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Multi-dimensional and Non-linear
Preferences

Chapters 2–7 focused on environments where the agent preferences are
single-dimensional and linear, i.e., an agent’s utility for receiving a ser-
vice at a given price is her value minus the price. In many settings of
interest, however, agents’ preferences are multi-dimensional and non-
linear. Common examples include (a) multi-item environments where
an agent has different values for each item, (b) agents that are finan-
cially constrained, e.g., by a budget, where an agent’s utility is her value
minus price as long as the price is at most her budget (if the budget
is private knowledge of the agent then this agent is multi-dimensional
and non-linear), or (c) agents who are risk averse; a common way to
model risk averse preferences is to assume an agent’s utility is given by
a concave function of her value minus price.

Just as for single-dimensional linear agents, for multi-dimensional lin-
ear agents there is a dominant strategy incentive compatible mechanism
that maximizes the social surplus. This mechanism does not depend on
the prior distribution from which the agents’ types are drawn. For agents
with non-linear utility or for the objective of revenue maximization, op-
timal mechanisms will depend on the prior distribution and will be much
more complex.

The challenge posed by multi-dimensional non-linear preferences is
three-fold. First, multi-dimensional type spaces can be large, even opti-
mizing single-agent problems (like those in Section 3.4 on page 79) may
be analytically or computationally intractable. Second, we should not
expect the revenue-linearity condition of Definition 3.4.5 on page 84 to
hold when agents have non-linear preferences (in fact, it also does not
generally hold for linear but multi-dimensional preferences). Third, of-
ten settings with multi-dimensional agents have multiple items and the
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externality an agent imposes on the other agents when she is served one
of these items is, therefore, multi-dimensional as well.

Our approach to multi-dimensional and non-linear preferences will be
to address the challenges above in the order given.

8.1 Social Surplus

The surplus maximization mechanism (Definition 3.2.1) described in
Section 3.2 for agents with single-dimensional linear preferences gen-
eralizes multi-dimensional agents with quasi-linear preferences.

Consider designing a mechanism to choose an outcome x from a gen-
eral space of outcomes X and non-negative payments for each agent
p ∈ R

n
+. An agent’s utility function maps the outcome and her payment

to her utility.

Definition 8.1.1. A utility function ui : X ×R+ → R is quasi-linear if
it is linear in payments, i.e., ui(x, pi) = ui(x)+pi where ui(x) = ui(x, 0)
is short hand for the utility of the agent with no payments.

Importantly quasi-linearity allows the utility function to be a non-
linear in a natural parameterization of the outcome. For example, when
considering mechanisms for allocating a divisible resourcethen quasi-
linearity allows the agent’s utility to be a non-linear function of the
fraction of the resource allocated to the agent. In previous chapters of
this text, each agent was either allocated a service or not allocated a
service and, thus, quasi-linearity and risk neutrality implies linearity.

Example 8.1.1. An important example environment for multi-dimensional
mechanism design is that of combinatorial auctions (generalizing the
single-minded combinatorial auction of Example 6.1.2). In a combinato-
rial auction there are m items {1, . . . , m} and the feasible outcomes X

Chapter 8: Topics Covered.
• the (multi-dimensional) surplus maximization mechanism,
• unit-demand and public budget preferences,
• revenue linearity (revisited from Section 3.4.4 on page 84),
• interim feasibility,
• implementation by stochastic weighted optimization, and
• multi-dimensional virtual values via amortized analysis.
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correspond to allocations that partitioning the items into n + 1 sets, one
set for each agent and a set of unallocated items. The utility of an agent
is a function only of the set of items she receives and her payment (and
not the allocation of items to other agents).

For the objective of social surplus, the externality pricing mecha-
nism for surplus maximization with single-dimensional agents (Defi-
nition 3.2.1) generalizes and is optimal. In this generalization Defini-
tion 3.2.1, agents report their multi-dimensional preferences, the mecha-
nism chooses the outcome that maximizes social surplus for the reported
preferences, and it charges each agent the externality imposed on the re-
maining agents. The proof of the following theorem follows in a similar
fashion to that of Theorem 3.2.2 and Corollary 3.2.3 in Chapter 3.

Definition 8.1.2. The externality pricing (SM) mechanism for surplus
maximization with quasi-linear agents is:1

(i) Solicit and accept sealed bids b with bi : X → R.

(ii) Find the optimal outcome x← OPT(b).

(iii) Set prices p as pi ← OPT(0, b−i)− OPT−i(b) where a bid of bi = 0
denotes the constant function bi(x) = 0 for all outcomes x.

Theorem 8.1.1. For agents with (generally multi-dimensional) quasi-
linear preferences, the externality pricing mechanism is dominant strat-
egy incentive compatible and maximizes the social surplus.

The optimality of a single mechanism for quasi-linear agents and the
objective of surplus is an anomaly. For non-quasi-linear agents or other
objectives, the optimal mechanism depends on the distribution of agent
preferences. The remainder of this chapter focuses on the objective of
revenue.

8.2 Optimal Single-agent Mechanisms

A general agent has a type t drawn from an abstract type space T accord-
ing to a distribution F . A mechanism can produce an outcome w from
a general space of outcomes W . Outcomes can be complicated objects
but we will project them down onto our familiar notation for allocation

1
Recall that the surplus of an outcome x ∈ X is Surplus(u, x) =

P

i ui(x) − c(x)
for a general cost function over outcomes x ∈ X . In overloaded notation OPT(u)
represents both the outcome that maximizes surplus and its surplus.
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and payment as follows. When the outcome includes a payment, it is
denoted by p. In general an outcome can include multiple alternatives
by which an agent is allocated or not allocated, x = 1 denotes the former
and x = 0 denotes the latter. Both x and p are encoded by w, which
may also encode other aspects of the outcome.

Recall any mechanism for a single agent, by the taxation principle,
can be represented by a menu, i.e., a set of outcomes, where the agent
picks her favorite outcome from the menu. Simple mechanisms can best
be described by the set of outcomes they allow. For individually rational
mechanisms it is without loss to assume that the outcome ∅, which does
not allocate and requires no payment, is available in M and that all types
obtain zero utility for this outcome. When listing the outcomes of the
mechanism we will omit ∅. When describing more complex mechanisms
it will be convenient to index the outcomes by the types that prefer
them, i.e., as outcome rule w(t) for t ∈ T . The menu representation of
a mechanism with outcome rule w(·) is:

M = {w(t) : t ∈ T }.

Indexing as such, incentive compatibility and individual rationality can
be expressed in terms of the agent’s utility function u(·, ·) as follows,
respectively.

u(t, w(t)) ≥ u(t, w(s)), ∀t, s ∈ T ,

u(t, w(t)) ≥ 0, ∀t ∈ T .

The subsequent developments of this section and chapter will be illus-
trated two representative examples, (a) a single-dimensional agent with
a public budget (a non-linear preference), and (b) a (multi-dimensional)
unit-demand agent with linear utility given by her value for the alterna-
tive obtained minus her payment.

Definition 8.2.1. A public budget agent has a (single-dimensional)
value t for service and a public budget B. Her utility is linear for out-
comes with required payment that is within her budget, and infinitely
negative for outcomes with payments that exceed her budget. For out-
come w = (x, p), where x denotes the probability she is allocated and p
is her required payment, her utility is u(t, w) = t x− p when p ≤ B (and
−∞, otherwise).

Definition 8.2.2. A unit-demand agent desires one of m alternatives.
Her type t = ({t}1, . . . , {t}m) is m-dimensional where {t}j is her value
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for alternative j. Her utility is linear; an outcome w is given by a pay-
ment and a probability measure over the m alternatives and nothing.
For outcome w = ({x}1, . . . , {x}m, p), where {x}j denotes the probabil-
ity she obtains alternative j and p is her required payment, her utility is
u(t, w) =

∑

j{t}j{x}j − p. The probability she receives any allocation is
x =

∑

j{x}j.

The single-agent problems we consider are (i) the unconstrained single-
agent problem, (ii) the ex ante constrained single-agent problem, and (iii)
the interim constrained single-agent problem. Similar to Section 3.4, we
are looking to understand the single-agent mechanisms that correspond
to R(1), R(q̂), and Rev[ŷ].

Definition 8.2.3. A single-agent problem is specified by the type space,
outcome space, and distribution over types as (T ,W , F ), and a feasibility
constraint. The feasibility constraints of single-agent problems are:

(i) Unconstrained: any mechanism is feasible. The optimal unconstrained
mechanism’s revenue is denoted R(1). The monopoly quantile q̂⋆ is
defined to be its ex ante sale probability.

(ii) (Weak) ex-ante constrained: for ex ante constraint q̂, a mechanism is
feasible if its ex ante allocation probability is at most q̂, i.e., Et∼F [x(t)] ≤
q̂. The optimal q̂ ex ante mechanism’s revenue is denoted R(q̂).

(iii) (Weak) interim constrained: for interim constraint ŷ (a monotone
non-increasing function from [0, 1] to [0, 1]), a mechanism M is fea-
sible if, for any subspace of types S ⊂ T with measure q̂ = Pr[t ∈ S]
under distribution F , the probability that a type in the subset is allo-
cated under M is at most that of a quantile q ∈ [0, q̂] under constraint
ŷ. In other words, the allocation constraint ŷ is satisfied if for type
distribution F , quantile q ∼ U [0, 1], and subspace of types S with
Prt∼F [t ∈ S] = q̂,

E[x(t) | t ∈ S] ≤ E[ŷ(q) | q ≤ q̂] .

The optimal ŷ interim mechanism’s revenue is denoted Rev[ŷ].

The optimal revenues from these convex maximization problems sat-
isfy the standard concavity properties. Thus,

• the revenue curve R(·) is concave, and
• the interim optimal revenue is concave, i.e., Rev[ŷ] ≥ Rev[ŷ†] +

Rev[ŷ‡] for ŷ = ŷ† + ŷ‡.

See the Technical Note on page 258 for further discussion.
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8.2.1 Public Budget Preferences

In this section we will describe optimal mechanisms for the three single-
agent problems and agents with a public budget. Formal derivations of
these optimal mechanisms are deferred to Section 8.7.

Example 8.2.1. The exemplary uniform public-budget agent has (single-
dimensional) private type t uniform on type space T = [0, 1] and public
budget B = 1/4.

We begin by describing a few mechanisms for an agent with uniformly
distributed private value and public budget B = 1/4 (Example 8.2.1). Re-
call that any mechanism for a single agent, by the taxation principle,
can be represented by a menu, where the agent picks her favorite out-
come from the menu. An outcome is a pair w = (x, p), and individual
rationality requires that the outcome ∅ = (0, 0) is implicitly in the menu
of any mechanism. The following are mechanisms that sell with ex ante
probability q̂ = 1/2 and do not exceed the agent’s budget.

• A 3/4 lottery at price 1/4 is M = {(3/4, 1/4)}. The utility of an agent
with type t for this lottery pricing is 3/4 t − 1/4 and, thus, types t ∈
[1/3, 1] buy. The ex ante sale probability is 3/4 · 2/3 = q̂ = 1/2 as desired.
Its allocation rule is the following:

x(t) =

{

0 if t ≤ 1/3, and

3/4 otherwise.

Technical Note. In Section 3.4 the ex ante constraints of R(·) and
Rev[·] were required to hold with equality, i.e., E[x(t)] = q̂ and
E[x(t)] = E[ŷ(q)], respectively. For multi-dimensional and non-linear
preferences, single-agent mechanisms can be ill-behaved when required
to serve types that the optimal unconstrained mechanism would reject.
The “weak” definitions of Definition 8.2.3 avoid the resulting techni-
calities and are without loss for downward-closed environments. These
weakened definitions of the single-agent problems, relative to those of
Chapter 3, satisfy the following additional properties.
• The revenue curve R(·) is monotonically non-decreasing on q̂ ∈ [0, q̂⋆]

and constant on q̂ ∈ [q̂⋆, 1].
• The unconstrained optimal revenue is given by R(1) = R(q̂⋆).

The results of this chapter will be restricted to downward closed envi-
ronments.
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(b) All-pay allocation rule.

Figure 8.1. Depicted are the allocation rules for the 3/4-lottery and the
two-agent all-pay auction (for public budget B = 1/4). In each case, the
ex ante allocation probability is q̂ = 1/2 and the highest type t = 1 pays
her full budget B. In subfigure (a), the 2/3 measure of highest types buy
the 3/4-lottery at price B = 1/4 for a total revenue of 1/6. In subfigure (b),
the allocation rule of the two-agent all-pay auction without the budget
constraint is also depicted (think, gray, dashed line).

• In a two-agent all-pay auction, types t ∈ [1/2, 1] bid the budget B = 1/4,
remaining types bid 1/2 t2 (the usual all-pay equilibrium, cf. Section 2.8
on page 39). The agents are symmetric; thus, each wins with ex ante
probability q̂ = 1/2. Each agent’s allocation rule is the following:

x(t) =

{

t if t ≤ 1/2, and

3/4 otherwise.

These allocation rules are depicted in Figure 8.1. In each the payment of
an agent with the highest type t = 1 is exactly her budget B = 1/4. To
understand where the second allocation rule comes from, consider run-
ning an all-pay auction for two agents with types uniformly distributed
on [0, 1]. Absent a budget constraint, an agent with the highest type
t = 1 would win with probability one and pay 1/2. This exceeds the
budget and this agent would prefer to lower her bid relative to the non-
budgeted equilibrium. In fact, types in [3/4, 1] prefer to lower their bids
to B, this causes types in (1/2, 3/4] to prefer to raise their bids to B,
and leaves type t = 1

2 indifferent between bidding in the unconstrained
all-pay equilibrium and bidding B (Exercise 8.3). The given allocation
rule results. Naturally, there are many other possible mechanisms that
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satisfy the budget constraint and have ex ante sale probability of q̂ = 1/2;
the optimal one, however, is the 3/4-lottery.

Section 8.7 derives a characterization of optimal mechanisms for the
three single-agent optimization problems for an agent with a public bud-
get and uniformly distributed type. For the example of budget B = 1/4

and uniformly distributed types, these optimal mechanisms are as fol-
lows.

• The unconstrained optimal mechanism posts price B = 1/4, sells to
the 3/4 measure of types t ∈ [1/4, 1], and has expected revenue 3/16. Its
ex ante sale probability is q̂⋆ = 1−B = 3/4.

• The ex ante optimal mechanism for q̂ ≤ q̂⋆ is the q̂+B lottery at price
B, i.e., Mq̂ = {(q̂ +B, B)}. The top q̂/q̂+B measure of types choose to
buy this lottery. See Figure 8.1(a) for the special case of q̂ = 1/2 and
B = 1/4 where R(1/2) = 1/6. For q̂ ≥ q̂⋆ the optimal mechanism with
sale probability at most q̂ is the optimal unconstrained mechanism,
above. The revenue curve is given by

R(q̂) =

{

q̂ B/q̂+B if q̂ ≤ q̂⋆, and

1−B otherwise.

