal, namely the marginal revenue mechanism (Defini-
tion 8.4.3). Optimization of marginal revenue is a guiding principle of
microeconomics and, though it is not always optimal to do so, in this
section we will see that it is often approximately optimal.

The marginal revenue framework from Section 8.4 relates the sin-
gle agent mechanism design problems with interim and ex ante allo-
cation constraints. Recall that optimal single-agent revenue given an
interim allocation constraint § is denoted by Rev[j] and is the max-
imum revenue obtained by mechanisms with allocation rule y that is
no stronger than g, i.e., for all § the cumulative allocation rules sat-
isfy Y(g) < Y((j) The marginal revenue for allocation constraint ¢ is
MargRev[j] = E,[R'(q) §(q)] where R(g) is the § ex ante optimal rev-
enue. Equivalently, R(§) = Rev[§?] where the allocation constraint (-)
is defined as the reverse step function from 1 to 0 at g.

Definition 9.2.1. With n agents with revenue curves R = (Ry,..., R,),
optimal surplus given by OPT(.), and quantiles ¢ = (qq,-..,q,) uni-
formly drawn from [0,1]"; the optimal marginal revenue is E, [OPT(R'(q))].

The next two sections give two methods for showing that the opti-
mal marginal revenue is a good approximation to the optimal revenue.
The first method uses properties of the feasibility constraint imposed by
the service-constrained environment and the second method is based on
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showing that the single-agent interim problems are approximately lin-
ear. The third section shows that approximations to the ex ante optimal
mechanism can also be used in the marginal revenue framework. An ex-
ample result from this section is that unit-demand service constrained
environments with fairly permissive distributional assumptions can be
approximately solved by projecting the agents’ multi-dimensional types
to a single dimension given by the agents’ values for their favorite al-
ternatives. The resulting mechanism is very simple. The final section
describes implementation of the marginal revenue mechanism, which is
not generally as simple as it has been in previous discussions.

9.2.1 Marginal Revenue and the Ex Ante Relaxation

This section gives bounds on the approximation factor of the marginal
revenue mechanism when the service constrained environment exhibits
nice structure. Specifically, we show that the optimal mechanism for the
ex ante relaxation (which is a marginal revenue mechanism by defini-
tion) does not violate ex post feasibility too much and that there is a
natural way to address its violations of feasibility and construct from it
a mechanism that is ex post feasible and does not lose too much of its
revenue.

A framework for addressing this question was developed in Section 4.3.
If the optimal mechanism for the ex ante relaxation serves the agents
with ex ante probabilities q, its revenue is >, R;(¢;). The sequential
posted pricing approach resolves the ex post feasibility constraint with
the first-come-first-served principle. To optimize revenue with sequential
posted pricing, the agents are ordered by “bang per buck”, i.e., R;(§;)/d;-
When an agent i is considered, if it is feasible to serve the agent given
the previously served agents then the agent is offered the menu of the
q; optimal mechanism; otherwise, the agent is not served. In many nat-
ural environments for mechanism design these sequential posted pricing
mechanisms have good revenue. For single-item environments, i.e., where
at most one agent can be served, Theorem 4.3.4 shows that sequential
posted pricing is an ¢/e—1 approximation (and the same bound extends
to matroid environments, see Theorem 4.6.12).

A mechanism “is a marginal revenue mechanism” if to each agent,
fixing the behavior of other agents, the agent is offered the menu of an
ex ante optimal mechanism for some ex ante constraint. Both the ex
ante relaxation and the sequential posted pricing, described above, are
ex ante mechanisms. The ex ante relaxation, which is a relaxation of the
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ex post feasibility constraint of the original mechanism design problem,
upper bounds the optimal revenue. The sequential posted pricing is ex
post feasible and, as a marginal revenue mechanism, lower bounds the
revenue of the (optimal) marginal revenue mechanism. The following
corollary of Theorem 4.6.12 follows from this discussion.

Corollary 9.2.1. For matroid service-constrained environments and
agents with (multi-dimensional, non-linear preferences and) indepen-
dently distributed types, the optimal marginal revenue is an =5 approz-
imation to the optimal mechanism.

Observe that the sequential posted pricing identified in the discussion
above (and the proof of Theorem 4.6.12) gives a simple mechanism that
achieves the same guarantee of Corollary 9.2.1. Of course the optimal
marginal revenue mechanism will sometimes improve on this guarantee
of the corollary.

9.2.2 Marginal Revenue and Approximate Revenue
Linearity

When the single-agent interim-optimal mechanism design problem is rev-
enue linear, i.e., Rev[j] = MargRev([g], the optimal marginal revenue
is the optimal revenue. This optimality smoothly degrades with the rev-
enue non-linearity of the single-agent problems. The optimal marginal
revenue is close to the optimal revenue when the interim optimal rev-
enues are close to linear.

Proposition 9.2.2. For downward-closed service-constrained environ-
ments and agents with independent types and multi-dimensional, non-
linear preferences that satisfy MargRev|[j] > /s Rev[j] for all interim
allocation constraints g, the optimal marginal revenue is a 3 approxima-
tion to the optimal revenue.

Proof. Consider the profile of interim allocation rules y of the optimal
mechanism. By the assumption of the proposition, the marginal revenue
for this profile ), E . [R;(qz) yl(qz)} is within a 3 fraction of its (optimal)
revenue y . Rev[y,]. The optimal marginal revenue, by definition, can
only do better. O

To instantiate Proposition 9.2.2, it suffices to (a) identify a linear
upper bound on the interim optimal revenue for all interim constraints g
and (b) show that an ex ante mechanism approximates this upper bound
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for all ex ante constraint ¢. This approach is carried out below for agents
with unit-demand preferences drawn from a product distribution.

For part (a), consider an allocation constraint ¢ for the representa-
tive environment (see Definition 8.6.3 and Section 9.1) where the multi-
dimensional agent is replaced with single-dimensional representatives.
The optimal revenue for the representative environment is easy to de-
scribe. Consider the distribution of the maximum virtual value and serve
the agent with the maximum virtual value with the probability specified
by §(-) for the quantile corresponding to this virtual value (with respect
to the distribution of the maximum virtual value). By the analysis of
virtual values in single-dimensional environments of Chapter 3, specifi-
cally Definition 3.3.3 (virtual values) and Theorem 3.4.5 (virtual surplus
maximization is optimal), the expected virtual surplus is equal to the
optimal revenue for the representative environment. Furthermore, vir-
tual surplus is linear. It is relatively straightforward to generalize The-
orem 9.1.1, which shows that twice the representative revenue upper
bounds the optimal unit-demand revenue for unconstrained single-agent
problems, to single-agent environments with interim constraints.

Theorem 9.2.3. For a unit-demand agent with independent values and
any interim allocation constraint 7, the revenue of the optimal auction
for the representative environment is at least half the revenue of the opti-
mal lottery pricing in the original unit-demand environment; moreover,
its revenue is linear in .