• The interim optimal mechanism for allocation constraint ŷ is given by
types 0 ≤ t̂‡ ≤ t̂† ≤ 1 and has allocation rule given by reserve pricing
the weak types t ∈ [0, t̂‡), ironing the strong types t ∈ (t̂†, 1], and
allocating maximally to intermediate types t ∈ [t̂‡, t̂†). The reserve
price is set to optimize revenue; the ironed interval is set to meet the
budget constraint with equality. The example of ŷ(q) = 1−q is given in
Figure 8.2. It is most natural to describe the resulting allocation rule
in quantile space. Recall that the quantile of a type is the measure of
stronger types; for the uniform distribution the quantile of t is q = 1−t.
Thus, the allocation rule of this mechanism is x(t) = y(1 − t) with
q̂† = 1− t̂†, q̂‡ = 1− t̂‡, and

y(q) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1/q̂
†
∫ q̂

†

0 ŷ(z) dz if q ∈ [0, q̂†),

ŷ(q) if q ∈ [q̂†, q̂‡), and

0 otherwise.

While in these single-dimensional public budget problems, there is
a natural ordering on types by strength, it is not the case that opti-
mal mechanisms always break ties in the same way. In particular the
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Figure 8.2. For an agent with uniform type on [0, 1] and public budget
B = 1/4, depicted is the allocation rule for the optimal mechanism that
satisfies the interim allocation constraint ŷ(q) = 1 − q. The allocation rule
in quantile space is depicted in subfigure (a); the allocation rule in type
space is depicted in subfigure (b). For the uniform distribution, these are
mirror images of each other.

interval of ironing, i.e. [0, q̂†], in the interim mechanism design prob-
lem depends on the allocation constraint ŷ. Unlike the case of single-
dimensional linear preferences described in Chapter 3, there is no fixed
virtual value function for which optimization of virtual surplus gives the
optimal mechanism. Instead, the appropriate virtual value function will
depend on the environment and level of competition from other agents.
This approach is further described subsequently in Section 8.7.

8.2.2 Unit-demand Preferences

In this section we will describe optimal mechanisms for the three single-
agent problems and (multi-dimensional) agents with unit-demand. For-
mal derivations of these optimal mechanisms are deferred to Section 8.8.

Example 8.2.2. The exemplary two-alternative uniform unit-demand
agent has type t ∈ T = [0, 1]2 uniformly distributed, i.e., t ∼ U [0, 1]2;
equivalently her value for each alternative is i.i.d. and uniform on [0, 1].
Recall, t = ({t}1, {t}2).

We begin by describing a few mechanisms for the two-alternative uni-
form unit-demand agent of Example 8.2.2. Recall any mechanism for a
single agent, by the taxation principle, can be represented by a menu
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Figure 8.3. Depicted are the outcomes x = ({x}1, {x}2) for the example
mechanisms given in the text for the two-alternative uniform unit-demand
agent (Example 8.2.2). The regions of allocation (gray) and non-allocation
(white) have area q̂ = 1 − q̂ = 1/2.

where the agent picks her favorite outcome from the menu. An outcome
is a triple w = ({x}1, {x}2, p) and individual rationality requires that
the outcome ∅ = (0, 0, 0) is implicitly in the menu of any mechanism.
The following are mechanisms that sell with ex ante probability q̂ = 1/2:

• Sell only alternative 1 for price 1/2: M = {(1, 0, 1/2)}.
• Sell the uniform lottery for price 1/2: M = {(1/2, 1/2, 1/2)}.
• Sell either alternative at a uniform price

√
1/2: M = {(1, 0,

√
1/2), (0, 1,

√
1/2)}.

The first two mechanisms obtain revenue 1/2 when they sell and, thus,
obtain an expected revenue of 1/4. The final mechanism obtains revenue
√

1/2 > 1/2 when it sells. Of these three mechanisms, the latter has the
highest revenue. Figure 8.3 depicts the outcomes of these mechanisms.
Of course, these are just three of an infinite number of mechanisms that
sell with ex ante probability q̂ = 1/2. As we will describe below, the ex
ante optimal mechanism for q̂ = 1/2 is in fact the uniform pricing of both
alternatives at

√
1/2.

Section 8.8 derives a characterization of optimal mechanisms for the
three single-agent optimization problems (Definition 8.2.3) for a unit-
demand agent with a uniformly distributed type. For m = 2 alternatives,
these optimal mechanisms are as follows.

• The unconstrained optimal mechanism is the uniform pricing at
√

1/3,
i.e., Mq̂ = {(1, 0,

√
1/3), (0, 1,

√
1/3)}. This mechanism serves with ex

ante probability q̂⋆ = 2/3 and has revenue R(1) =
√

4/27 ≈ 0.38.
• The ex ante optimal mechanism for q̂ ≤ 2/3 is the uniform pricing at√

1− q̂. For q̂ > 2/3 it is the 2/3 ex ante optimal mechanism, i.e., the
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Figure 8.4. For a unit-demand agent with uniformly distributed type for
m = 2 alternatives (Example 8.2.2), the allocation constraint ŷ(q) = 1− q,
its optimal allocation rule y(·), the allocation in the two-dimensional type
space T = [0, 1]

2
, and the payment as a function of {t}1 > {t}2 are depicted.

In subfigure (b), the degree of shading represents the probability with which
a type t = ({t}1, {t}2) receives her preferred alternative. When alternative
1 is preferred (i.e., {t}1 > {t}2) and at least the reservation value (i.e.,
{t}1 ≥

p

1/3), the probability of receiving alternative 1 is {t}2
1. For a type

t = ({t}1, {t}2) with {t}1 > {t}2, subfigure (c) depicts the allocation rule
x({t}1) as a function of the agent’s value for alternative 1. The agent’s
payment for her preferred outcome with such a type is calculated as the
area above this allocation rule x(·), by integrating x

−1
(·) vertically, as

p({t}1) =
R {t}

2
1

0

p

max(z, 1/3) dz for {t}1 ≥
p

1/3.

optimal unconstrained mechanism, above. The revenue curve is given
by

R(q̂) =

{

q̂
√

1− q̂ if q̂ ≤ 2/3, and
√

4/27 ≈ 0.38 otherwise.

• The interim optimal mechanism for allocation constraint ŷ is has al-
location rule (cf. Section 3.4.2 on page 81 and see Figure 8.4).

y(q) =

{

ŷ(q) if q ≤ 2/3, and

0 otherwise.

Figure 8.4(c) is the example of ŷ(q) = 1− q; the menu of the optimal
mechanism for this interim constraint is

M =
{(

x, 0, ∫x0
√

max(z, 1/3) dz
)

: x ∈ [1/3, 1]
}

∪
{(

0, x, ∫x0
√

max(z, 1/3) dz
)

: x ∈ [1/3, 1]
}

.

Unlike the example of a single dimensional agent with a public bud-
get (Example 8.2.1), there is no implicit ordering on types by strength.
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Which is stronger type t† = (.8, .1) or type t‡ = (.6, .6)? In fact, which
of these types is stronger generally depends on the mechanism. The uni-
form pricing of

√
1/2 ≈ .71 (Figure 8.3(c)) serves type t† and rejects type

t‡ while the uniform lottery at price 1/2 (Figure 8.3(b)) serves type t‡ and
rejects type t†. If we consider optimal mechanisms for any strictly de-
creasing interim constraint ŷ, however, it is clear that types are ranked as
stronger based on their maximum coordinate max({t}1, {t}2). Moreover,
the optimal mechanism for an interim constraint can be viewed as a con-
vex combination of optimal mechanisms for ex ante constraints. Though
these simplifying properties of optimal single-agent mechanisms do not
hold in general for unit-demand agents, in Section 8.8 we will describe
sufficient conditions, beyond the uniform distribution, under which they
extend. As we already observed in the preceding study of public budgets
these properties do not hold for non-linear preferences.

Important differences in families of single-agent problems have been
exhibited above in our study of unit-demand and public budget prefer-
ences under the uniform distribution. In particular, unit-demand prefer-
ences drawn from the uniform distribution (Example 8.2.2) behave sim-
ilarly to the single-dimensional linear preferences of Chapter 3, whereas
public budget preferences do not (Example 8.2.1). In the subsequent sec-
tions as we describe optimal multi-agent mechanisms both for families of
preferences that behave similarly to the uniform unit-demand example
and families of preferences that behave similarly to the uniform pub-
lic budget example. This latter class of mechanisms will be completely
general.

8.3 Service Constrained Environments

We will consider general environments, like the single-dimensional envi-
ronments of Section 3.1 on page 54, where agents only impose a single-
dimensional externality on each other. In these environments each agent
would like to receive an abstract service and there is a feasibility con-
straint over the set of agents who can be simultaneously served. Agents
may also have preferences over unconstrained attributes that may ac-
company service. Payments are one such attribute; for example, a seller
of a car can only sell one car, but she can assign arbitrary payments
to the agents (subject to the agents’ incentives, of course). Likewise,
the seller of the car could paint the car one of several colors as it is
sold and the agents may have multi-dimensional preferences over col-
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ors. Of course, if the car is sold to one agent then it cannot be sold
to other agents so, while the color may play an important role in an
agents’ multi-dimensional incentive constraints, it plays no role in the
feasibility constraints. We refer to environments with single-dimensional
externalities as service constrained environments. The more general case
of environments that exhibit multi-dimensional externalities is deferred
to Section 8.6.

Definition 8.3.1. A service constrained environment is one where a
feasibility constraint restricts the set of agents who can be simultaneously
served, but imposes no restriction on how they are served. Subsets of the
n agents N that can be simultaneously served are given by X ⊂ 2N.

In the subsequent sections we will reduce the problem of multi-agent
mechanism design to a collection of single-agent mechanism design prob-
lems. These sections will not further address the details of how to solve
these single-agent problems, instead they will focus on how the multi-
agent mechanism is constructed from the single-agent components. We
begin in Section 8.4 where the simplifying assumption of revenue linear-
ity enables optimal multi-agent mechanisms to be constructed from the
single-agent ex ante optimal mechanisms. In Section 8.5 we consider the
more general case where revenue linearity does not hold. In this case we
describe how to construct multi-agent mechanisms from the solution to
the single-agent interim optimal mechanism design problems.

The definition of service constrained environments, above, corresponds
to the general feasibility environments of Section 3.1. The framework can
be easily extended to incorporate service costs that are a function of the
set of agents served (see Exercise 8.10).

8.4 The Ex Ante Reduction

In this section we construct optimal multi-agent mechanisms for agents
whose single-agent problems behave similarly to the single-dimensional
linear agents of Chapter 3. We will use, as a running example of such
agents, the uniform unit-demand agent (Example 8.2.2 on page 261).
Our approach follows and extends that of Section 3.4 on page 79. In
this approach the multi-agent mechanism design problem is reduced to
the single-agent ex ante optimal mechanism design problem. This single-
agent optimization gives rise to a revenue curve R(·). The revenue lin-
earity property (Definition 3.4.5), specifically that Rev[ŷ] = Rev[ŷ†] +
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Rev[ŷ‡] for ŷ = ŷ† + ŷ‡, implies that any interim optimal mechanism
can be expressed in terms of marginal revenue Rev[ŷ] = Eq

[

R′(q) ŷ(q)
]

(Proposition 3.4.2).2 The optimal mechanism is, thus, the one that max-
imizes marginal revenue (cf. Theorem 3.4.5).

Recall from Definition 8.2.3, the ex ante optimal mechanism design
problem is given an upper bound q̂ on the ex ante probability of serving
the agent, over randomization in the agent’s type and the mechanism,
and determines the outcome rule wq̂ which maps types to outcomes. En-
coded in an outcome wq̂(t) for type t is a probability of service, denoted
xq̂(t), and a payment, denoted pq̂(t). This mechanism can alternatively
be thought of as the menu Mq̂ = {wq̂(t) : t ∈ T }. The revenue of the
ex ante optimal mechanism for every q̂ ∈ [0, 1] defines the revenue curve
R(q̂).

We will use the uniform unit-demand agent of Example 8.2.2, which
is revenue linear, to illustrate this construction and then give the formal
definition, derivation, and proof of correctness. For this example, recall
that the q̂ ex ante optimal mechanism, for q̂ ≥ q̂⋆, posts the uniform
price

√
1− q̂ for each of the two alternatives (see Figure 8.3(c)).

8.4.1 Example: Uniform Unit-demand Preferences

This section illustrates the general construction of optimal mechanisms
for revenue-linear agents. The first example considers two (identically
distributed, i.e., symmetric) uniform unit-demand agents (Example 8.2.2)
in a single-item environment, and the second considers (non-identically
distributed, i.e., asymmetric) agents.

Example 8.4.1. There are two agents, the seller has one car that he
can paint red or blue on its sale. The agents’ types, i.e., values for each
color, are independently, identically, and uniformly distributed on [0, 1].
The second-price auction for each agent’s preferred color with a reserve
of

√
1/3 is revenue optimal.

2 For review: View allocation constraint ŷ, a monotone non-increasing function
from [0, 1] to [0, 1], as a convex combination of reverse step functions each of
which steps from 1 to 0 at some q̂. In this convex combination q̂ is drawn with

cumulative distribution function Gŷ(q) = 1 − ŷ(q) and density function

g
ŷ
(q) = −ŷ

′
(q). The optimal revenue for each q̂, of the q̂ ex ante optimal

mechanism, defines R(q̂), the revenue of the convex combination is thus

E[(−ŷ
′
(q) R(q)]. Integration by parts with R(1) = R(0) = 0 gives the marginal

revenue MargRev[ŷ] = E[R
′
(q) ŷ(q)].
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Figure 8.5. The optimal auction for the red-blue car environment of
Example 8.4.1 is illustrated. In subfigure (a), the value agent 2 has for her
preferred color {t2}2 exceeds the reserve price of

p

1/3, agent 1 wins her
preferred alternative 1 and pays {t2}2. In subfigure (b), the value agent 2
has for her preferred item is below the reserve, agent 1 wins alternative 1
and pays the reserve price. In subfigure (c), the types stronger than agent 1
(dark gray region) and agent 2 (light and dark gray regions) are depicted.
As the distribution on types is uniform, the quantile q1 of agent 1 with type
t1 and q2 of agent 2 with t2 can be calculated as the areas of these regions,
respectively.

To explain Example 8.4.1, we will follow the construction of opti-
mal mechanisms for single-dimensional linear agents as described in
Chapter 3. In particular, we map types to quantiles by their relative
strength. We calculate marginal revenue of a type t with quantile q as
R′(q) = d

dq R(q). We allocate the car to the type with the highest pos-
itive marginal revenue. To determine the payment and what color to
paint the car, we look at the weakest quantile, given the quantile(s) of
the other agent(s), at which the winner still wins and allocate accord-
ing to ex ante mechanism for this critical quantile. These four steps are
described in detail below; the mechanism is illustrated in Figure 8.5.

Observe that agent 2 may win the car and this imposes an interim con-
straint on agent 1. As we have observed previously, the optimal single-
agent mechanism for agent 1 orders her types by her value for her pre-
ferred alternative. This ordering on types allows types to be mapped to
quantiles. Recall, the quantile of a type designates its strength relative
to the distribution of types and is defined as the measure of stronger
types. For the example type t = ({t}1, {t}2) is weaker than all types s
with max({s}1, {s}2) > max({t}1, {t}2) and stronger than all types s
with max({s}1, {s}2) < max({t}1, {t}2). As the distribution F is uni-
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form on [0, 1]2, the quantile of a type t is q = 1− [max({t}1, {t}2)]
2; see

Figure 8.5(c).
The revenue curves R(·) is defined from the solution to the ex ante

optimal mechanism for each q̂ ∈ [0, 1]. For the two-alternative uniformly
distributed types of the example and q̂ ≤ 2/3, q̂ ex ante optimal mecha-
nism posts price

√
1− q̂ and obtains revenue R(q̂) = q̂

√
1− q̂. For two

symmetric agents, as in our example, the details of the revenue curve
before its maximum, q̂⋆ = 2/3 for the example, are irrelevant as long as it
is strictly concave (unlike the asymmetric example given subsequently).
The agent with the stronger quantile wins, as long as that quantile is at
least the quantile reserve, which is given by the unconstrained optimal
mechanism and is q̂⋆ = 2/3.

Agent 1 will win the auction whenever her quantile is less than agent 2’s
quantile and the quantile reserve. Agent 1’s critical quantile is thus
q̂1 = min(q2, q̂

⋆). Fixing agent 2’s type and quantile, agent 1 faces the q̂1

ex ante optimal mechanism. For the example, this mechanism is given
by the menu {(1, 0,

√
1− q̂1), (0, 1,

√
1− q̂1)}, i.e., it is a uniform pricing

of
√

1− q̂1. When this critical quantile comes from agent 2, the uniform
price is exactly the value agent 2 has for her preferred alternative. When
this critical quantile comes from the reserve, then the uniform price is
from the optimal unconstrained mechanism, i.e., it is

√
1/3. Thus, agent

1 is offered a uniform price that is the higher of the reserve and agent 2’s
value for her preferred alternative. The optimal mechanism is the second-
price auction for the agents’ preferred alternative with a uniform reserve
of

√
1/3.

The next example environment shows that the approach taken above
can treat asymmetric agent preferences and that the dimensionality of
the preferences need not be the same. Due to the asymmetry, however,
the resulting optimal mechanism is more complex and will depend more
finely on the details of the agents’ revenue curves.

Example 8.4.2. There are two agents. A seller has one car that he can
paint red, blue, or green on its sale. Agent 1 is single-dimensional and
has uniformly distributed value for a green car (and no value for a red
or blue car); agent 2 has independent and uniformly distributed values
for red or blue cars (and no value for a green car). The winner of the
optimal mechanism is depicted in Figure 8.6, the winner always receives
her preferred color car.

The optimal mechanism of the red-blue-green car example (Example 8.4.2)
is constructed as follows. We map agent 1’s single-dimensional type to
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Figure 8.6. The allocation of the optimal auction for the red-blue-green car
environment of Example 8.4.2 is depicted. The horizontal axis is the value
of agent 1 for the green car t1; the vertical axis is the value of agent 2 for
her preferred color of red and blue {t2}max = maxj{t2}j .

a virtual value via the standard transformation from value to quantile
to marginal revenue as per the construction of Section 3.4. With type
t1, agent 1’s virtual value is φ1(t1) = 2t1 − 1. We map agent 2’s multi-
dimensional type to a (single-dimensional) virtual value similarly:

(i) q2 = 1− [max({t2}1, {t2}2)]
2.

(ii) R′
2(q) = d

dq [q
√

1− q] = 1−3/2 q√
1−q

= [1− 3/2 q] [1− q]−
1/2.

(iii) φ2(t2) = 3/2 {t2}max − 1/2 {t2}
−1
max where {t2}max = maxj{t2}j.

The winner is the agent i with the highest virtual value. She receives
her preferred alternative at a price of φ−1

i

(

max
{

φ3−i(t3−i), 0
})

.
The remainder of this section will formalize the construction of the

marginal revenue mechanism for revenue-linear agents in general and
prove its optimality among all mechanisms.

8.4.2 Orderability

Fundamental to the examples above is the identification of an ordering
on types from which types can be mapped to quantiles (and then to
marginal revenues). In this section we show that the existence of such
an ordering is a consequence of the revenue linearity property (restating
Definition 3.4.5):

Rev[ŷ† + ŷ‡] = Rev[ŷ†] + Rev[ŷ‡].
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The uniform unit-demand agent (Example 8.2.2) is revenue linear. This
observation follows from the fact that the interim optimal mechanism
for constraint ŷ is a convex combination of ex ante optimal mechanisms.
Revenue linearity immediately implies that the surplus of marginal rev-
enue (Definition 3.4.4) is equal to the optimal revenue (Proposition 3.4.2):

MargRev[ŷ] = E
[

R′(q) ŷ(q)
]

= Rev[ŷ].

However, it does not immediately suggest how to implement surplus
of marginal revenue maximization as the mapping from type space to
quantile space is not explicit in a multi-dimensional type space (as it is
in a single-dimensional type space).

Definition 8.4.1. A single-agent problem given by a type space, out-
come space, and distribution over types is orderable if there is an equiv-
alence relation on types and an ordering over equivalence classes, such
that for every allocation constraint ŷ, an optimal mechanism for ŷ, i.e.,
solving Rev[ŷ], induces an allocation rule that is greedy by the given or-
dering with ties broken uniformly at random and with types in a special
lowest equivalence class ⊥ (if any) rejected.

Notice that the single-dimensional budgeted agent (Example 8.2.1)
is not orderable by the above definition. Though, the agent’s value for
service gives a natural ordering on types, the optimal mechanism for ŷ
irons the strongest quantiles so as to meet the budget constraint with
equality and this ironed interval depend on the allocation constraint ŷ
(see Figure 8.2 on page 261).

Theorem 8.4.1. For any single-agent problem, revenue linearity im-
plies orderability.

The main intuition behind Theorem 8.4.1 comes from the observation
that revenue linearity implies that the allocation rule y that is obtained
from optimization subject to interim constraint ŷ must be equal to ŷ
at all quantiles where the revenue curve is strictly concave; the equiv-
alence classes in the theorem statement then correspond to types with
equal marginal revenue (which have non-zero measure only on intervals
of quantile space where the marginal revenue is constant). The proof
illustrates how revenue linearity enables interim optimal mechanisms to
be understood in terms of ex ante optimal mechanisms.

Recall the definition of the cumulative allocation rule as Y (q̂) =
∫ q̂
0 y(q) dq and, by integration by parts, we can express the marginal
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revenue of any allocation rule y as (recall that Y (0) = 0):

MargRev[y] =
[

R′(q)Y (q)
]1

0
−

∫ 1

0
R′′(q)Y (q) dq

= R′(1)Y (1)−E
[

R′′(q)Y (q)
]

. (8.4.1)

We will prove Theorem 8.4.1 by combining the following two lemmas.
The first lemma shows that for any quantile q̂ where marginal revenue is
strictly decreasing, i.e., where R′′(q̂) < 0, the interim optimal allocation
rule y for interim constraint ŷ allocates to the maximum extent possible,
i.e., the interim constraint of Definition 8.2.3 is tight at q̂, i.e., Y (q̂) =
Ŷ (q̂).

Lemma 8.4.2. For a revenue-linear agent, allocation rule y that is
optimal for allocation constraint ŷ, and any ex ante probability q̂ with
R′′(q̂) ̸= 0, the cumulative allocation rule and constraint satisfy Y (q̂) =
Ŷ (q̂).

Proof. If we optimize revenue for allocation constraint ŷ and obtain
a mechanism with allocation rule y, then Rev[ŷ] = Rev[y]. Revenue
linearity implies that optimal revenues are equal to marginal revenues,
i.e., Rev[ŷ] = MargRev[ŷ] and Rev[y] = MargRev[y], respectively.
Writing the difference between these marginal revenues and employing
equation (8.4.1), we have:

0 = MargRev[ŷ]−MargRev[y]

= R′(1) [Ŷ (1)− Y (1)] + E[[−R′′(q)] [Ŷ (q) − Y (q)]] . (8.4.2)

By interim feasibility of y for ŷ, [Ŷ (q) − Y (q)] ≥ 0. By concavity of
revenue curves [−R′′(q)] ≥ 0. By monotonicity of revenue curves R′(1) ≥
0. Thus, every term in equation (8.4.2) is non-negative. The only way it
can be identically zero if [−R′′(q)] > 0 implies that [Ŷ (q) − Y (q)] = 0
as required by the lemma. (Also observe, though unnecessary for the
lemma, that R′(1) > 0 implies that [Ŷ (1)− Y (1)] = 0.)

An immediate corollary of Lemma 8.4.2 is that the ex ante optimal
mechanism for any q̂ with R′′(q̂) < 0 deterministically serves or rejects
each type, i.e., the allocation rule in type space is xq̂(t) ∈ {0, 1}. Contrast
this corollary to the uniform public-budget example where the optimal
mechanism for ex ante constraint q̂ = 1/2 is pricing the 3/4 lottery while
R(q̂) = q̂ B/q̂+B is strictly convex at q̂ = 1/2 (Section 8.2.1).

Corollary 8.4.3. For a revenue-linear agent and any ex ante probability
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q̂ with R′′(q̂) ̸= 0, the q̂ ex ante optimal mechanism deterministically
serves or rejects each type t ∈ T .

Proof. Notice that an ex ante constraint of q̂ is equivalent to the interim
constraint given by the reverse-step function that steps from 1 to 0 at
q̂, denoted ŷq̂. By Lemma 8.4.2, the optimal allocation rule for this con-
straint is the reverse-step function itself. A mechanisms whose allocation
rule is a reverse-step function deterministically allocates or rejects each
type.

For q̂ where the revenue curve is strictly concave, Corollary 8.4.3 im-
plies the type space T is partitioned into types that are served and
those that are rejected. Denote the allocation rule of the q̂ ex ante opti-
mal mechanism in type space by xq̂(·) and the subset of types it serves
by

S q̂ = {t ∈ T : xq̂(t) = 1}. (8.4.3)

The following lemma shows that the sets of types served by the ex ante
optimal mechanisms are nested.

Lemma 8.4.4. For a revenue-linear agent and any ex ante probabilities

q̂† < q̂‡ with R′′(q̂†) ̸= 0 and R′′(q̂‡) ̸= 0, then S q̂
†

⊂ S q̂
‡

.

Proof. This proof is illustrated in Figure 8.7. Let ŷ† and ŷ‡ denote the
interim allocation constraint corresponding to the ex ante constraints q̂†

and q̂‡, respectively. Consider the interim constraint ŷ = 1/2 ŷ† + 1/2 ŷ‡.
The constraint ŷ is a reverse stair function that steps from 1 to 1/2 at q̂†

and from 1/2 to 0 at q̂‡. Suppose for a contradiction that S q̂
†

contains a
measurable (with respect to the distribution F ) set of types that is not

also contained in S q̂
‡

. By revenue linearity the optimal mechanism for ŷ is
the convex combination of the optimal mechanisms for ŷ† and ŷ‡; denote
its allocation rules in quantile and type space by y and x, respectively.
The following table tallies the measure and service probability of each
relevant subset of types (with ρ defined by the probability of the second
line):

S Pr[t ∈ S] x(t)

S q̂
†

∩ S q̂
‡

q̂† − ρ 1

S q̂
†

\ S q̂
‡

ρ 1/2

S q̂
‡

\ S q̂
†

q̂‡ − q̂† + ρ 1/2

T \ S q̂
†

\ S q̂
‡

1− q̂‡ + ρ 0
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Figure 8.7. For a two-alternative unit-demand agent, the proof of
Lemma 8.4.4 is illustrated. In this hypothetical situation the q̂† (resp. q̂‡)
optimal mechanism posts a price for selling alternative 1 (resp. 2) only.
In subfigure (a) the two-dimensional type space T = [0, 1] and the alloca-
tion of the convex combination of the q̂

†
and q̂

‡
optimal mechanism are

depicted. The types t ∈ S
q̂
†

∩ S
q̂
‡

(dark gray region) have allocation proba-

bility x(t) = 1, types t in the symmetric difference of S
q̂
†

and S
q̂
‡

(light gray
region) have allocation probability x(t) = 1/2, and the remaining types have
allocation probability x(t) = 0. In subfigure (b) the allocation constraint ŷ
and allocation rule y are depicted. In subfigure (c) the cumulative alloca-
tion constraint Ŷ and cumulative allocation rule Y are depicted. Allocation
constraints are depicted with thick, dashed, gray lines and allocation rules
are depicted with thin, solid, black lines.

The allocation rule y is a reverse-stair function that steps from 1 to 1/2 at
q̂†−ρ and from 1/2 to 0 at q̂‡ +ρ. Inspection reveals, for a contradiction,
that Lemma 8.4.2 is violated at q̂† and q̂‡. For example, Ŷ (q̂†) = q̂† >
Y (q̂†) = q̂† − 1/2 ρ.

Proof of Theorem 8.4.1. Define type subspace S q̂ as in equation (8.4.3).
Define the marginal revenue of a type t as inf{R′(q̂) : S q̂ ∋ t}. The
equivalence classes of Definition 8.4.1 are sets of types with the same
marginal revenue; types with marginal revenue zero are in the equiva-
lence class ⊥. By Lemma 8.4.4, these definitions are well defined.

Consider the q̂ optimal mechanism. If R′′(q̂) ̸= 0 then it is optimal
to serve types S q̂. Greedy by marginal revenue (as defined above) serves
these types. If R′′(q̂) = 0, then let (q̂†, q̂‡) be the interval on which
R′(q̂) is constant. An optimal mechanism randomizes between the q̂† ex
ante optimal and q̂‡ ex ante optimal mechanisms so that the total sale

probability is q̂. By Lemma 8.4.4, types in S q̂
†

, with marginal revenue

strictly greater than R′(q̂), are served with certainty and types in S q̂
‡

\
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S q̂
†

, with marginal revenue equal to R′(q̂) are served with probability
q̂−q̂

†
/q̂

‡−q̂
†. One way to achieve these service probabilities is to randomly

order order the types by marginal revenue with ties broken randomly and
to greedily serve the first q̂ measure of types. Thus, all ex ante optimal
mechanisms order types by marginal revenue and serve them greedily.

By revenue linearity the optimal mechanism for allocation constraint
ŷ is a convex combination of ex ante optimal mechanisms. As these
ex ante optimal mechanisms all order the types greedily by marginal
revenue with ties broken randomly, so does the optimal mechanism for
ŷ.

Theorem 8.4.1 says that while there is not an inherent ordering on
type space that is respected by all mechanisms, there is one that, for all
interim allocation constraints, is consistent with an optimal mechanism
for the constraint.