Proof. See Exercise 9.4. O

For part (b), we must show that there is an § ex ante mechanism
that approximates the upper bound given by twice the representative
revenue with the same ex ante constraint ¢. This representative revenue
can be calculated as the expected virtual surplus from serving the top ¢
measure of draws from distribution of the maximum virtual value. Just
as we obtained a four approximation to the unconstrained upper bound
via the prophet inequality (Theorem 4.2.1), there is a straightforward
adaptation of the prophet inequality to the case where both the prophet
and the gambler have an ex ante constraint ¢. In this generalization
the § = 1 case, i.e., the original prophet inequality, gives the worst
approximation bound of two. As a consequence, via the same argument
as Corollary 9.1.2 but with an ex ante allocation constraint, a uniform
virtual price gives a good approximation to the optimal representative
revenue.
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Theorem 9.2.4. For a unit-demand agent with independent values and
ex ante allocation constraint ¢, the revenue of a uniform virtual item
pricing is a two approximation to the optimal representative revenue.

Proof. See Exercise 9.5. |

We conclude that a unit-demand agent with independent values is ap-
proximately revenue linear and therefore the optimal marginal revenue
for a collection of such agents is approximately optimal. Notice that for
matroid environments, the %5 bound via the feasibility constraint is
better than the bound we get via the unit-demand single-agent prob-
lem; however, approximate linearity gives a bound more generally for

downward-closed service-constrained environments.

Corollary 9.2.5. For unit-demand agents with independent values and
downward-closed service-constrained environments, the optimal marginal
revenue marginal is a four approximation to the optimal revenue.

9.2.3 The Marginal Revenue Mechanism with Ex Ante
Approximations

The marginal revenue framework constructs multi-agent mechanisms
from single-agent mechanisms that solve the ex ante mechanism design
problems. These multi-agent mechanisms are, thus, only as simple as
the ex ante mechanisms are simple. As we saw in Section 8.8, however,
the optimal unconstrained mechanism for a single unit-demand agent,
and thus the ex ante optimal mechanisms, can be quite complex. This
section shows how the marginal revenue framework can be adapted to
construct approximately optimal multi-agent mechanisms from approx-
imately optimal single-agent ex ante mechanisms.

The proof of the approximate optimality of the optimal marginal rev-
enue for unit-demand agents, above, was based on Theorem 9.2.4 which
showed that a simple uniform virtual pricing for the ex ante problem
approximates the linear upper bound given by twice the representative
revenue. (The optimal ex ante mechanism is no worse, thus the bound
is established.) This proof approach, however, suggests that the same
guarantee for the optimal marginal revenue constructed from the op-
timal single-agent ex ante mechanisms also holds for optimal marginal
revenue constructed from this family of single-agent ex ante approxima-
tion mechanisms, namely uniform virtual pricings.

This approach can be formalized as follows. Denote by P(§) the rev-
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enue of a family of ex ante approximation mechanisms as a function
of the ex ante constraint §. Denote by R(Q) the smallest concave func-
tion that upper bounds P(§). Refer to R(-) as the pseudo-revenue curve.
Notice that uniform virtual pricings induce an ordering on types (cf.
Definition 8.4.1) and therefore the marginal pseudo-revenue mechanism
following Definition 8.4.3, the marginal revenue mechanism for orderable

agents, is well defined. Specifically:

(i) Map agent types t to quantiles g. The quantile of a type ¢; is the
infimum quantile g; for which the type is served by agent i’s g; ex
ante mechanism.

(ii) Calculate the marginal pseudo-revenues for each agent R(q).

(iii) Serve the set of agents that maximizes the surplus of marginal pseudo
revenue, x = OPT(R(q)).

(iv) For each agent 4, offer the menu corresponding to the §; ex ante
mechanism where §; is set from g_, as the supremum quantile where

i is served by OPT(R(g;,q_;))-

This mechanism, by the same argument as Corollary 9.2.5, is a four
approximation to the optimal mechanism.

Corollary 9.2.6. For unit-demand agents with independent values in a
downward-closed service-constrained environment, the marginal pseudo-
revenue mechanism defined by uniform virtual pricing is a four approx-
imation to the optimal mechanism.

Recall that for the single-dimensional agents of Chapter 3, when the
agents’ types are identically distributed, i.e., F; = F for all ¢, then the
marginal revenue mechanism is simply the second price auction with the
monopoly reserve price. The marginal pseudo-revenue mechanism sim-
ilarly simplifies when the agents’ types are identically distributed. The
agent with the overall highest positive single-dimensional virtual value
(for any alternative) wins and buys her utility maximizing (i.e., value
minus price) alternative under the uniform virtual prices corresponding
to the overall highest virtual value of the other agents or a virtual reserve
price, whichever is higher.

The marginal pseudo-revenue framework can also be applied to uni-
form pricings which are approximately optimal via Corollary 9.1.14. A
uniform pricing always sells any agent her favorite alternative or nothing.
Thus, mechanisms based on uniform pricing can be seen as projecting
an agent’s multi-dimensional type down to a single-dimension given by
the agent’s value for her favorite alternative. The proof of the following
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theorem follows from an ex ante constrained version of Corollary 9.1.14
and Theorem 9.1.15.

Theorem 9.2.7. For unit-demand agents with independent (but non-
identical) type distributions in a downward-closed service-constrained en-
vironment, the optimal mechanism for the favorite-alternative projection
is often a constant approximation to the optimal mechanism. Specifically,
its approximation is at most

(i) 2¢=1/e—1 ~ 2.58 if each agent’s type distribution is identical across
alternatives, and

(ii) 2e =~ 5.437 if each agent’s type distribution is regular (but non-
identical) across alternatives.

The optimal mechanism for the favorite-alternative projection is a
single-dimensional mechanism and, consequentially, the optimal mecha-
nism based on uniform pricings and further approximations follow from
the developments of Chapter 3-Chapter 6. Here are a collection of simple
observations for single-item environments with type distributions that
are identical across agents, regular across alternatives (but not identical),
and regular for the distribution of any agent’s value for her favorite al-
ternative. The second-price auction with reserve for the winner’s favorite
alternative is a 2e approximation to the optimal mechanism. Without a
reserve, the second price auction is a 2en/n—1 approximation. (See Exer-
cise 9.7.) Furthermore, relaxing the assumption that the agents’ types
are identically distributed, the second price auction with a reserve re-
mains a 2e? approximation to the optimal mechanism. Posted pricing
mechanisms are also approximately optimal.

9.2.4 Implementation of the Marginal Revenue
Mechanism

The marginal revenue mechanism for revenue-linear agents and the marginal
pseudo-revenue mechanism described in the previous section have simple
implementations because the ex ante mechanisms induce an ordering on
types that can be used to define quantiles. Implementing the marginal
revenue mechanism without this orderability can be complex. See Sec-
tion 3.4 and Section 8.4 for additional discussion of the marginal revenue
framework that is pertinent to the developments of this section.