Definition 8.4.2. For an orderable agent (Definition 8.4.1) and an
implicit arbitrary total order on types that is consistent with the partial
order on types, the quantile q of a type t is the probability that a random
type s ∈ T from the distribution F precedes type t in the total order.

8.4.3 The Marginal Revenue Mechanism

We now define the marginal revenue mechanism for orderable agents.

Definition 8.4.3. The marginal revenue mechanism for orderable agents
works as follows:

(i) Map the profile of agents’ types t to a profile of quantiles q via
Definition 8.4.2.

(ii) Calculate the profile of marginal revenues for the profile of quantiles.
(iii) Calculate a feasible allocation to optimize the surplus of marginal

revenue, i.e., x = argmax
x

†

∑

i x†
i R′

i(qi) − c(x†). For each agent i,
calculate the supremum quantile q̂i she could possess for which she is
would be allocated in the above calculation of x.

(iv) Offer each agent i the q̂i optimal single-agent mechanism.

Theorem 8.4.5. The marginal revenue mechanism for revenue-linear
agents is (a) dominant strategy incentive compatible, (b) feasible, (c)
revenue-optimal, and (d) deterministically selects the set of winners.

Proof. Consider any agent i. Analogously to the proof of Theorem 3.3.2,
monotonicity of marginal revenue curves and Lemma 3.2.1 implies that,
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for every profile of reports of the other agents, there is a critical quantile
q̂i for agent i. The q̂i ex ante mechanism is dominant strategy incen-
tive compatible. Thus, the composition is dominant strategy incentive
compatible.

The critical quantile q̂i for agent i is at the boundary of service and
non-service thus R′′

i (q̂i) ̸= 0 which implies that the q̂i optimal mecha-
nism, by Corollary 8.4.3, deterministically serves or rejects the agent.
The set of agents served are exactly those served by x which is feasible.

The mechanism is revenue optimal because (a) its revenue is equal
to its surplus of marginal revenue, (b) its surplus of marginal revenue
is pointwise at least that of any other feasible mechanism, and (c), by
revenue linearity, the revenue of any mechanism is at most its marginal
revenue.

While it is often assumed that the optimality of the marginal rev-
enue mechanism is special to single-dimensional linear agents (as in
Chapter 3), we have seen here that the condition required is revenue
linearity not single dimensionality. It is instructive to contrast the sim-
ple optimal mechanism for revenue-linear agents to the complex optimal
mechanism for non-revenue-linear agents that is derived in the next sec-
tion.

8.5 The Interim Reduction

Without the revenue linearity property, which was assumed in the pre-
ceding section, single-agent interim optimal mechanisms can not be
described solely in terms of the single-agent ex ante optimal mecha-
nisms. For this reason, more sophisticated single-agent mechanisms are
needed to enable the optimization of general multi-agent mechanisms.
In this section we characterize optimal multi-agent mechanisms for ser-
vice constrained environments (Definition 8.3.1) in terms of the solution
to single-agent interim optimal mechanism design problems (and with-
out the simplifying revenue-linearity property). It is useful to contrast
the complexity of the optimal mechanism for general preferences with
that of the optimal mechanism with the revenue linearity assumption of
Section 8.4.

The (quantile) allocation rule of a mechanism can be determined as
follows. Recall that a single-agent mechanism M is given by an outcome
rule w(·) which maps types to outcomes. The mechanism can alterna-
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tively be thought of as the menu {w(t) : t ∈ T }. Encoded in an outcome
w(t) for type t is a probability of service denoted x(t) and a payment
denoted p(t). For finite type spaces where f(·) denotes the probability
mass function of the distribution F , the (quantile) allocation rule y(·) of
the mechanism can be found by making a rectangle for each type t with
height x(t) and width f(t) and sorting these rectangles in decreasing
order of height. Equivalently and generally for continuous type spaces,
consider the function defined as the measure of types that are served
with at least a given service probability, the (quantile) allocation rule is
the inverse of this function, i.e., y(q) = sup{x† : Prt∼F [x(t) ≥ x†] ≥ q}.

Recall from Definition 8.2.3 that the single-agent interim optimal
mechanism for allocation constraint ŷ has allocation rule y that is no
stronger than ŷ, i.e., the cumulative allocation rules satisfy Y (q̂) ≤ Ŷ (q̂).
Moreover, it optimizes revenue, denoted Rev[ŷ], over all such mecha-
nism.

8.5.1 Symmetric Single-item Environments

We will illustrate the approach of this section with an example envi-
ronment where symmetry enables the optimal mechanism to be easily
identified.

Example 8.5.1. There are two agents competing for a single item each
with private value t independently, identically, and uniformly distributed
on [0, 1] and a public budget of B = 1/4 (as in Example 8.2.1). The
revenue-optimal mechanism fixes (t̂‡, t̂†) ≈ (0.32, 0.40), rejects agents
with values less than t̂‡, and allocates the item to the remaining agent i
for which min(ti, t̂

†) is highest, breaking ties randomly. Each agent makes
deterministic payment according to the interim allocation rule x(·). In
particular, types ti ≥ t̂† pay B. See Figure 8.2 or Figure 8.8.

The main observation that enables the identification of an optimal
mechanism in symmetric environments, i.e., with identically distributed
agent types and symmetric feasibility constraint, is that convexity of
the mechanism design problem, i.e., that convex combinations of mech-
anisms are valid mechanisms, implies that there is always an optimal
mechanisms that is symmetric. The search for the optimal mechanism
is then facilitated by symmetry.

Proposition 8.5.1. In any symmetric environment there is an optimal
mechanism that is symmetric.



8.5 The Interim Reduction 277

Proof. Consider any optimal incentive compatible mechanism that is
asymmetric. Symmetry of the environment implies that permuting the
identities of the agents gives a (potentially distinct) incentive compat-
ible mechanism that is also optimal. The convex combination of, i.e.,
randomization over, incentive compatible mechanisms is incentive com-
patible. In particular, the convex combination of mechanisms for the
uniform distribution over all permutations of the identities of agents is
optimal, incentive compatible, and symmetric.

We will separate the process of finding the (symmetric) optimal mech-
anism into two parts. The first part will be to identify a symmetric profile
of allocation constraints ŷ = (ŷ, . . . , ŷ) that is feasible for a mechanism.
The second part will be to find the single-agent mechanism, with alloca-
tion rule y, that is optimal for the identified constraint ŷ. The optimal
multi-agent mechanism is then found by optimizing over the first part
and combining with the second part. In the subsequent discussion, this
approach is illustrated for the two-agent public-budget environment of
Example 8.5.1.

The following theorem resolves the first part by identifying a single
allocation constraint that is feasible and stronger than all other sym-
metric interim feasible allocation rules. In particular, the optimization
over solutions to the first part is given by this allocation constraint.

Theorem 8.5.2. Let ŷ = (ŷ, . . . , ŷ) be the n-agent allocation constraints
induced by the k strongest-agents-win mechanism and y = (y, . . . , y) the
allocation rules induced by any symmetric k-unit mechanism for n i.i.d.
agents, then y is feasible for ŷ.

Proof. We prove the n = 2 agent k = 1 unit special case; the general
result is left for Exercise 8.4. The two agent strongest-agent-wins mech-
anism induces allocation constraint ŷ(q) = 1− q.

We argue, as follows, that ŷ is the strongest symmetric allocation rule.
For one of the agents, the probability she has quantile stronger than q̂
is q̂ while the probability she has quantile stronger than q̂ and is served
by the mechanism is Ŷ (q̂) =

∫ q̂
0 ŷ(q) dq = q̂− 1/2 q̂2. For both agents, the

probability at least one has quantile stronger than q̂ is

1−Pr[q ≥ q̂]2 = 1− (1 − q̂)2 = 2 q̂ − q̂2. (8.5.1)
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Figure 8.8. Depicted in (a) are the allocation constraint (thick, gray, dashed
line) and allocation rule (thin, black, solid line) for the optimal mechanism
of the two-agent public budget environment of Example 8.5.1. Similarly, in
(b) are the cumulative allocation rule and constraint.

Meanwhile and by linearity of expectation, the expected number of
agents with stronger quantile than q̂ that are served is

2Ŷ (q̂) = 2 q̂ − q̂2. (8.5.2)

Importantly the quantity of (8.5.1) is equal to the quantity of (8.5.2).
Consider the allocation rule y induced by any symmetric mechanism.

For a contradiction, assume than y is stronger than ŷ at q̂, i.e., with
Y (q̂) > Ŷ (q̂). This allocation rule cannot result from any ex post feasi-
ble mechanism as the analogous quantity to (8.5.2) for y would exceed
quantity (8.5.1). Because there is only one unit available, it is impossi-
ble for the expected number of units allocated to agents with quantile
in [0, q̂] to be greater than the probability that there is at least one such
agent.

For the second part, recall the interim optimal mechanism for the
uniform public-budget agent (Example 8.2.1) and allocation constraint
ŷ(q) = 1− q described in Section 8.2.1. It it has allocation rule y(·) that
is equal to ŷ(·) except that it irons quantiles on interval [0, q̂† ≈ 0.60]
and rejects those below quantile reserve q̂‡ ≈ 0.68. See Figure 8.8. For
the uniform public-budget agent, these quantiles map back to type space
via t = 1− q as t̂† = 0.40 and t̂‡ = 0.32.

These two parts can be easily combined to observe that the mechanism
described in Example 8.5.1 is revenue optimal. Shortly, in Section 8.5.4
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we will want to generalize this construction, so it is instructive to see how
we might construct the optimal mechanism knowing nothing about ŷ
except that there is an ex post mechanism, i.e., a mapping from quantile
profiles to an ex post allocation that is feasible, that induces the interim
allocation ŷ, and that we want to iron the strongest [0, q̂†] quantiles and
reject the weakest (q̂‡, 1] quantiles. Denote the ex post allocation for
quantile profile q by ŷEP(q); e.g., the two-agent strongest-quantile-wins
ex post allocation is

ŷEP
i (q) =

{

1 if qi < q3−i,

0 otherwise.

The following steps suffice to convert this ex post allocation ŷ
EP(q)

that implements ŷ = (ŷ, ŷ) to an ex post allocation rule y
EP(q) that

implements the desired y = (y, y).

(i) Calculate q
† by ironing on [0, q̂†] as

q†i =

{

U [0, q̂†] if qi ∈ [0, q̂†],

qi otherwise.

(ii) Calculate y with quantile reserve q̂‡ as

yi =

{

ŷEP
i (q†) if qi ∈ [0, q̂‡],

0 otherwise.

These operations are easy to interpret on the cumulative allocation rule
(see Figure 8.8). We are given the cumulative allocation constraint Ŷ
and we wish to implement cumulative allocation rule Y that satisfies
Y (q) ≤ Ŷ (q) for all q ∈ [0, 1]; both the cumulative constraint and rule
are concave. Ironing by resampling quantiles on an interval replaces the
original curve with a line segment. A quantile reserve replaces the origi-
nal curve with a horizontal line from the quantile reserve and over weaker
quantiles. Combinations of these operations can produce any such Y
from any such Ŷ .

The following proposition summarizes and generalizes the discussion
of optimal mechanism for symmetric single-item environments. In the
next section, these methods are further generalized to asymmetric envi-
ronments.

Proposition 8.5.3. For symmetric n-agent single-item environments,
the optimal mechanism has expected revenue nRev[ŷ] with allocation
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Figure 8.9. The allocation rules y† and y‡ demonstrating interim feasibility.
For single-item environments (y†, y†) and (y†, y‡) are feasible while (y‡, y‡)
is infeasible.

constraint ŷ(q) = (1 − q)n−1. For uniform public budget preferences,
there exists quantiles 0 ≤ q̂† ≤ q̂‡ ≤ 1 such that the optimal mechanism
irons the strongest [0, q̂†] and reserve prices the weakest (q̂‡, 1] quantiles.

8.5.2 Interim Feasibility

Consider any multi-agent mechanism M. When the agent types t are
drawn from the product distribution F , each agent i has an induced
interim mechanism Mi. This interim mechanism maps the agent’s type
ti to a distribution over outcomes (including the service received and
non-service-constrained attributes such as payments). Any single-agent
mechanism Mi induces an allocation rule yi as described at the onset of
Section 8.5; since this is an interim mechanism we refer to this allocation
rule as the interim allocation rule. Repeating this construction for each
of the n agents we obtain a profile of interim allocation rules y that is
feasible in the sense that there exists an ex post feasible mechanism (in
particular, M) that induces it.3 Note that interim feasibility is unrelated
to incentives, any function M that maps profiles of types t to feasible
allocations induces interim feasible allocation rules.

Definition 8.5.1. A profile of allocation rules y is interim feasible if it
is induced by some ex post feasible mechanism M and type distribution
F .

3 Such a profile of interim allocation rules is sometimes also called the reduced
form of the mechanism.



8.5 The Interim Reduction 281

Example 8.5.2. Consider selling a single item to one of two agents
each with one of two interim allocation rules:

y†(q) = 1/2, y‡(q) =

{

1 if q ∈ [0, 1/2],

0 otherwise.
(8.5.3)

Notice that both allocation rules have an ex ante probability of 1/2 of
allocating (as agent quantiles are always drawn from the uniform distri-
bution). Consider the profile of allocation rules y = (y†, y†), i.e., where
both agents have interim allocation rule y†. This profile is interim fea-
sible as it is the outcome of the fair-coin-flip mechanism. Similarly the
profile y = (y‡, y†) is interim feasible, it is induced by the serial-dictator
mechanism that serves agent 1 if she has a high type (i.e., q1 ∈ [0, 1/2])
and agent 2 otherwise. The serve-high-types profile of interim allocation
rules y = (y‡, y‡), on the other hand, is not interim feasible. If both
agents have high types, which happens with probability 1/4, the interim
allocation rules require that both agents be served, but doing so would
not be ex post feasible as there is only one item.

Our goal is to maximize expected revenue over (Bayesian incentive
compatible and interim individually rational) mechanisms subject to ex
post feasibility. Decomposing this goal into optimization of single-agent
revenue subject to interim feasibility, we obtain the following program.

max
ŷ

∑

i
Rev[ŷi] (8.5.4)

s.t. “ŷ is interim feasible.”

Recall that the optimal revenue for a single agent as solved by Rev[·] is
a convex optimization problem and thus Rev[·] is concave, i.e., Rev[ŷ†+
ŷ‡] ≥ Rev[ŷ†] + Rev[ŷ‡]. Observe that while the constraint of interim
feasibility on ŷ is somewhat opaque at this point, it is nonetheless a con-
vex constraint. Simply, the convex combination of two interim feasible
mechanisms is interim feasible. The ex post mechanism that implements
the convex combination is exactly the convex combination of the ex post
mechanisms that implement the two original mechanisms. It will be the
task of the remainder of this section to further elucidate the constraint
imposed by interim feasibility.

The following proposition shows that the revenue optimal mechanism
can be found by optimizing expected revenue over profiles of allocation
constraints subject to interim feasibility.
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Proposition 8.5.4. The optimal multi-agent revenue is given by op-
timizing single-agent revenue subject to interim feasibility, i.e., solving
program (8.5.4).

Proof. We will argue the two directions of this proof separately. First
note that the optimal revenue from the program (8.5.4) is at least the
revenue of the optimal mechanism. To see this, observe that any mecha-
nism induces a profile of interim allocation rules y. The ex post feasibility
of this mechanism implies that this profile of allocation rules is interim
feasible. The revenue from each agent i in this mechanism is at most the
revenue of the interim optimal mechanism subject to allocation rule yi

as a constraint, i.e., at most Rev[yi]. Thus, the program upper bounds
the optimal revenue.

For the other direction we will construct, from any ex post mechanism
M that induces the profile ŷ of interim allocation rules that attains the
maximum of the program and each agent i’s ŷi-optimal mechanism Mi,
a Bayesian incentive compatible mechanism with revenue equal to the
revenue of the program, i.e.,

∑

i Rev[ŷi]. The remainder of this proof
is deferred to Section 8.5.4 where the construction is generalized by
Definition 8.5.6 and shown to be correct by Theorem 8.5.13.

Optimization of mathematical program (8.5.4) in asymmetric envi-
ronments relies on better understanding the constraint posed by interim
feasibility. Consider first interim feasibility in single-item environments.
Take any profile of ex ante constraints q̂ = (q̂1, . . . , q̂n) and consider
the ex ante probability by which each agent i with quantile at most q̂i

is served, i.e., Y1(q̂1), . . . , Yn(q̂n). The expected number of these agents
served is thus

∑

i Yi(q̂i). Of course the probability that one or more
agents agent i with quantile bounded by q̂i are realized is 1−

∏

i(1− q̂i).
4

Given the single-item ex post feasibility constraint that allows only one
such agent to be served at once, the expected number served must be
at least the probability that at least one is realized. In fact this neces-
sary condition is also sufficient, as we will see by the max-flow-min-cut
style argument of the proof below. The following theorem is often called
Border’s Theorem in recognition of Kim Border’s pioneering study of
interim feasibility.

Theorem 8.5.5. For single-item environments, a profile of allocation
rules y (with cumulative allocation profile Y) is interim feasible if and

4 The probability that one or more such agents show up is one minus the
probability that none show up.
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Figure 8.10. The flow constructions are illustrated for (a) the feasibility of
the serial-dictator mechanism and (b) the infeasibility of the serve-high-
types profile of interim allocation rules from Example 8.5.2. In both flow
graphs the edges depicted in heavy, medium, and light weight correspond to
capacities 1/2, 1/4, and zero, respectively. To translate between the quantile-
space allocation rules of Example 8.5.2 and the type-space allocation rules
in the proof of Theorem 8.5.5, type H will correspond to strong quantiles
[0, 1/2] and type L corresponds to weak quantiles (1/2, 1]. Subfigure (a)
depicts the flow graph that corresponds to the profile of interim allocation
rules y = (y‡, y†) and flow (solid gray edges) that corresponds to the ex
post allocation rule of the serial-dictator mechanism. Recall that this serial-
dictator mechanism allocates to agent 1 if she has a high type H1 and to
agent 2 otherwise. This ex post allocation rule can be determined by in-
specting the out-going flow from vertices corresponding to type profiles, i.e.,
the left-side column. Subfigure (b) depicts the flow graph that corresponds
to the profile of interim allocation rules y = (y‡, y‡) which require that an
agent is served if an only if she has a high type. This profile is infeasible,
which can be seen as the minimum a–b cut, depicted with the black dashed
line, has cost 3/4 (it cuts three edges with capacity 1/4 each and two edges
with capacity zero) while the total capacity of edges incident on sink b is
one. Inequality (8.5.6) is violated for subsets of types S

⋆
with S

⋆
i = {Hi}

for each i, i.e., corresponding to the vertices in the right-side column that
are on the sink b side of the cut.

only if,
∑

i
Yi(q̂i) ≤ 1−

∏

i
(1− q̂i), ∀q̂ ∈ [0, 1]n. (8.5.5)

Proof. This proof is most instructive to see in type space. For finite type
spaces, the inequality (8.5.5) of the theorem is equivalent to the following
(see Exercise 8.9). For any subsets of agents’ types Si ⊂ Ti for all i,

∑

i

∑

ti∈Si

xi(ti) fi(ti) ≤ 1−
∏

i
(1− fi(Si)) (8.5.6)

with fi(ti) denoting the probability that agent i has type ti and fi(Si) =
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∑

ti∈Si
fi(ti) denoting the probability that i has type ti ∈ Si. Notice

that the left-hand side of the equation is the expected number of items
allocated to agents i with types ti ∈ Si. Notice that the right-hand side
of the equation is simply the probability that one or more agents i have
realized type ti ∈ Si. As describe above, the necessity of the condition
for interim feasibility is straightforward.

The following argument shows sufficiency, specifically, that if a pro-
file of allocation rules is infeasible that there exists subsets of agents’
types S⋆

1 ⊂ T1, . . . , S
⋆
n ⊂ Tn for which inequality (8.5.6) is violated. The

approach of this proof is (a) to show that interim feasibility is equiva-
lent to whether a specific cut in a network flow graph is the minimum
cut, and (b) to use the minimum cut corresponding to interim infeasi-
ble allocation rules to identify the subsets of agents’ types that violate
inequality (8.5.6).

Consider the following network flow problem, equivalently a weighted
directed graph where the weights are referred to as capacities; see Figure 8.10.
This graph is defined on the following vertices (left to right in Figure 8.10):

• a source vertex a,
• a vertex t for each type profile t ∈ T ,
• a vertex ti for each type ti ∈ Ti of each agent i, and
• a sink vertex b.

Directed weighted edges connect these vertices as follows (left to right
in Figure 8.10):

• source a is connected to each vertex t with capacity f(t) =
∏

i fi(ti),
i.e., the probability that type profile t is realized;

• each vertex t is connected to vertex ti for each i with capacity f(t);
and

• each vertex ti is connected to sink b with capacity xi(ti) fi(ti), i.e.,
the probability that agent i has type ti and is allocated by the interim
allocation rule xi.

A profile of interim allocation rules x is feasible if any only if there
is a flow in the flow graph constructed above that saturates all edges
incident on the sink b; see Figure 8.10(a). For the “only if” direction,
consider any ex post feasible mechanism that induces interim allocation
rules x and construct a flow as follows. Flow from source a to vertex t

represents the probability that type profile t is realized. The flow from
vertex t to vertices ti for each i represents the probability that t is
realized and agent i is served by the ex post mechanism. Since the total
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flow into vertex t is f(t) the cumulative flow out can be at most f(t)
which satisfies the ex post feasibility constraint that at most one of the
agents is served. The flow on the edge from vertex t to vertex ti is
xi(t) f(t) as follows. Vertex ti aggregates flow from each type profile t

containing ti and thus the flow that can go from vertex ti to sink b is the
cumulative probability that ti is realized and is served, i.e., xi(ti) fi(ti).
Thus, the edges incident on sink b are saturated. For the “if” direction,
given any flow that saturates all the edges incident on the sink b, an ex
post mechanisms can be inferred. The ex post allocation on type profile
t picks an agent with probability equal to the flow from t to ti divided
by f(t).

Non-existence of a flow that saturates the edges incident on sink b
implies that the profile of allocation rules x is infeasible. We will now
show that this non-existence of a flow will enable us to identify subsets
of types S

⋆ = (S⋆
1 , . . . , S⋆

n) that violate inequality (8.5.6) and thus the
inequality is sufficient for the interim feasibility of x; see Figure 8.10(b).
An a–b cut in a directed graph is partitioning of the vertices into two
sets {a} ∪ A and {b} ∪ B. The capacity of the cut is the sum of the
capacities of edges that cross from {a} ∪ A to {b} ∪ B. The proof will
show that the inequality (8.5.6) is satisfied for interim allocation rules
x only if B = ∅ is minimum capacity a–b cut, i.e., the capacity of the
minimum cut is equal to the sum of the capacities of edges from vertices
ti ∈ Ti and all i to vertex b, specifically,

∑

i

∑

ti∈Ti
xi(ti) fi(ti).

Observe that the value of the maximum a–b flow in the graph is upper
bounded by the capacity of any a–b cut in the graph. Simply, there is no
way to get more flow across this cut than the total capacity of the cut.
More precisely, the well known max-flow min-cut theorem states that the
value of the maximum a–b flow in a flow graph is equal to the capacity
of its minimum a–b cut. We now show that there is a flow that saturates
the edges incident on sink b, equivalently, that B = ∅ is a minimum cut,
if and only if there is no profile of subsets of type space (S1, . . . , Sn) for
which inequality (8.5.6) is violated.

We will calculate the difference between the capacity of the B = ∅
cut, i.e., the capacity edges incident on sink b, and the minimum cut.
When this difference is strictly positive we will identify a violation of
inequality (8.5.6). Denote by (A⋆, B⋆) the minimum capacity a–b cut.
The subsets of each agent’s type space that are candidates for violation of
inequality (8.5.6) are S⋆

i = B⋆∩Ti. The difference between the capacities
of these two cuts is calculated as follows.
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• For edges incident on sink b: The capacity of the cut (A, B) (with
B = ∅) is equal to the sum of the capacities of edges incident on sink
b. Subtracting from this the sum of capacities of edges crossing cut
(A⋆, B⋆), the difference is the sum of capacities of edges that are not
cut by (A⋆, B⋆). These uncut edges are the ones from vertices in B⋆ to
sink b which correspond to types ti ∈ S⋆

i for all i. The total contribu-
tion from these edges to the difference is thus,

∑

i

∑

ti∈S
⋆
i

xi(ti) fi(ti),
i.e., the left-hand side of inequality (8.5.6).

• For edges incident on vertices t ∈ T : Vertices corresponding to type
profiles, e.g., t, are either in B⋆, in which case we have cut the edge
from source a and must subtract f(t), or in A⋆, in which case we have
cut edges with capacity f(t) for each i with ti ∈ S⋆

i (i.e., with ti ∈ B⋆)
and must subtract f(t) · |{i : ti ∈ Si}|. Since (A⋆, B⋆) is a minimum
cut, we must have chosen the smaller of these two quantities, i.e.,
f(t) · min(1, |{i : ti ∈ Si}|). Summing this quantity to be subtracted
over all type profiles t equates to the probability that one or more
types ti ∈ S⋆

i are realized, i.e., the right-hand side of inequality (8.5.6)
of 1−

∏

i(1− fi(S
⋆
i )).

Combine these two contributions to the difference, and observe that
when the difference is strictly positive then inequality (8.5.6) is violated
for the subsets of types S⋆

1 , . . . , S⋆
n.

This characterization of interim feasibility extends naturally to ma-
troid environments where the right-hand side becomes the expected rank,
with short-hand notation rank(q̂) representing ES [rank(S)] where each
i is in S independently with probability q̂i (cf. Section 4.3.2).

Theorem 8.5.6. For matroid environments, a profile of allocation rules
y is interim feasible if and only if,

∑

i
Yi(q̂i) ≤ rank(q̂), ∀q̂ ∈ [0, 1]n.

One way this characterization of interim feasibility is helpful is as fol-
lows. It can be shown that the matroid rank function rank(·) is submod-
ular. This submodularity implies that the interim feasibility constraint
has a polymatroidal structure which, in turn, implies that the vertices
corresponding to the feasible region can be implemented by greedily
ordering types and serving each type to the maximum extent possible.
Instead of introducing this polymatroidal theory of optimization, we will
give an alternative first-principles proof of this result in the next section
(see Corollary 8.5.10).
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For feasibility constraints beyond matroid, we will not get a succinct
formula like inequality (8.5.5) in Theorem 8.5.5 that characterizes in-
terim feasibility. Nonetheless, in the next section we will describe a sim-
ple family of ex post mechanisms from which any profile of interim fea-
sible allocation rules can be derived.

8.5.3 Interim Feasibility by Stochastic Weighted
Optimization

In this section we show that, for any service constrained environment,
any interim feasible profile of allocation rules is implementable as a
stochastic weighted optimization. This characterization is derived by
observing that:

(i) there is an isomorphism between profiles of interim allocation rules
to points in a high dimensional Euclidean space,

(ii) the set of interim feasible points by this isomorphism is convex and,
specifically, a polytope,

(iii) any point in the interior of this polytope can be given as a convex
combination of points on the exterior of the set, specifically, vertices
of the polytope, and

(iv) these vertices can be implemented by weighted optimization, i.e., a
mapping of each type of each agent in the profile to a weight and
selection of the ex post feasible set of agents with highest cumulative
weight.

We relax two constraints from the Bayesian mechanism design prob-
lem. Relaxing incentive compatibility, allocation rules need not be mono-
tone and we will, thus, work in type space rather than quantile space.5

Relaxing the independence of the distribution of types across agents, we
draw type profile t from joint distribution F and denote by fi(t) the
marginal probability that agent i has type t, i.e., Prt∼F [t = ti].

6

For Step (i), consider a finite space of type profiles T = T1 × · · ·× Tn

with size ℓ =
∑

i |Ti| and map profiles of interim allocation rules x, with

5 The approach we take is similar to that of the characterization of interim
feasibility for single-item and matroid environments (Theorem 8.5.5 and
Theorem 8.5.6) which was also described in type space. At the end of this section
we will describe how to modify the construction for quantile space and when this
approach is helpful.

6
The relaxation to (possibly) correlated distributions over type profiles will allow
the results of this section to generalize beyond service constrained environments
as in Section 8.6.
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xi : Ti → [0, 1], to points z ∈ [0, 1]ℓ, in a high dimensional Euclidean
space. In this mapping the vector z will be indexed by agent-type pairs
it as zit.

Definition 8.5.2. For joint type space T with size ℓ =
∑

i |Ti| and joint
distribution F , the flattened ex post allocation rule zEP : T → [0, 1]ℓ

and flattened interim allocation z ∈ [0, 1]ℓ are induced by ex post and
interim allocation rules xEP and x and indexed by it for agent i and
type t ∈ Ti as:

zEP
it (t) =

{

xEP
i (t) if t = ti

0 otherwise,
zit = xi(t) fi(t).

Notice that, by the above definition, the flattened interim allocation is
in fact specifying the ex ante probability that each type of each agent is
served. The normalization by the density function in the definition of the
flattened interim allocation serves a similar purpose in the geometry of
interim feasibility as the mapping of types to quantiles. Definition 8.5.2
is useful as it immediately gives the following propositions; the second
of which concludes Step (ii).

Proposition 8.5.7. The flattened interim allocation is the expectation
of the flattened ex post allocation rule:

z = Et∼F

[

zEP(t)
]

. (8.5.7)

Proposition 8.5.8. For joint type space T with size ℓ =
∑

i |Ti| and
distribution F , the space Z ⊂ [0, 1]ℓ of feasible flattened interim alloca-
tions z is convex.