Given the agents’ revenue curves R the allocation rules of the marginal
revenue mechanism can be identified as follows. For each agent ¢ and
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quantile g;, allocation rule y;(g;) is the probability that i is served by
OPT(R(q)) when the other agent quantiles g_; are drawn uniformly
from [0, 1]"_1. The interim mechanism agent ¢ faces, with allocation rule
y; thus constructed, is given by the convex combination of the ¢; ex
ante mechanisms with ¢; drawn with cumulative distribution function
given by G;(z) = 1 — y,(2). Its revenue, as desired, is By ., [R(;)] =
E,[R'(¢9) y(q)]-

Given a mechanism that maps profiles of quantiles to an ex post fea-
sible allocation rule — for the marginal revenue optimization this mech-
anism is OPT(R(-)) — and a profile of interim mechanisms that have al-
location rules that are no stronger than the ones induced by the ex post
mechanism, there is a generic construction for combining these into an
ex post feasible mechanism wherein each agent faces her interim mecha-
nism. The formal details of this construction are given by Definition 8.5.6
and Theorem 8.5.13 in Section 8.5.4.

In the remainder of this section we develop a simpler approach to con-
struct the marginal revenue mechanism when the single-agent ex ante
mechanisms exhibit additional structure. A running example that these
methods apply to is that of the public budget agent discussed in Sec-
tion 8.7. The ex ante optimal mechanisms for a public budget agent
satisfy the following monotonicity property (to be formally proven at
the end of this section).

Definition 9.2.2. An agent has monotone ex ante mechanisms if the
allocatiqn rules (in type space) of the optimal ex ante mechanisms, de-
noted £ (t), are monotonic functions of G for all fived types t € T, i.e.,

X it
21(t) <2t (t) for G < g'.

There are two challenges with generalizing the marginal revenue mech-
anism for orderable agents (where the ex ante mechanisms define a par-
tial ordering on types). The first challenge is how to map types to quan-
tiles. The second challenge is selecting a consistent outcome for the mech-
anism when all agents face one of their ex ante mechanisms. When the
agents are orderable, both steps are easy. Types are mapped to quantiles
according to the ordering and type distribution. When the ex ante mech-
anisms are deterministic, as they are for orderable agents, there is only
one service possibility for a given type and ex ante mechanism; i.e., for
any agent, type t, and ex ante constraint ¢, the allocation probability is
21(t) e {0,1}.% Critically, with only monotone ex ante mechanisms, the

2 Technically, this statement is restricted to ex ante constraints where the revenue
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allocation is not generally a deterministic function of the ex ante con-
straint and the type. For example, allocation probabilities are not zero
or one in the ex ante mechanisms for the public budget agent where the
budget constraint is binding (see Lemma 9.2.11 and Figure 9.2, below).
The following definition of the marginal revenue mechanism resolves
both of the above issues.

Definition 9.2.3. The marginal revenue mechanism for agents with
monotone ex ante mechanisms works as follows:

(i) Define quantile distribution Qf with cumulative distribution function
Qf (2) = ; (t;) for each agent i with ex ante mechanisms given by
zl.
(ii) Map the profile of agents’ types t to a profile of quantiles q by sam-
pling ¢; ~ Q5.

(iii) Calculate the profile of marginal revenues for the profile of quantiles
R'(q).

(iv) Calculate a feasible allocation to optimize the surplus of marginal
revenue, i.e., * = OPT(R/(q)) € {0,1}". For each agent i, calculate
the supremum quantile §; she could possess for which she would be
allocated in the above calculation of x.

(v) For each agent i, an outcome distribution is given by her type and the
q; er ante mechanism. Sample from this outcome distribution condi-

tioned on whether or not she is served in x, i.e., x; € {0, 1}.3

There are two key properties that are sufficient for the mechanism
of Definition 9.2.3 to implement the optimal marginal revenue. First,
the quantiles of the agents that are calculated within the mechanism
should be independently and uniformly distributed on [0, 1]. Second, con-
ditioned on agent i’s critical quantile ¢;, the outcome for agent ¢ should
faithfully implement the §; ex ante mechanism. These two properties are
proved in the two lemmas below. The subsequent theorem then shows
that the defined mechanism is incentive compatible and implements the
optimal marginal revenue.

Lemma 9.2.8. For an agent with t ~ F, ex ante mechanisms with
allocation rules x satisfying By p[z?(t)] = ¢ for ¢ € [0,1], and quantile

curve is not ironed, i.e., R”(ci) # 0. Recall, however, that quantiles § where
R”((j) = 0 cannot be critical quantiles in the marginal revenue mechanism.

Recall, in the general service constrained environments of Section 8.3, some
outcomes for an agent are designated as service outcomes and others are
designated a no-service outcomes.
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distributions Qt(z) =2°(t); fort ~ F and q ~ Q" the distribution of q
is uniform on [0, 1].

Proof. For a fixed type, by definition of the cumulative distribution func-
tion Pr__,t[g < 4] = Q"(§) = 29(t). Taking expectation over t ~ F of
this probability we obtain

PrtNF; a~Qt g <q]= Et~F[xé(t)] =q.
Thus, ¢ is uniformly distributed. [l

Lemma 9.2.9. The marginal revenue mechanism of Definition 9.2.3,
for agent i and conditioned on §;, faithfully implements the q; ex ante
mechanism.

Proof. Consider agent ¢ with type ¢; and fix ¢; as determined by the ran-

dom quantiles g_, of other agents. Viewing the ¢; ex ante mechanism

—1
as a menu of distributions over outcomes, type t; chooses her favorite
distribution over outcomes from this menu. Some of the outcomes in
the support of the chosen distribution are service outcomes and some
are no-service outcomes. The probability of a service outcome is, by
definition, exactly x;h (t;). One way to draw an outcome from the appro-
priate distribution is draw an outcome conditioned on service (z; = 1)
with probability x'g (t;) or an outcome conditioned on no-service with
probability 1 — x'g (t;). The mechanism of the definition draws g; ~ QZ‘
and serves i when ¢; < §;. It suffices to verify that this probability of
service is exactly xf (t;). By the definition of the distribution function
Prig; < ¢ = Qf (G;) = xf (t;). The lemma follows. O

Theorem 9.2.10. The marginal revenue mechanism for agents with
monotone ex ante mechanisms has revenue equal to the optimal marginal
revenue and is dominant strategy incentive compatible.

Proof. Consider agent i with type ¢, and fixed §; as determined by the
random quantiles g _; of other agents (which come from the other agents’
reports). The §; ex ante mechanism is incentive compatible and, by
Lemma 9.2.9, faithfully implemented by the mechanism of the defini-
tion. Therefore, the mechanism of the definition is dominant strategy
incentive compatible.