Proof. Randomized mechanisms are feasible, and flattened interim allo-
cations are linear with respect to convex combinations.

The flattened ex post allocation rule is a redundant representation
of the ex post allocation rule, it specifies allocation probabilities for all
types an agent might possess. For a given type profile, all of these prob-
ability must be zero except for the ones that correspond to types in the
type profile. Specifically, consider an agent-type pair it with t ∈ Ti and
type profile t, if ti ̸= t in type profile t then zEP

it (t) = 0 as a mechanism
cannot serve a type that “does not show up.” The types served must also
satisfy the feasibility constraint of the service constrained environment.

Denote the feasibility constraint imposed by the service constrained
environment by X . Randomized mechanisms are allowed, thus X is con-
vex. For example in a single-item environment deterministic outcomes
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Figure 8.11. The polytopes that define the feasible flattened allocations of
Example 8.5.3 are depicted as convex subsets of the unit cube. Selected
vertices of these polytopes are labeled in short-hand as bit vectors and
correspond to z = (z1H , z1L, z2M ). The vertical axis is z1H ; the horizontal
axis is z1L; and the outward axis is z2M . The ex post feasible flattened
allocations for type profiles t = (H, M) and t = (L, M) are depicted in
figures (a) and (b), respectively. The interim feasible flattened allocations
when t1 is uniform on {L, H} and t2 = M (deterministically) are depicted
in figure (c).

correspond to allocating to a single agent i or not allocating, the con-
vex closure of these outcomes gives X = {x ∈ [0, 1]n :

∑

i xi ≤ 1}. Ex
post feasibility for flattened allocation rules zEP(t) is the projection of
the service constrained feasibility constraint onto the indices {iti}i∈[n]

of the types in the given type profile t. Specifically, for any profile t,
z

EP(t) ∈ Z(t) is ex post feasible, where

Z(t) =
{

z ∈ [0, 1]ℓ :
∏

i
ziti
∈ X ∧ z{it : t̸=ti} = 0

}

.

This projection is depicted in Figure 8.11 (for Example 8.5.3, below).

Example 8.5.3. Consider two agents and a single-item environment.
Agent 1 has type t1 uniformly drawn from T1 = {L, H}; agent 2 has type
deterministically t2 = M (i.e., with T2 = {M}). A flattened allocation
is z = (z1H , z1L, z2M ). Ex post feasible allocations for type profile t =
(H, M) are convex combinations of {(0, 0, 0), (1, 0, 0), (0, 0, 1)}; ex post
feasible allocations for type profile t = (L, M) are convex combinations
of {(0, 0, 0), (0, 1, 0), (0, 0, 1)}. Interim feasible flattened allocations are
convex combinations of {(0, 0, 0), (1/2, 0, 0), (0, 1/2, 0), (0, 0, 1), (1/2, 1/2, 0),
(1/2, 0, 1/2), (0, 1/2, 1/2)}. The vertices of the interim feasible polytope are
given by the ordinal mechanisms, i.e., where there is an ordered subset
of types and after the types are realized the first one in order receives the
item (or none if no type in the order is realized); see Corollary 8.5.10.



290 Multi-dimensional and Non-linear Preferences

The ordered subsets that correspond to the vertices above are {∅, (1H), (1L), (1M), (1H, 1L), (1H, 2M), (1L, 2M)}.
See Figure 8.11.

We have seen that interim feasibility is convex (Proposition 8.5.8); as
previously observed, the single-agent optimal revenues given by Rev[·]
are concave. Suppose that, instead of the concave objective given by the
sum of the single agent revenues, the objective was linear and given by
weights w ∈ R

ℓ indexed in the flattened space by agent-type pair it. The
optimization of the expected surplus of weights, i.e.,

∑

it zit wit, subject
to interim feasibility, is achieved by optimizing the surplus of weights
pointwise for each profile of types t subject to ex post feasibility. More-
over, for any such weights (which we view as a direction in the flattened
space) the corresponding interim feasible allocation vector, denoted z

w,
is given by Proposition 8.5.7.

A vertex of a convex subset Z of ℓ-dimensional Euclidean space is
a point that is uniquely optimal for some direction. Vertices can be
specified equivalently as the direction, e.g., w, or the point, e.g., zw. Any
other point in Z can be represented as a convex combination of ℓ + 1
vertices; therefore, we can implement any interim feasible allocation rule
by sampling a direction from a distribution over ℓ+1 vectors of weights,
and then for the type profile realized, optimizing the weights given by
the direction subject to ex post feasibility.

A weights w in the space of flattened allocation rules correspond, in
the original space of allocation rules, to a profile of functions that map
each type to a weight. The following theorem summarizes the construc-
tion above in the original space of allocation rules.

Definition 8.5.3. A stochastic weighted optimizer is given by a joint
distribution over profiles of weight functions w with wi : Ti → R as
follows for type profile t:

(i) Draw weight functions w from the distribution.

(ii) Output allocation x = argmax
x

†∈X
∑

i wi(ti)x†
i .

Theorem 8.5.9. For any joint distribution on type profiles and service
constrained environment, any interim feasible allocation profile can be
ex post implemented by a stochastic weighted optimization.

In the special case that the service constrained environment is ordinal,
e.g., multi-unit environments, matroid environments, and position envi-
ronments, the surplus of weights is optimized by the greedy algorithm
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(See Section 4.6 on page 131). The greedy algorithm, by definition, con-
siders only the order of weights of each type and not magnitudes of
the weights. The following corollary refines Theorem 8.5.9 for ordinal
environments.

Definition 8.5.4. A stochastic ordered-subset algorithm is given by a
joint distribution over ordered subsets of joint type space

⋃

i Ti as follows
for type profile t:

(i) Draw an ordered subset from the distribution.
(ii) Output allocation x obtained by the greedy algorithm on agents or-

dered by the rank of their types in the ordering; agents whose types
are not present in the subset are discarded.

Corollary 8.5.10. For any joint distribution on type profiles and ser-
vice constrained environment that is given by the independent sets of
a matroid, any interim feasible allocation profile can be ex post imple-
mented by a stochastic ordered-subset algorithm.

This characterization of interim feasible allocation rules as a convex
subset of high-dimensional Euclidean space is central to the design of
computationally-efficient revenue-optimal mechanisms. The main chal-
lenges to be resolved is in quickly finding the distribution over weights
Theorem 8.5.9. Discussion of the computational issues involved are de-
ferred to Section 10.5.

Though this section approached the characterization of interim fea-
sibility in type space, it can be equivalently characterized in quantile
space as well. For example, discretize quantile space into intervals and
apply the construction in this section with each discrete interval for each
agent as a type. This approach is advantageous when the agents’ type
spaces are very large, or high dimensional as quantiles are always single
dimensional. Again, further discussion is deferred to Section 10.5.

8.5.4 Combining Ex post Feasibility and Bayesian
Incentive Compatibility

This section formalizes the general constructions for ex post implemen-
tation of interim mechanisms. Let M̂ denote an ex post feasible mecha-
nism (that is not necessarily incentive compatible or possessing revenue
guarantees). Its ex post allocation rule maps quantile profiles to distri-
butions over ex post feasible allocations via ŷEP : [0, 1]n → ∆(X ). Recall
from Section 2.4 that the induced interim allocation rule ŷi : [0, 1] →
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[0, 1] for agent i is defined as ŷi(qi) = Eq[ŷEP
i (q) | qi]. Let M denote

a Bayesian incentive compatible mechanism (potentially with good rev-
enue properties, but that is not necessarily ex post feasible). Its interim
allocation rules are denoted by y with yi : [0, 1] → [0, 1] for each agent
i. We can compose these two mechanisms to obtain a mechanism with
the ex post feasibility of M̂ and the Bayesian incentive compatibility
(and revenue properties) of M if and only if the allocation rules y are
feasible for allocation constraints ŷ.

This construction can be instantiated with the revenue-optimal mech-
anisms of the previous section. In such an instantiation, M̂ is the ex
post mechanism that induces the interim allocation rules ŷ that optimize
∑

i Rev[ŷi] subject to interim feasibility, and M is the profile of interim
mechanism that optimize revenue subject to the allocation constraints
ŷ, i.e., with Mi as the ŷi interim optimal mechanism.

First, given any single-agent allocation constraint ŷ : [0, 1]→ [0, 1] and
single-agent mechanism M with allocation rule y that satisfies constraint
ŷ, we given an ex post implementation of y from ŷ. Second, given any
ex post implementation ŷEP that induces interim constraints ŷ and a
profile of single-agent mechanisms (M1, . . . ,Mn), where yi satisfies ŷi

for each agent i, we give an ex post implementation of a mechanism with
allocation rules y.

Recall that a single-agent mechanism M is equivalently a menu of
outcomes {w(t) : t ∈ T }. A deterministic outcome is either a service
outcome or a non-service outcome. Outcomes are closed under convex
combination, i.e., they may be randomized. The (type) allocation rule
x : T → [0, 1] gives a probability of service for each type t ∈ T . For
x(t) ∈ [0, 1], the outcome distribution w(t) is a distribution over service
and non-service outcomes. Denote by wx(t) the distribution of outcomes
conditioned on the allocation x ∈ {0, 1}.

Any single-agent mechanism M induces an ordering on types which
in turn induces a mapping from types to quantiles. Correctness requires
that the distribution of quantiles from this mapping be uniform on the
[0, 1] interval.

Definition 8.5.5. The quantile mapping for mechanism M with (type)
allocation rule x(·) is Q(·) defined as follows. For any type t, calculate
interval [q̂†, q̂‡] as

q̂† = Pr
t
†∼F

[

x(t†) > x(t)
]

, q̂‡ = Pr
t
‡∼F

[

x(t) < x(t‡)
]

.
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The stochastic mapping from types to quantiles is Q defined as:

Q(t) ∼ U [q̂†, q̂‡].

Lemma 8.5.11. For types t ∈ T from distribution F , the quantile dis-
tribution of the quantile mapping Q(t) (of Definition 8.5.5) is uniform
on [0, 1].

From the above induced mapping from types to quantiles and a pro-
cedure for the allocation rule y(·) of mechanism M, the mechanism can
be implemented with y(·) as follows:

(i) Calculate the agent’s quantile as q = Q(t).

(ii) Calculate the agent’s service as

x =

{

1 w.p. y(q)

0 otherwise.

(iii) Calculate the agent’s outcome as w = wx(t).

To generalize this construction to procedures for allocation constraints
ŷ(·) that allocation rule y(·) satisfies, we need to convert the procedure
for ŷ to a procedure for y.

Suppose we have an interim allocation constraint ŷ and a mechanism
M with allocation rule y that satisfies the constraint, i.e., Y (q) ≤ Ŷ (q)
for all q. The following lemma shows that we can implement y from ŷ;
thus, by the above construction, we can implement M.

Lemma 8.5.12. Any allocation rule y that satisfies allocation constraint
ŷ can be implemented by a quantile reserve pricing q̂ and a stationary
quantile resampling transformation σ.

Proof. This proof will be by construction; see Figure 8.12. First, we
will construct ŷ† from ŷ with a quantile reserve so as to equate the ex
ante service probabilities Ŷ †(1) = Y (1) while preserving feasibility of
y for ŷ†, i.e., so Y (q) ≤ Ŷ †(q) for all q. Second, we will give a sta-
tionary quantile resampling transformation σ, i.e., with σ(q) uniformly
distributed on [0, 1] if q is uniform on [0, 1], that transforms ŷ† to y, i.e.,
y(q) = Eσ[ŷ†(σ(q))].

The allocation constraint ŷ† is obtained from allocation constraint ŷ
by quantile reserve pricing at q̂ = Ŷ −1(Y (1)). Recall, quantile reserve
pricing has the effect of replacing the cumulative allocation rule with a
constant function after the quantile reserve; thus Ŷ †(1) = Y (1).
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+0
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+
0

+
1/2

+
q̂

+
q̂‡

+
1

y(q) ŷ‡(q)

ŷ(q)

ŷ†(q)

(a) Allocation Rules

+0

+1/2

+Y (1)

+
q̂† = 0

+
1/2

+
q̂

+
q̂‡

+
1

s

Ŷ (q) Y (q)

(b) Cumulative Allocation Rules

Figure 8.12. The reserve price and resampling transformation construction
of Lemma 8.5.12 is depicted for a piecewise constant allocation rule y with
ℓ = 2 pieces. The allocation constraint ŷ is thick, dashed, and dark gray,
the allocation rule y is thin, solid, and black. The allocation constraint ŷ

†

(think, dashed, and light gray) is constructed from ŷ by reserve pricing at
quantile q̂. The allocation constraint ŷ

‡
(think, dotted, and light gray) is

constructed from ŷ
†

by ironing on interval [q̂
†
, q̂

‡
].

Assume that y is piece-wise constant, equivalently that Y is piece-
wise linear, with ℓ equal-width pieces. This assumption can be removed
by considering y in the limit, as ℓ goes to infinity, of such a piece-wise
constant allocation rule. The following inductive procedure gives a sta-
tionary resampling transformation σ that constructs y from ŷ†. Let q̂†

be the lower end point of the first piece on which Ŷ †(·) and Y (·) are
distinct, equivalently, where the upper end point q of the piece satisfies
Ŷ †(q) > Y (q). Note that the right slope of Y (·) at q̂† is equal to the
right value of y(·) at q̂†. Set q̂‡ > q̂† to the quantile at which the line
through point (q̂†, Y (q̂†)) with slope y(q̂†) next intersects the cumula-
tive allocation constraint Ŷ †(·). Define σ† to be the interval resampling
transformation that irons on quantile interval [q̂†, q̂‡], i.e.,

σ†(q) =

{

q† ∼ U [q̂†, q̂‡] if q ∈ [q̂†, q̂‡],

q otherwise.

By the line-segment interpretation of ironing on the cumulative alloca-
tion rule, this resampling transformation gives an allocation constraint
ŷ‡(q) = E

σ
†[ŷ†(σ†(q))] with Ŷ ‡(q) = Y (q) for q in the piece.

By this construction ŷ‡ differs from y on (at least) one fewer piece
than ŷ†. By induction we can construct a sequence of interval resampling
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transformations that, when composed, transform ŷ† to y. The transfor-
mation σ in the statement of the lemma is this composition of interval
resampling transformations. The stationarity of each interval resampling
transformation implies that the transformation σ is stationary.

Definition 8.5.6. For distribution F and mechanisms M̂ and M with
allocation rules ŷ and y satisfying y ≼ ŷ, the interim composite mech-
anism is:

(i) For each agent i, map type to quantile from qi = Qi(ti) according to
Mi.

(ii) For each agent i, calculate the quantile reserve q̂i and resampling
transformation σi by which yi can be constructed from ŷi. Set q†i =
σi(qi).