The optimal marginal revenue is E,[OPT(R'(g))]. To see that the
revenue of the defined mechanism is the optimal marginal revenue, note
that in the defined mechanism agent i faces the §; ex ante mechanism
where ¢; is the maximum quantile at which agent ¢ is served when the
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other agent quantiles g_,;, by Lemma 9.2.8, are drawn from the uni-
form distribution on [0, 1]"_1. The same is true of the optimal marginal
revenue. As the defined mechanism faithfully implements the ex ante
mechanism for each ¢; (Lemma 9.2.9), the contributions from agent i to
the optimal marginal revenue and the revenue of the defined mechanism
are both Eg [R;(¢;)]. The distribution over outcomes of the mechanism
and the optimal marginal revenue is also the same; thus, any cost in-
curred by the designer for the outcome produced is the same. O

Now that we have seen how to construct the marginal revenue mech-
anism for agents with monotone ex ante mechanisms, we will show that
single-dimensional agents with public budgets have monotone ex ante
mechanisms. Useful in the proof of the theorem is the lemma, below,
which characterizes the ex ante mechanisms for public budget agents.

Lemma 9.2.11. The § ex ante optimal mechanism for a single-dimensional
agent with public budget B and type drawn from public-budget-reqular
distribution F' (Definition 8.7.1) is either:

(i) Budget binds: Post the price B for allocation probability B/i" < 1 with
it set to satisfy G = B/it(1 — F(i')). Types t > ' select the lottery.
(i) Allocation probability binds: Post price t = F~ (1 — §) for allocation
probability one.
(iii) Neither bind: Post the monopoly price of distribution F for allocation
probability one.

Proof. If the budget is not binding then the Lagrangian relaxation of
the budget constraint has Lagrangian parameter A = 0 and the op-
timal mechanism is the same as the optimal mechanism for a single-
dimensional linear agent. Thus, parts (ii) and (iii) follow from the results
of Chapter 3. The remainder of the proof focuses on the part (i) where
the budget binds.

When the budget binds, Theorem 8.7.5 on page 304 shows that the
optimal mechanism is given by optimizing the Lagrangian revenue curve
that, for the public budget regular distributions, is characterized by
Proposition 8.7.4 as having a single ironed interval for the strongest
quantiles, i.e., quantiles in [0, LjT]. The interim allocation constraint gjé
that corresponds to an ex ante allocation constraint § is the reverse step
function from 1 to 0 at ¢. Either the ironed interval [O,QT] spans § or
it does not. (In fact, it will span § in the case that the budget binds,
though we do not need to directly prove this fact.) In either case, the
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1 - t =
&’ (t) a(t)
t
B
0 -+ t 0 + t t
0 Bt 1 0 t B 1
(a) budget binds (b) allocation probability binds

Figure 9.2. The allocation rule of the ex ante optimal mechanism for an
agent with a public budget is depicted. Subfigure (a) shows the case where
the budget binds; the shaded area is the payment of the highest type and
is equal to the budget p?(1) = B. The allocation rules of the ex ante
mechanism where the budget binds step at i from 0 to B/t*; the pointset
{(tAT7 B/i) : it e [B, 00)} is depicted with a dotted line. Subfigure (b) shows
the case where the allocation probability constraint binds. The payment of
the high types is equal to £ = F71(1 —§) < B. Depicted is the special case
where the type distribution is uniform on [0, 1] and the ex ante constraint is
G = 1/2. Subfigure (a) has budget B = 1/4; subfigure (b) has budget B = 3/4.
For the uniform distribution the area under the curve in type space, i.e.,
fol zq(z) dz, is equal to the area under the curve in quantile space, a.k.a.,

the ex ante allocation probability ¢. Thus, in subfigure (a), i = B/B+4.

allocation rule must be a reverse step function (in quantile space) and a
step function (in type space). The allocation rule in type space — where
the payment of the highest type is the area above the curve and equals
the budget B — must step at some &' to from 0 to B/i' (see Figure 9.2).
The step function of this form that has ex ante allocation probability ¢
sets {1 to solve B/it(1 — F(i1)) = 4. O

Theorem 9.2.12. A public budget agent with type drawn from a pub-
lic budget regular distribution (Definition 8.7.1) has monotone ex ante
mechanisms.

Proof. By Lemma 9.2.11, for any ex ante constraint § where the budget
binds, the allocation rule in type space steps at some i from 0 to B¢t
For this form of mechanism, as the ex ante probability § is increased, ¢
decreases and the probability of service for the higher types B/#' increases
(see Figure 9.2). The change in allocation probabilities are as follows:
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Types that were served before are now served with higher probability
and some types that were not served before are now served. Thus, the
agent has monotone ex ante mechanisms.

For ex ante constraints where the budget does not bind (specifically,
where instead the allocation constraint binds), the analysis of linear
agents from Chapter 3 implies the theorem. O

9.3 Multi-agent Approximation with
Multi-dimensional Externalities

A fundamental problem in multi-dimensional mechanism design is that
of identifying good mechanisms for selling multiple items to multiple
agents. Of course, if one agent obtains any of the items, these items
cannot be allocated to other agents. The externality that such an agent
imposes on the others is multi-dimensional. Rarely do we see such goods
sold by auctions, even for rare goods, instead posted prices tend to be
preferred. This section shows that posting prices is approximately opti-
mal quite broadly. These results extend those from Chapter 4 for single-
dimensional agents to multi-dimensional agents with multi-dimensional
externalities.

Consider the canonical multi-dimensional matching environment (pre-
viously discussed in Section 8.6 beginning on page 296). In this environ-
ment the agents are unit demand, each desires at most one of the m
items; and the items are in unit supply, each can be sold to at most
one of the n agents. The agents’ multi-dimensional types are indepen-
dently distributed and, moreover, each agent’s values for the items are
independently distributed. We will show that there is an easy to identify
posted pricing that is a constant approximation to the optimal mecha-
nism. When the agents are symmetric, the posted pricing is anonymous
(as is the optimal mechanism), i.e., each agent is offered the same menu
of items and prices; when the agents are asymmetric the posted pricing
is generally discriminatory (as is the optimal mechanism).

The proof approach generalizes the methods of Section 9.1. We ob-
tain upper bounds on the optimal mechanism for unit-demand agents
from the single-dimensional representative environment. We obtain lower
bounds on the revenue of a posted pricing mechanism by the revenue
of the same posted pricing in the representative environment. The re-
maining question of relating these upper and lower bounds is a question
of the effectiveness of posted prices as approximation mechanisms for
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the single-dimensional representative environment. The main results of
this section are immediate corollaries. These results are formally stated
below with their proofs deferred to the subsequent discussion.

These first three theorems establish the upper and lower bounds.

Theorem 9.3.1. For unit-demand agents with independent values, the
revenue of the optimal mechanism for the representative environment up-
per bounds the revenue for the optimal deterministic dominant-strategy
incentive-compatible mechanism for the original unit-demand environ-
ment.