(iii) Run M̂ on q† to get x† = ŷEP(q†). Set x to incorporate the reserves
q̂ as

xi =

{

x†
i if q†i ≤ q̂i, and

0 otherwise.

(iv) For each agent i, select the outcome distribution of Mi conditioned
on xi, i.e., wxi

i (ti).

Theorem 8.5.13. For any type distribution F and mechanisms M̂

and M with allocation rules ŷ and y satisfying y ≼ ŷ, the composite
mechanism (Definition 8.5.6) induces a distribution over allocations that
is in the downward closure of the distribution of allocations of M̂ and
the same interim mechanisms as M.7

Proof. See Exercise 8.11.

Corollary 8.5.14. For any downward-closed service constrained en-
vironment, type distribution F , ex post feasible mechanism M̂, and
Bayesian incentive compatible M with allocation rules ŷ and y sat-
isfying y ≼ ŷ, the composite mechanism (Definition 8.5.6) is ex post
feasible, Bayesian incentive compatible, and has the same expected rev-
enue as M.

7
One distribution of allocations is in the downward closure of a second
distribution of allocations if there is a coupling of the distributions so that the
set of agents served by the first is a subset of those served by the second.
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8.6 Multi-dimensional Externalities

This section considers optimal mechanisms for agents with multi-dimensional
preferences where the way an agent is served imposes a multi-dimensional
externality on the other agents via the feasibility constraint of the envi-
ronment. For example, in the multi-dimensional matching environment,
there are n unit-demand agents and m unit-supply items. The environ-
ment exhibits a multi-dimensional externality because when an item j
is assigned to agent i then it cannot be assigned to another agent i† ̸= i
but other items j† ̸= j can be so assigned.

Definition 8.6.1. In a multi-service service-constrained environment
there are n agents N and m services M . The subset of agent-service
pairs that can be simultaneously assigned is given by X ⊂ {0, 1}N×M.

The multi- to single-agent reduction that was described in the previ-
ous section separates the problem of producing an outcome that is ex
post feasible from the problem of ensuring that the mechanism is incen-
tive compatible for each agent. This section takes the same approach; it
applies generally to environments where each agent’s utility linearly sep-
arates across distinct services in which she is interested. For simplicity
we will state all results for the special case of additive agents.

Definition 8.6.2. An additive agent desires subsets of m services. Her
type t = ({t}1, . . . , {t}m) is m-dimensional where {t}j is her value for
alternative j. Her utility is linear; an outcome w is given by a payment
and a marginal probability for each of the m services. For outcome w =
({x}1, . . . , {x}m, p), where {x}j denotes the marginal probability with
which she obtains alternative j and p is her required payment, her utility
is u(t, w) =

∑

j{t}j{x}j − p.

Note that it is possible within an additive multi-service environment
to model more complex preferences. As a first example, unit-demand
preferences (Definition 8.2.2) can be incorporated into the model by
modifying the feasibility constraints X of Definition 8.6.1 so that it is
infeasible to serve an agent more than one unit. It is also possible to
model any general utility function over bundles of services as a unit-
demand utility function over the power set of services, i.e., {0, 1}M. We
will see shortly, however, that the complexity of the construction de-
pends on the number m of services, and thus moving to the power-set
representation comes at an exponential blowup in complexity.

The assumption that the agents are additive implies, as is stated in the
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definition, the expected utility of an agent is determined by the marginal
probability by which she is allocated each service. This property does
not hold for general multi-dimensional utility functions. For example, a
problematic case is when the agent views the services as complementary,
e.g., she has high value to receive two services together but low value
to receive either of the services individually. A mechanism that serves
her both services or neither service with equal probability has the same
marginal probabilities of allocating each service as the mechanism that
serves her one or the other with equal probability. The agent has a
higher utility for the former outcome distribution than the latter; thus,
marginal probabilities are insufficient for determining such an agent’s
utility. In fact, any non-linearity of utility renders marginal probabilities
similarly insufficient.

It is possible to decompose this mechanism design problem into a col-
lection of single-agent problems that can be combined into a multi-agent
mechanism, as we did in the previous section. In such a decomposition
the single-agent problem is specified by m allocation constraints, one
for each service. The difference between mechanisms for additive multi-
service service constrained environments and the (single-service) service
constrained environments is that the incentive compatibility constraints
of the agents bind across multiple services not a single service. We will
not formalize this approach here, instead we show that for additive multi-
service service constrained environments, the optimal mechanism is a
stochastic weighted optimizer (cf. Definition 8.5.3).

Our objective is to optimize expected revenue subject to Bayesian
incentive compatibility and ex post feasibility. As we did in previous
sections, we will replace the ex post feasibility constraint with an equiv-
alent interim feasibility constraint. Ex post feasibility of a multi-service
service constrained environment is equivalent to ex post feasibility of the
following representative environment which is service constrained as per
Definition 8.3.1. The intuition behind this representative environment is
that we replace each multi-service agent, i.e., who desires subsets of the
m services, with m single-service agents.

Definition 8.6.3. The representative environment for an n-agent m-
service multi-service service-constrained environment is given by n† =
nm agents N † = N ×M and service-constrained feasibility constraint

X † = X ⊂ 2N
†

. The type profile t for the original environment is extended
to representative environment by duplicating each agent i’s type across
her m representatives, i.e., tij = ti for all i and j.
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Importantly, ex post feasibility of the representative environment and
the original multi-service environment is the same. Consequently, our
discussion of interim feasibility extends directly. Recall that our discus-
sion of interim feasibility relaxed the requirement that the agent types
be independently distributed. This relaxation is important as in the rep-
resentative environment for the multi-service environment all the repre-
sentatives ij for j ∈ M have the same type ti, i.e., they are perfectly
correlated. Thus, the characterization of interim feasibility and ex post
implementations (Theorem 8.5.9) of the previous section hold for the
representative environment.

Corollary 8.6.1. For any joint distribution on type profiles and multi-
service service-constrained environment, any interim feasible allocation
profile can be ex post implemented by a stochastic weighted optimizer
with weights that correspond to each type-service pair of each agent, i.e.,
w with wi : Ti ×M → R for each i.

Recall, that a weighted optimizer for the representative environment
assigns a weight to each type tij of each representative ij (see Defini-
tion 8.5.3); in the original environment such an assignment of weights
corresponds to a weight for each type ti, agent i, and service j (though
weights for services that are infeasible for agent i can be omitted).

Theorem 8.6.2. For any additive multi-service service-constrained en-
vironment, there is a stochastic weighted optimizer, with weights that
map each feasible type-service pair, that is Bayesian incentive compati-
ble and revenue-optimal among all Bayesian incentive compatible mech-
anisms.

Proof. Consider any optimal mechanism M⋆. The optimal mechanism
must produce interim feasible allocation rules (specifying the marginal
probability by which an agent of a given type receives each service). By
Corollary 8.6.1 any profile of interim feasible allocation rules can be im-
plemented as a stochastic weighted optimizer. Consider the mechanism
given by this stochastic weighted optimizer and the same payment rule
of M⋆.

By the definition of additive utility agents, each agent’s utility for
a randomized outcome depends only on the marginal probability that
she receives each service (and expected payment). These marginal prob-
abilities and expected payments are the same for both mechanisms;
thus, incentive compatibility of M⋆ implies incentive compatibility of
the stochastic weighted optimizer. Since both mechanisms have the same
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payment rule, they both have the same revenue; the optimality of M⋆

implies the optimality of the stochastic weighted optimizer.

8.7 Public Budget Preferences

In the sections below we will prove the optimality of the single-agent
mechanisms described in Section 8.2 for agents with public budgets. In
particular, we will show that for a large family of well-behaved distribu-
tions the revenue-optimal single-agent mechanism will have an all-pay
payment rule and will reserve-price the low valued agents and iron the
top valued agents.

Recall the public budget preference where the agent has a single di-
mensional value t drawn from distribution F and public budget B. The
agent’s utility for allocation x and payment p is tx− p when p ≤ B and
negative infinity of p > B. We will assume that the distribution F is
continuous and supported on types T = [0, h].

We begin by observing that, for an agent with a public budget, the op-
timal mechanism, satisfying the usual Bayesian incentive compatibility
(BIC) and interim individual rationality (IIR) constraints, is an all-pay
mechanism. In other words, the agent makes a bid and pays this bid
always, though she may only win some of time. All-pay mechanisms
may seem unnatural as they are not ex post individually rational, i.e.,
an agent will sometimes have negative utility. Notice, however, that in
most economic interactions there are upsides and downsides that strate-
gic agents must trade off; ex post individual rationality is the exception
rather than the rule. Moreover, as non-all-pay mechanisms will generally
be suboptimal, ex post individual rationality comes at a loss in perfor-
mance, in this case revenue, relative to the optimal all-pay format.

Proposition 8.7.1. The revenue-optimal Bayesian-incentive-compatible
and interim-individually-rational mechanism for single-dimensional agents
with public budgets is an all-pay mechanism.

Proof. An agent with public budget is quasi-linear except for her budget
constraint. Therefore, unless the budget constraint is violated, revenue
equivalence of Section 2.7 on page 38 implies two mechanisms with the
same allocation rule in equilibrium have the payment rule (in the interim
stage of the mechanism).

Consider any mechanism where, in equilibrium, the agent’s budget
constraint is not violated. Recall that the payment rule p(t) is defined as
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the expected payment of the agent. For a given valuation t the payment
of an agent is a random variable, potentially a function of randomization
in the mechanism and randomization in the types of other agents. By
the definition of expectation, the maximum payment in the support of
the distribution of payments is at least the expected payment. As the
budget is not violated for this maximum payment, it is not violated for
the expected payment, i.e., p(t) ≤ B. Thus, the all-pay mechanism that
requires deterministic payment p(t) does not violate the budget either.
Therefore, it is incentive compatible and obtains the same revenue.

We now proceed to characterize the optimal single-agent all-pay mech-
anism subject to an interim feasibility constraint ŷ(·). This optimization
problem is similar to that for the single-dimensional linear agent that
was previously solved in Section 3.3; however, the solution to the opti-
mization must additionally satisfy the (all-pay) budget constraint that
p(t) ≤ B for all t ∈ T . As payments are non-decreasing in the agent’s
type, the budget constraint for all types t ∈ T = [0, h] is implied by the
budget constraint for the highest type h. In other words, the revenue-
optimization problem has only the additional constraint p(h) ≤ B.

Our approach will be to write a mathematical program for the revenue
maximization problem where the budget appears as a constraint. We will
then use Lagrangian relaxation to move the budget constraint into the
objective.8 We will proceed by optimizing this Lagrangian objective in
the same manner as our revenue optimization for single-dimensional lin-
ear agents, cf. Section 3.3.4. We will rewrite the objective in terms of the
allocation rule and Lagrangian revenue curves. For a given Lagrangian
parameter λ, and these revenue curves, we will be able to identify the
optimal allocation rule for any allocation constraint, cf. Section 3.4.5.

8
For maximization problems, Lagrangian relaxation of a constraint (a) rewrites it
as a quantity that is at least zero and (b) and moves the terms of the constraint,
scaled by a Lagrangian parameter λ, to the objective scales. Thus, satisfying the
constraint is consistent with the objective, i.e., this term is larger when the
constraint is satisfied. The Lagrangian parameter λ allows the emphasis of the
Lagrangian objective to traded off between the original objective and satisfaction
of the constraint. At λ = 0 the constraint is ignored and is only satisfied if it was
not binding in the first place. At λ = ∞, the objective is ignored and the
constraint is satisfied with slack (if it is satisfiable by any assignment of the
variables of the program). The original program with the constraint is optimized
by finding the λ where the constraint is met with equality; at such a point the
Lagrangian program trades off emphasis on the objective and the constraint
perfectly. Notice that when the constraint is met with equality, the contribution
to the objective is zero and the objective of the Lagrangian program is the
optimal value of the original program.
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Finally, we choose the Lagrangian parameter so that the budget is met
with equality.

We begin by writing a mathematical program for the interim rev-
enue maximization problem and using Lagrangian relaxation to move
the budget constraint into the objective. The other constraints of the
problem will not play a roll in most of our discussion so we will not
write them formally. The original and relaxed programs are as follows;
recall the value of the highest type is denoted h.

sup
(x,p)

Et∼F [p(t)] sup
(x,p)

Et∼F [p(t)] + λB − λ p(h)

s.t. (x, p) are BIC, IIR, s.t. (x, p) are BIC, IIR,

and feasible for ŷ; and feasible for ŷ.

p(h) ≤ B.

We will fix the Lagrangian parameter λ and characterize the optimizer of
the Lagrangian objective. Notice that this Lagrangian objective is linear
and therefore can be treated with the methods of Chapter 3. With such
a characterization, the Lagrangian parameter λ can be chosen to be zero
if the budget is not binding or so that the budget constraint is met with
equality if it is binding.

With Lagrangian λ fixed, the λB term in the objective is a constant
and does not affect optimization. The optimization is to find allocation
and payment rules (x, p) to maximize E[p(t)] − λ p(h). Our approach
to this optimization problem will mirror our approach to revenue opti-
mization without budgets, cf. Section 3.3.4. We will define Lagrangian
revenue curves, we will write the Lagrangian objective of any allocation
rule in terms of these revenue curves, and then we will directly interpret
the form of the Lagrangian optimizer.

Recall that price-posting revenue curves are defined by considering the
ex ante constraint q̂ and the mechanism (xq̂, pq̂) that posts the price ν(q̂)
that is accepted with probability q̂. Consider the Lagrangian objective
Et[p

q̂(t)]−λ pq̂(h) for the mechanism that posts price ν(q̂). The revenue
from such a price is Et[p

q̂(t)] = P (q̂) = q̂ ν(q̂) where, recall, P (q̂) denotes
the price-posting revenue curve of the single-dimensional linear utility
agent.

For q̂ > 0 (strictly positive), the price ν(q̂) is strictly less than the
value of the highest type ν(0) = h, so pq̂(h) = ν(q̂). Thus, the La-
grangian objective for q̂ ∈ (0, 1] is Pλ(q̂) = P (q̂)− λ ν(q̂). For q̂ = 0 the
highest type is indifferent between buying and not buying. This indif-
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ference does not matter as highest type (quantile q = 0) is realized with
measure zero (i.e., never) and so this type cannot affect the optimiza-
tion. It will be technically convenient and consistent with the highest
type “not mattering” to assume, with respect to the budget constraint,
that indifference of the highest type to the price h is resolved in favor
of rejecting the price. For posting price ν(q̂ = 0) = h, the expected
revenue is E[p0(t)] = 0 and, by this indifference-resolution assumption,
the payment of the highest type is p0(h) = 0; therefore, the expected
Lagrangian objective from posting price ν(0) is identically zero. Hav-
ing identified the expected revenue and payment of the highest type for
every q̂ price posting we have identified the Lagrangian price-posting
revenue curve; see Figure 8.13(a). Notice that this revenue curve is dis-
continuous at q̂ = 0 (unless λ = 0, i.e., when the budget constraint is
not binding).