Proof. See Exercise 9.8. O

Theorem 9.3.2. For unit-demand agents with independent values, the
revenue of the optimal mechanism for the ex ante relaxation of the single-
dimensional representative environment is a three approximation to the
revenue of the optimal mechanism for the original unit-demand environ-
ment.

Theorem 9.3.3. For unit-demand agents with independent values, the
revenue from oblivious posted pricing in the unit-demand environment is
at least that of oblivious posted pricing in the representative environment.

The approach of this section can be viewed as a reduction from unit-
demand environments to the single-dimensional representative environ-
ment. Specifically, the problem of approximating the optimal mechanism
by a posted pricing in an unit-demand environment reduces to the prob-
lem of approximating the optimal mechanism by a posted pricing in the
single-dimensional representative environment. The following corollary,
which combines the previous theorems, makes this reduction precise.

Corollary 9.3.4. For any unit-demand environment, if an oblivious
posted pricing is a 3 approrimation to the optimal ex ante relaration
of the representative environment then the same oblivious posted pricing
is a (B approximation to the optimal deterministic mechanism and a 303
approximation to the optimal mechanism.

The following theorem instantiates the reduction of Corollary 9.3.4 for
unit-demand matching environments.

Theorem 9.3.5. For single-dimensional bipartite matching environ-
ments (where agents are edges and feasible outcomes are matchings),
for any independent distribution of values, there is an oblivious posted
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pricing that is a nine approrimation to the optimal revenue of the ex
ante relazation (and the optimal revenue).

The following corollary states the unit-demand approximation result
that follows from the reduction.

Corollary 9.3.6. For unit-demand unit-supply matching environments
with independently distributed values, there is an oblivious posted pricing
that is a nine approrimation to the optimal deterministic mechanism and
a 27 approximation to the optimal mechanism.

The remaining agenda for this section is to prove the theorems above.
These proofs reinforce many of the topics already covered in this text.
The proof of the upper bound for deterministic mechanisms (Theo-
rem 9.3.1) is similar to the single-agent proof of Theorem 9.1.1 and
will be left for Exercise 9.8. The proof of the upper bound for poten-
tially randomized mechanisms (Theorem 9.3.2) follows a similar analysis
to that of a single unit-demand agent that was given in Section 9.1.3.
The proof of the approximate optimality of oblivious posted pricings
(Theorem 9.3.5) for the single-dimensional representative environment
borrows analysis methods from Chapter 4.

9.3.1 Multi-service Service-constrained Environments,
Revisited

The multi-dimensional matching environment is a special case of the
more general multi-service service-constrained environments described
in Section 8.6. By Definition 8.6.1 (restated below), the matching envi-
ronment is given by feasible outcomes of the matching polytope X =
{2 e [0,V M), 3y LAV Y 2y < 1},

Definition 8.6.1. In a multi-service service-constrained environment
there are n agents N and m services M. The subset of agent-service
pairs that can be simultaneously assigned is given by X C {0, I}NXM.

A unit-demand multi-service service-constrained environment is one
where the feasible outcomes, without loss, restrict to serving each agent
at most one of the services, i.e., for x € X’ and all agents 1, Ej x;; < L

9.3.2 Oblivious Posted Pricing

Consider oblivious posted pricings in unit-demand multi-service service-
constrained environments. An oblivious posted pricing is given by prices
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Item 1 Item 2 Item 1 Item 2

Agent 1 ¢, =4 tio =25 Agent 1 i =2 ty =4
Agent 2 3 =10 13 =38 Agent 2 (fy; =5) fon =4
(a) agent types (b) discriminatory posted pricing

Figure 9.3. The tables above depict agent values and posted prices in a
two-agent two-item matching environment. When agent 1 arrives before
agent 2, then agent 1 buys item 1, agent 2 buys item 2, and the revenue is
6 (purchase prices depicted in boldface). If the agents arrive in the opposite
order a higher revenue is obtained.

t with fij the price offered to agent i for service j. After the valuations are
realized, the agents arrive in sequence and take their utility maximizing
service that is still feasible, given the actions of preceding agents in the
sequence. The revenue of such a process clearly depends on the order of
the agents and we pessimistically assume the worst-case. See Figure 9.3
for an example.

Definition 9.3.1. An oblivious posted pricing is a pricing of services
(discriminatory) for each agent with the semantics that agents arrive
in any order and take their favorite service that remains feasible. For a
distribution over agent types, the revenue of an oblivious posted pricing
is given by the worst ordering for the realized types taken in expectation
of the distribution.

Consider the oblivious posted pricing problem in both the original
unit-demand environment and the representative single-dimensional en-
vironment. Suppose you had the choice of being the seller in one of these
two environments, given the same distribution and costs, which environ-
ment would you choose? I.e., which environment gives a higher expected
revenue? Whereas when considering auction problems, you would prefer
the representative environment because of the increased competition, for
oblivious posted pricings there is no benefit from competition. In fact,
the seller in the representative environment is at a disadvantage because
the agents are in a worst case order and there are more possible order-
ings of the agents in the nm-agent representative environment than the
n-agent original environment.

Theorem 9.3.7. The expected revenue of an oblivious posted pricing for
unit-demand environments is at least the expected revenue of the same
pricing in the single-dimensional representative environment.
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Proof. Compare oblivious posted pricings for unit-demand environments
(i.e., with n unit-demand agents) with oblivious posted pricings for their
representative environments (i.e., with nm single-dimensional agents).
The difference between these two environments with respect to sequen-
tial posted pricings is that in the representative environment the nm
agents can arrive in any order whereas in the original environment the
an agent arrives and considers the prices on services ordered by util-
ity. Thus, the set of orders in which the nm prices are considered in
the representative environment contains the set of orders in the origi-
nal environment. The worst-case sequences, then, for the representative
environment are worse than those of the original unit-demand environ-
ment. O

9.3.3 Posted Pricing for the Representative
Environment

For the unit-demand matching market the single-dimensional represen-
tative environment is given by a bipartite graph where representatives
correspond to edges and an outcome is feasible if it is a matching. In
this single-dimensional representative environment there is an oblivious
posted pricing that is a good approximation to the optimal mechanism
(and the ex ante relaxation). As this is a single-dimensional approxima-
tion problem, we will adopt the notation and terminology of Chapter 4.
However, for convenience we will index the nm agents, which correspond
to edges in the bipartite matching, by their ij coordinates. Represen-

tative ij’s value is v;; drawn independently from distribution Fj;, her

959
quantile is g;;, her revenue curve is R;;, etc.
The optimal revenue from the ex ante relaxation is given by the pro-

gram:
> gy <1 Vi.
j
For the purpose of preliminary discussion, assume the value distributions
are regular. The solution ¢ to the ex ante program (9.3.1) corresponds
to a price posting ¥ with 0;; = 1/4,; R;;(g;;). Posting these prices does

not generally lead to a good revenue when the agents arrive in a worst-
case order. To make sure a good revenue is attained when the agents
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arrive arbitrarily, consider instead the solution (}T with ng = di;/2. This
solution is ex ante feasible, does not degrade the revenue by too much
(at most a factor of two), and guarantees, even if agent ij arrives last
in the order, that the probability that it is ex post feasible to serve the
agent is at least a quarter. This calculation follows for agent ¢j because
the probability that item j is sold already is at most one half and the
probability that a representative of agent ¢ has been already served is at
most one half. If neither of these events have happened then it is feasible
to serve agent ij. Since each agent can be served with probability at least
a quarter and the prices posted obtain at least half the ex ante optimal
revenue, the expected revenue of this oblivious posted pricing is at least
an eighth of the expected revenue of the ex ante relaxation.

When the value distributions are irregular, the revenue curve of an
agent is not equal to the price-posting revenue curve. Therefore, we may
not be able to obtain both the revenue and ex ante allocation probability
of the desired point on a given revenue curve by posting a deterministic
price. The lemma below demonstrates that the construction above can
be modified to find a posted price that approximates the desired point
on the revenue curve. Specifically, it gives nearly the same revenue and
its ex ante probability of allocation is no higher.

Lemma 9.3.8. For any single-dimensional agent, ex ante probability q,
and factor B > 1, there is a posted price o' that corresponds to QT <d/p
for which the price-posting revenue at (jT is a B+ 1 approximation to the
original revenue at §, i.e., P(§") > 1/s+1 R(q).

Proof. We would like to offer a posted price that corresponds to quantile
d4/g. For regular distributions (Definition 3.3.1 on page 64) where price-
posting and optimal revenue are equal, this price gives a § approximation
as P(4/8) = R(4/8) > /8 R(§) (by concavity of R(-) and because R(0) >
0). The challenge then is irregular distributions.

This proof will exploit the geometry of revenue curves; specifically,
that effective prices 1/¢ R(§) and /¢ P(G) are non-increasing in the ex
ante probability of allocation §. Specifically, when selling with a higher
probability the average price cannot increase. For the price posting rev-
enue curve, the effective price is the actual price, /¢ P(§) = ©. The
proof proceeds by a case analysis on cji, the highest quantile below ¢
for which the price-posting revenue and optimal revenue are equal, i.e.,
P(¢") = R(¢") = d*¢"

If (f > 4/ then, as follows, the price ¢
probability q' = 4/ satisfies the conditions of the lemma. By the geom-

t corresponding to ex ante
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Figure 9.4. A geometric depiction of the quantities in Lemma 9.3.8. The
revenue curve R (thin, black, solid line) is the convex hull of the price-
posting revenue curve P (thick, grey, dashed line). The quantiles ¢ and 4/8
are within an ironed interval with lower bound q*. The dashed lines that
connect to points on the price-posting revenue curve have slope equal to
the price posted, i.e., P(§) = ©¢ by definition. Importantly for the proof,
the price-posting revenue of 4/3 is at least a § fraction of the price-posting
revenue for §, i.e., P(i/3) > 1/8 P(§), and the price-posting revenue of (ji is
at least the difference in the optimal revenue and price-posting revenue of
g, ie., P(¢") > R(q) - P(q).

s at least % which is at least the

etry of revenue curves, the price 0
effective price of optimal revenue at ¢, namely /¢ R(§); consequently,
the revenues satisfy P(4/s) = 6'd/p > 6*d/p > 1/4 R(4) 9/s = /s R(q) as
desired.

If in < 4/, as depicted in Figure 9.4, then the ex ante probability (jT in
the statement of the lemma is either in or 4/ whichever has larger price-
posting revenue. Partition the optimal revenue R(§) into two pieces, that
of the price-posting revenue P(§) and the difference R(G) — P(G). The
price-posting revenue from 4/3 is at least a 3 fraction of P(§) = 0q (as its
corresponding price is only higher than ¢ and its probability of service
is exactly a [ factor lower). The slope of the revenue curve at ¢, i.e.,
the marginal revenue R'(§), is always at most ©. By geometry, then, the
price-posting revenue of ¢* is at least the remainder R(q) — P(q). Thus,
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we have:

P(¢") > R(4) — P(q),
P(i/p) > /8 P(q).

Adding the first line and § times the second line, we have:
P(§") + B P(i/5) > R(q).
Bounding both P(¢*) and P(i/s) by their maximum, we have:

(1+ ) max(P(¢"), P(i/8)) > R(q).
The lemma follows. (|

We now give the proof of Theorem 9.3.5, restated below. This proof
applies the basic construction described previously, but with slightly dif-
ferent constants, and incorporates Lemma 9.3.8 to address the possible
irregularity of the value distributions.

Theorem 9.3.5. For single-dimensional bipartite matching environ-
ments (where agents are edges and feasible outcomes are matchings),
for any independent distribution of values, there is an oblivious posted
pricing that is a nine approrimation to the optimal revenue of the ex
ante relazation (and the optimal revenue).

Proof. Let @ be the revenue-optimal profile of probabilities that is ex
ante feasible; i.e., g optimizes program (9.3.1). Invoking Lemma 9.3.8
with 8 = 3 we obtain a profile of quantiles QT with at most one third
the allocation probability, i.e., cﬁj < 4i;/3, and at least one fourth the
revenue, i.e., P((jjj) > 1/4 R(g;;) for all ij.

By definition, g satisfies 3, Py;(4;) > /4 ,; Ri;(Giy) and 3, Gy <
/3 for all j and 7, ¢;; < 1/s for all 4. Moreover, if ij is feasible at
the time ij arrives then the corresponding posted pricing of o' attains
revenue FP;; ((jj j). To get a lower bound on the revenue from representative
ij, imagine 75 is the last representative to arrive. By the union bound,
the probability of the event that another representative iTj for ' #+4
was previously served is at most 1/3, likewise for the event that another
representative ijT for jJr #+ j was previously served. Independence of
these two events implies that the probability neither happens is (2/3)2 =
4/9. Therefore, the revenue we can expect from representative 4j under
any ordering is at least 4/9-1/4- R;;(g;;). Summing over all representatives
gives the desired nine approximation. O
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Though the section focused on approximation by oblivious posted
pricings, bounds can also be obtained for posted pricings with less pes-
simistic assumptions on the order of the agents. For example, Exer-
cise 9.11 proves that when agents arrive in a random order and the
distributions are independent and regular then the prices from the ex
ante relaxation give a two approximation to the optimal mechanism.

9.3.4 Upper bound via the Representative Environment

A key step in proving that a simple and practical approximation mech-
anism performs nearly as well as the complex optimal mechanism is
identifying an upper bound on the performance of the optimal mecha-
nism. For deterministic mechanisms this upper bound, stated in Theo-
rem 9.3.1 and with proof left for Exercise 9.8, is the optimal revenue from
the single-dimensional representative environment. For general (random-
ized) mechanisms, Theorem 9.3.2, as proved below, shows that the three
times optimal revenue for the ex ante relaxation of the representative
environment is an upper bound.

To simplify the proof of this theorem, as we did for approximation
for single-dimensional agents, we will represent the competition between
agents by ex ante constraints. Consider a unit-demand agent i. In the
optimal mechanism the agent receives each service j with some ex ante
probability ¢;;. The unit-demand constraint requires ) j ¢;; < 1. Denote
a multi-dimensional ex ante constraint by ¢; = (g;1, - - -, i ). Define the
optimal revenue that can be obtained from this agent when selling with
at most these ex ante probabilities by R;(g;). The following proposition
shows that the optimal revenue for unit-demand agents is bounded by
the optimal revenue from the ex ante relaxation.

Proposition 9.3.9. For a unit-demand multi-service service-constraind
environment (Definition 8.6.1), the optimal revenue is at most the opti-
mal ex ante revenue SUDge o > Ri(q;), where Q is the space of ex ante
feasible probability profiles and R;(§;) is the unit-demand optimal rev-
enue with ex ante allocation probabilities §; = (§i1s- -+ Gim)-

Proof. Denote by q the profile of ex ante probabilities induced by the
optimal mechanism, i.e., where ¢;; is the ex ante probability that agent
i is allocated service j. By definition this profile is ex ante feasible.
The optimal way to serve each agent ¢ with at most the prescribed
probabilities gives revenue R;({;1,---,dim)- The sum of these ex ante
revenues for this ex ante feasible profile ¢ is at most the the sum of the
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ex ante revenues for the ex ante feasible profile ¢* that optimizes ex ante
revenue. |

Proposition 9.3.9 reduces the multi-agent analysis to a single agent
analysis. To make the notation more clear for the remainder of this sec-
tion we drop the agent subscript ¢ and consider the single-agent problem
using the same notation as Section 9.1. It suffices to bound the optimal
single-agent unit-demand revenue for any given multi-dimensional ex
ante constraint § = (dy, - .-, q,,) by the optimal revenue of the ex ante
relaxation of the single-dimensional representative environment with the
same ex ante constraint.

The single-agent unit-demand revenue is given by a mechanism that
satisfies the ex ante constraint given by ¢ as well as an ex post con-
straint required by the unit-demand assumption on the agent’s prefer-
ence. Specifically, a unit-demand agent always receives at most one item
ex post. To give an upper bound on the unit demand revenue in terms
of the representative revenue we identify an amortization of revenue and
relate the optimal expected surplus of the amortization to the optimal
representative revenue, cf. Theorem 9.1.4 and Theorem 9.1.11.

Theorem 9.3.10. For a unit-demand agent with multi-dimenstonal ex
ante allocation constraint ¢ = (G, .. .,q4my), the optimal revenue from the
ex ante relaxation of the representative environment is a three approxi-
mation to the optimal revenue.

The proof of Theorem 9.3.2 (that the optimal mechanism for the ex
ante relaxation of the representative environment is a three approxima-
tion to the optimal mechanism for an original multi-agent unit-demand
environment) follows from Proposition 9.3.9 and Theorem 9.3.10. We
prove Theorem 9.3.10 below. The proof will be based on a generaliza-
tion of the amortization of revenue from Section 9.1.2.

Definition 9.3.2. For product distribution F = Fy x---x F,, the multi-
dimensional extension of the single-dimensional ironed virtual value func-
tions for prices ¢ is the vector field qSMD defined as follows:

N (7 7S

(i) {¢MD(LL)}J‘* = (bj*D({t}j*)’ and
(i) {6"7()}; = {t};,

where item j* € argmaxj{t - f}j is the favorite item at prices t, item

j # §° ranges over all other items, and where (;Efp(v) is the single-
dimensional ironed virtual value function for distribution Fi«.
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Theorem 9.3.11. The multi-dimensional extension of the single-dimensional
ironed virtual value functions for prices t is an amortization of rev-
enue, i.e., for any agent, the expected revenue of any incentive com-
patible mechanism (z,p) is at most the expected amortized surplus, i.e.,

Ei plp(t)] < Epople™P(t) - 2(t)].
Proof. See Exercise 9.12. |

The proof of Theorem 9.3.10 follows from Theorem 9.3.11 and by
decomposing the amortization into the sum of three terms and then
upper bounding the surplus with respect to each term by the revenue of
a mechanism for the representative environment. This decomposition is
stated and proved in Lemma 9.3.12, below.

Lemma 9.3.12. For a unit-demand agent with ex ante allocation con-
straint G = (Gy,- .., Gm) that correspond to prices t = (t,...,1,,), the
optimal revenue is at most the sum of the revenues of (a) the ex ante
relazation of the representative environment, (b) the auction that serves
the representative with the highest positive value of {t}; — {t};, and (c)
the auction that serves the representative with the highest positive value
of {t}; — {t}; with lazy monopoly reserves.

The difficulty of proving this lemma, in contrast to the proof of the
analogous result without the ex ante constraint (Theorem 9.1.11), is
that we need to compare the optimal mechanism to mechanisms that
also satisfies the ex ante constraint. Specifically, in the proof of Theo-
rem 9.1.11, it is important that the revenue of the second-highest val-
uation is attainable by the second-price auction (in the representative
environment). With an ex ante constraint, an auction for the representa-
tive environment is not always able to sell to the agent with the highest
value and, thus, the price charged may not always be boundable by the
second-highest value.

Proof. Upper bound the amortization qZ;SD with the sum of three amor-
tization:

{6"™VEmY; = 6" ({t)), =5 A{t—1};>0
{ﬁgsp(t)}j ={t—1};, J#FTA{t—1};>0
() =1,

where j* € argmax;{t — t}; and all coordinates not explicitly specified
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are set to zero. We now compare the amortized surplus from optimiz-
ing with respect to each of these amortizations to the revenue of the
mechanisms listed in the theorem statement.

The amortization QBPP pointwise equals the prices #. Given the ex
ante constraint ¢, the optimal amortized surplus is £ - §. This amortized
surplus is exactly the revenue of the ex ante mechanism that posts prices
t. Mechanism (a), the optimal ex ante relaxation, achieves only higher
revenue (e.g., if any of the single-dimensional ironed virtual values are
negative at the prices ¢ then the ex ante optimal mechanism can improve
on the revenue by posting an even higher price. Thus, the revenue of
auction (a) upper bounds the optimal surplus from @'

The amortization q@sp is non-zero only on non-favorite item at prices
t and only when the value for the favorite item is at least its price. The
optimal amortized surplus is precisely the revenue of the second-price
auction on representative with values v; = {t — };. The auction (b)
for the representative environment that serves the representative with
the highest positive value of {t}; — {};, namely j*, attains this revenue
plus {{} ;+ which is only larger. Thus, the revenue of auction (b) upper
bounds the optimal surplus from ¢°".

The amortization éFAVE is non-zero only on the favorite item j* at
prices # and only when the value for this item is at least its price. The
amortized surplus maximizing outcome is the same as the auction (c)
for the representative environment that serves the representative with
the highest positive value of {t}; — {{}; with lazy monopoly reserves.
Moreover, an auction’s revenue in the representative environment equals
the its amortized surplus. Thus, the revenue of auction (c) upper bounds

the optimal surplus from ¢"AVE O

Exercises

9.1 Even for a single unit-demand agent with values for the alternatives
drawn from a symmetric distribution, there may be no symmetric
optimal item pricing. Identify a distribution F' for which there is
no symmetric optimal item pricing for an agent values for m = 2
alternatives are drawn i.i.d. from F.

9.2 Prove Theorem 9.1.15: For a wunit-demand agent with indepen-
dently, identically, and reqularly distributed values, a uniform item
pricing is a 2¢—1/e—1 & 2.58 approzimation to the optimal lottery
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pricing revenue. For k = 2 alternatives, the bound improves to
/3 72 2.33.

Consider selling k items to an agent with additive values on sup-
port [0, k] and show that the revenue of pricing the grand bundle
approaches the optimal revenue as k approaches infinity.

Prove Theorem 9.2.3: For a unit-demand agent with independent
values and any interim allocation constraint , the revenue of the
optimal auction for the representative environment is at least half
the revenue of the optimal lottery pricing in the original unit-
demand environment; moreover, its revenue is linear in .

Prove Theorem 9.2.4: For a unit-demand agent with independent
values and ex ante allocation constraint ¢, the revenue of a uni-
form wvirtual item pricing is a two approrimation to the optimal
representative revenue.

Prove part (a) of Theorem 9.2.7: For unit-demand agents in a
downward-closed service-constrained environment with distributions
that are independent and non-identical across agents but indepen-
dent and identical across alternatives, the optimal mechanism for
the favorite-alternative projection is a 2¢—1/e—1 = 2.58 approzrima-
tion to the optimal mechanism.

Consider unit-demand agents in single-item service constrained en-
vironments with type distributions that are identical across agents,
regular across alternatives (but not identical), and regular for the
distribution of any agent’s value for her favorite alternative. Prove
that the second-price auction with reserve for the winner’s favorite
alternative is a 2e approximation to the optimal mechanism and
the second price auction (without a reserve) is a 2en/n—1 approxi-
mation to the optimal mechanism.

Prove Theorem 9.3.1: For unit-demand agents with independent
values, the revenue of the optimal mechanism for the representa-
tive environment upper bounds the revenue for the optimal deter-
ministic dominant-strategy incentive-compatible mechanism for the
original unit-demand environment.

Given an improved bound for Theorem 9.3.5 under the assumption
that the value distributions are regular. Specifically, show that for
single-dimensional bipartite matching environments (where agents
are edges and feasible outcomes are matchings), for any indepen-
dent and regular distribution of values, there is an oblivious posted
pricing that is a constant approximation to the optimal revenue.
The constant in your proof should be strictly less than nine.



386A pproximation for Multi-dimensional and Non-linear Preferences

9.10 Give an improved bound for Corollary 9.3.6 under the assumption
that the order of the agents is random not oblivious (i.e., not worse
case). Specifically, show that for unit-demand unit-supply match-
ing environments with independently distributed values, there is a
posted pricing that, for agents who arrive in a uniformly random
order, is a constant approximation to the optimal revenue. The
constant in your proof should be strictly less than 27.

9.11 Consider a single-dimensional bipartite matching environments where
agents correspond to edges in a bipartite graph and feasible out-
comes are matchings. For any independent and regular distribu-
tion of values, show that there is a posted pricing that is a two
approximation to the optimal revenue when the agents arrive in a
uniformly random order.

9.12 Prove Theorem 9.3.11: The multi-dimensional extension of the single-
dimensional ironed virtual value functions for prices t is an amor-
tization of revenue, i.e., for any agent, the expected revenue of
any incentive compatible mechanism (x,p) is at most the expected

amortized surplus, i.e., By p[pt)] < Eyop[V P (t) - 2(1)].

Chapter Notes

There is a long history of study of multi-dimensional pricing and mech-
anism design in economics. Wilson’s text Nonlinear Pricing is a good
reference for this area (Wilson, 1997).

Approximation for item-pricings when the agent’s values are indepen-
dent were first studied by Chawla et al. (2007) where a 3 approximation
was given. The two approximation via prophet inequalities that is pre-
sented in this chapter is due to Chawla et al. (2010b). Cai and Daskalakis
(2011) show that it is computationally tractable to construct a pricing
that approximates the revenue of the optimal pricing to within any mul-
tiplicative factor. The example presented herein that shows that a lottery
pricing can give more revenue than the optimal item pricing was given
by Thanassoulis (2004). Lottery pricings and the theorem that shows
that the optimal lottery pricing is at most a factor of two more than
the optimal mechanism’s revenue in the single-dimensional representa-
tive environment is originally from Chawla et al. (2010a); however, the
proof given here employs the framework for amortized analysis of rev-
enue from Haghpanah and Hartline (2015) with a proof approach from
Cai et al. (2016).
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The study of approximation for additive agents was initiated by Arm-
strong (1999) who showed, for example, that pricing the grand bundle
is asymptotically (in the number of items) when the agent’s values for
the items are independent and identically distributed. The idea that
bundling can give higher revenue than pricing the items individually is
related to the idea, more generally in mechanism design, of the linking of
independent decisions (Jackson and Sonnenschein, 2007). The study of
simple approximation mechanisms for additive agents and a small num-
ber of items was systematically considered by Hart and Nisan (2012).
When the agent’s values are independently distributed, Babaioff et al.
(2014) showed that the better of pricing individual items and pricing
the grand bundle is a constant approximation to the optimal, perhaps
randomized, mechanism. This result has been extended in a number of
directions including (a) subadditive valuations, (b) multiple agents, and
(c) partial correlation between item values. The proof given here of the
six approximation is from Cai et al. (2016).

The inapproximability of the optimal mechanism for additive and
unit-demand agents when the agent’s values are arbitrarily correlated
was proven by Briest et al. (2010) for unit-demand agents and m = 3
alternatives. Hart and Nisan (2013) generalize the construction to m = 2
alternatives (of course for m = 1 alternative, the optimal mechanism is
an item pricing). The construction presented in this chapter is from Hart
and Nisan (2013).

The marginal revenue framework and its approximate optimality for
general service constrained environments was developed by Alaei et al.
(2013).

The study of sequential posted pricing mechanisms in multi-dimensional
environments that is discussed in this chapter is given by Chawla et al.
(2010b); these sequential posted pricings are constant approximations
to the optimal deterministic mechanisms. Alaei (2011) gives a refined
analysis and approach with improved approximation bounds. Exten-
sions of these results to bound the revenue of the sequential posted
pricing in terms of the optimal (randomized) mechanism’s revenue are
from Chawla et al. (2010a) and Chawla and Miller (2016). Neither the
bound of four (for single-agent lottery pricing) or 27 (for matching mar-
kets) is known to be tight.