Proposition 8.7.2. The Lagrangian price-posting revenue curve for an
agent with public budget satisfies

Pλ(q̂) =

{

0 if q̂ = 0, and

P (q̂)− λ ν(q̂) otherwise.

Notice that on q ∈ (0, 1] this Lagrangian price-posting revenue curve
is the difference between the original revenue curve and the scaled value
function. If the original revenue curve is concave and the value function
ν(q) = F−1(1 − q) is convex (equivalently, the cumulative distribution
function F (·) is convex; equivalently, the density function f(·) is mono-
tone non-decreasing), then this Lagrangian price-posting revenue curve
is concave (on q ∈ (0, 1]).

Definition 8.7.1. A single-dimensional public budget agent is regular
if for all Lagrangian parameters λ ≥ 0 the Lagrangian price-posting
revenue curve is concave on interval (0, 1]. The value distribution F of
such a regular public-budget agent is public-budget regular.

Proposition 8.7.3. A single-dimensional public budget agent is regular
if (a) her type distribution F is regular (for single-dimensional linear
agents) and (b) its cumulative distribution function F (·) is convex.

Due to the discontinuity at q = 0, public-budget regularity does not
imply that the entire Lagrangian price-posting revenue curve is concave.
Recall that when a price-posting revenue curves is not concave, as in the
case of an irregular distribution with a single-dimensional linear agent,
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Figure 8.13. Depicted in (a) are the Lagrangian revenue curves correspond-
ing to an agent with type distributed uniformly on [0, 1] and Lagrangian pa-
rameter λ > 0. Note that the Lagrangian price-posting revenue curve Pλ(·)
is discontinuous at q = 0 with Pλ(0) = 0 and limq→0 Pλ(q) = −λ ν(0).
The Lagrangian price-posting revenue curve (thick, gray, dashed line) on
q ∈ (0, 1] is the sum of the single-dimensional linear price-posting revenue
curve P (q) (thick, gray, dotted line) and the relaxed budget constraint
−λ ν(q) (thick, gray, solid line). Depicted in (b) are the allocation rules cor-
responding to optimization of the Lagrangian objective for two i.i.d. agents
with budget B = 1/4. The allocation rule y (thin, black, solid line) is derived
from the allocation constraint ŷ (thick, gray, dashed line) by averaging on
[0, q̂

†
) and zeroing on (q̂

⋆
, 1]. The Lagrangian parameter was selected to

meet the budget constraint with equality for this example.

optimization subject to incentive compatibility (i.e., monotonicity of the
allocation rule) is simplified by ironing (cf. Section 3.3.5 on page 75).
With respect to the Lagrangian price-posting revenue curve, ironing is
equivalent to taking the concave hull, i.e., the smallest concave upper
bound. Geometrically, it is easy to see that this ironing replaces the
revenue curve with a line segment from the origin to the point where it
is tangent to the original curve. This point is uniquely identified by q̂†

satisfying Pλ(q̂†) = q̂†P ′
λ(q̂†). The resulting revenue curve is continuous

and concave (Proposition 8.7.4). The Lagrangian revenue curve denotes,
for every ex ante constraint q̂, the optimal Lagrangian objective value
from a mechanism with ex ante sale probability q̂.

Proposition 8.7.4. The Lagrangian revenue curve Rλ(·) for an agent
with public budget and value drawn from a public-budget regular distri-
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bution satisfies

Rλ(q) =

⎧

⎪
⎪
⎨

⎪
⎪⎩

q P ′
λ(q̂†) if q ∈ [0, q̂†],

Pλ(q) if q ∈ [q̂†, q̂‡], and

Pλ(q̂‡) if q ∈ [q̂‡, 1],

with q̂† and q̂‡ set to satisfy Pλ(q̂†) = q̂†P ′
λ(q̂†) and P ′

λ(q̂‡) = 0, respec-
tively.

The revenue curves Pλ(·) and Rλ(·) that correspond to price posting
and ex ante optimization can be extended to describe the Lagrangian
objective, respectively, for any allocation rule y(·) and for optimization
with respect to constraint ŷ(·). These extensions follow from reinter-
preting an allocation rule or constraint as a distribution over ex ante
constraints. For example, the a mechanism with allocation rule y(·)
can be obtained by drawing a random quantile q̂ from distribution Gy

with cumulative distribution function Gy(z) = 1− y(z) and offering the
agent the price that corresponds to this quantile i.e., ν(q̂) (and then
applying the revenue equivalence to convert this mechanism to its all-
pay equivalent). Thus, the expected Lagrangian objective for allocation
rule y(·) is Eq̂∼G

y [Pλ(q̂)] = Pλ(1) y(1) + Eq∼U [0,1]

[

Pλ(q) [−y′(q)]
]

. Sim-
ilarly, the optimal Lagrangian objective for allocation constraint ŷ is
Rev[ŷ] = E

[

Rλ(q) [−ŷ′(q)]
]

.
The usual integration by parts approach, with the fact that the La-

grangian revenue curve satisfies Rλ(0) = 0, implies that the optimal La-
grangian objective can be rewritten in terms of the Lagrangian marginal
revenue curve R′

λ(·) as Rev[ŷ] = E
[

R′
λ(q) ŷ(q)

]

. Monotonicity of this
marginal revenue curve, the theory of Lagrangian relaxation, and Corollary 3.3.3
on page 66 gives the following theorem.

Theorem 8.7.5. For a public-budget agent, the revenue-optimal mech-
anism is given by optimizing the surplus of Lagrangian marginal revenue
with Lagrangian parameter λ > 0 when the budget constraint met with
equality for the highest type, or with λ = 0 when the budget constraint
is not binding.

As in the linear utility case, the optimal mechanism for the Lagrangian
objective can be interpreted from the Lagrangian revenue curves. In
particular, we get the optimal allocation rule y subject to constraint ŷ
from ironing on the intervals where the Lagrangian price-posting revenue
curve is ironed, and reserve pricing at its peak (cf. Section 3.4.5 on page
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87). Thus, it is optimal to iron the high-valued types, i.e., quantiles
q ∈ [0, q̂†) with q̂† as described above, and reserve price the low-valued
types, i.e., quantiles q ∈ (q̂⋆, 1] with q̂⋆ defined as the maximizer of Rλ(·).
The remaining types, which correspond to quantiles q ∈ [q̂⋆, q̂†], are
served greedily according to the allocation constraint ŷ(·). The resulting
allocation rule y(·) can be interpreted as averaging ŷ(·) on [0, q̂†) and
setting it to zero on (q̂⋆, 1]; see Figure 8.13(b).

Corollary 8.7.6. For a regular public-budget agent and interim alloca-
tion constraint ŷ(·), the optimal single-agent mechanisms allocates as by
ŷ(·) except that types with quantiles in [0, q̂†) are ironed, and types with
quantiles in (q̂⋆, 1] are reserve priced.

8.8 Unit-demand Preferences

The optimal mechanism for allocating one of m alternatives to a single
unit-demand agent is the solution to a straightforward linear program
with variables for the allocation rule x : T → X and payment rule
p : T → R+. For a unit-demand agent the type space is T = R

m
+ ,

the feasible allocation space is X = [0, 1]m, and {x(t)}j for x(t) ∈ X
represents the probability that the agent is allocated alternative j.

sup
x,p

Et∼F [p(t)] ; (8.8.1)

t · x(t) − p(t) ≥ t · x(t†)− p(t†) ∀t, t† ∈ T ;

t · x(t) − p(t) ≥ 0 ∀t ∈ T ;
∑

j
{x(t)}j ≤ 1 ∀t ∈ T .

The three constraints in program (8.8.1) are incentive compatibility,
individual rationality, and feasibility.

The optimization of this program generally gives complex outcomes
where the allocation a t receives is generally randomized, i.e., with
x(t) ̸∈ {0, 1}m, a.k.a., a lottery, and may partially allocate, i.e., with
∑

j{x(t)}j ̸∈ {0, 1}, a.k.a., a partial lottery. This section focuses on de-
riving the optimal mechanism when it takes a simple form, specifically,
a uniform pricing of alternatives. In Chapter 9 this program will be re-
considered and simple approximation mechanisms will be identified even
when the optimal mechanism is complex.

In the sections below we will prove the optimality of the single-agent
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mechanisms described in Section 8.2 for agents with unit-demand prefer-
ences. More generally, we will show that for a large family of well-behaved
and alternative-symmetric distributions, the optimal mechanism is given
by a uniform reserve price (i.e., the same across all alternative) and sells
the agent her favorite alternative.

This section gives a generalization to multi-dimensional preferences of
the framework of virtual values (cf. Section 3.3.1). Recall that virtual
values are an amortization of revenue in the sense that they can be
evaluated pointwise, but equate to revenue in expectation. The pointwise
optimization of virtual surplus, then, gives a revenue-optimal incentive
compatible mechanism. The approach is to (a) cover type space with
paths, (b) solve the problem restricted to the path, and then (c) find
sufficient conditions on the distribution of over types that implies that
the optimal mechanisms on the path are consistent. This approach will
generally fail unless the right paths are identified.

We will use this approach to solve the single-agent problems corre-
sponding to an unit-demand agent with uniformly distributed types on
the unit square (Example 8.2.2). For such an agent the optimal mecha-
nism projects the multi-dimensional agent type onto a single dimension
that corresponds to the agent’s value for her favorite alternative. In ad-
dition to proving this result, we will give sufficient conditions on the
distribution, beyond uniform, under which this projection continues to
be optimal.

This single-dimensional projection result gives insight on the role of
second-degree price discrimination, i.e., whether a seller can make more
money with a differentiated product. For example, a seller might in-
troduce a high-quality and low-quality product to segment the market
between high-valued consumers (to buy the high-quality product at a
premium) and low-valued consumers (to buy the low-quality product
at a discount). Intuitively, this approach can be profitable if high-valued
consumers are more sensitive to quality than low-valued consumers. This
section develops a proof of the inverse, that if high-valued consumers
are less sensitive to quality than low-valued consumers, then there is no
benefit to quality-based second-degree price discrimination. For exam-
ple, movie tickets are predominantly sold with a uniform price. Such a
mechanism is suggested by the results of this section under the assump-
tion that film buffs tend not to have a higher willingness to pay than
the general public.

We begin the section with a simple warmup exercise that single-
agent problems for the two-alternative uniform unit-demand agent of



8.8 Unit-demand Preferences 307

Example 8.2.2. The approach is to solve the mechanism design problem
independently on rays from the origin and relies solely on the single-
dimensional theory of mechanism design from Chapter 3. To solve more
complex multi-dimensional problems we generalize the characterization
of incentive compatible mechanisms to multi-dimensional agents. We
then solve the multi-dimensional mechanism design problem for more
general families of paths. For the right choice of paths the approach of
the warmup can be generalized. To identify the right paths, we develop
a multi-dimensional framework of virtual values.

8.8.1 Warmup: The Uniform Distribution

As a warmup, consider selling one of two alternatives to a unit-demand
agent with type drawn from the uniform distribution over type space
T = [0, 1]2 (Example 8.2.2). We claimed without proof in Section 8.2.2
that the optimal (unconstrained) single-agent mechanism is to post a
uniform price of

√
1/3. A simple argument for this result is as follows.

First, restrict the problem to the alternative-1 preferred subspace of
types, i.e., where {t}1 > {t}2 (the solution for the other part will be
symmetric). A uniform pricing always sells the agent her favorite al-
ternative, so with this restriction, the uniform pricing sells alternative 1
only. The conditional distribution on {t}1 is the distribution of the max-
imum of two i.i.d. uniform random variables and has cumulative distri-
bution function F1(z) = Pr[{t}1 ≤ z ∧ {t}2 ≤ z] = z2, density function
f1(z) = 2z, single-dimensional virtual value φmax(z) = z − 1−z

2
/2z, and

monopoly price v̂⋆
1 =

√
1/3.

Now consider restricting the type space to paths that coincide with
rays from the origin. Parameterizing such a path by its slope θ, a type on
this path can be expressed in terms of {t}1 as t = ({t}1, θ {t}1). Notice
that all types t ∈ T (θ) = {(v, θ v) : v ∈ [0, 1]} have the same value for
receiving alternative 1 with probability θ or alternative 2 with certainty.
Thus, restricting the type space to the path T (θ), the problem of selling
the agent alternative 1 or 2 is equivalent to that of selling the agent
alternative 1 with probability one or alternative 1 with probability θ.
Recall from Section 3.3 that the optimal single-dimensional mechanism,
which is allowed to probabilistically allocate, is always deterministic. It
sells to the agent with probability one if she has a non-negative virtual
value and with probability zero otherwise. In other words, it posts the
monopoly price. Thus, the optimal mechanism for T (θ) posts a price for
alternative 1.
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This restriction on type space to a path can be equivalently viewed as
giving the mechanism designer extra knowledge, specifically, the knowl-
edge of θ. With this extra knowledge, the conditional distribution on
{t}1 is F1, thus, the designer with this knowledge would post a price of
v̂⋆
1 =

√
1/3 for alternative 1 (and not sell alternative 2). This solution is

independent of θ, and the designer can do as well without knowledge of θ
as with it. Thus, there is no loss with respect to the optimal mechanism
from relaxing the incentive constraints between types that are not on
the same path. The optimal mechanism for a unit-demand agent with
types uniformly drawn from the full type space T = [0, 1]2 is the uniform
price of

√
1/3.

In the remainder of the section this approach is generalized to a richer
family of distributions. In particular, the same uniform-pricing result
holds for any distribution where the conditional distributions of θ =
{t}2/{t}1 with respect to {t}1 is ordered according to {t}1 by first-order
stochastic dominance. In other words, Pr[{t}2/{t}1 ≤ θ | {t}1], for all
fixed θ, is monotone in {t}1.

8.8.2 Multi-dimensional Characterization of Incentive
Compatibility

Chapter 2 characterized incentive compatible mechanisms for single-
dimensional linear agents in Theorem 2.5.1 and Corollary 2.10.2. These
results concluded that a mechanisms with allocation and payment rules
(x, p) is incentive compatible if and only if

• the allocation rule x(·) is monotone non-decreasing, and

• the payment rule satisfies the payment identity:

p(v) = v x(v) −
∫ v

0
x(z) dz.

Recall that the first term in the payment identity is the surplus and
the second term is, thus, the agent’s utility. We can reinterpret this
characterization in terms of utility as follows. The utility function u(·)
corresponds to an incentive compatible mechanism with allocation rule
x if and only if

• it is convex, and

• related to the allocation rule by the utility derivative identity:

x(v) = d
dv u(v).
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Moreover, under our usual interpretation of the allocation rule x(v) as
denoting the probability that the agent with value v is served, the utility
derivative identity combined with x(v) ∈ [0, 1] imply that the utility
function is non-decreasing and has derivative at most one.

The multi-dimensional characterization of incentive compatibility gen-
eralizes this reinterpretation.

Theorem 8.8.1. For an agent with linear utility, allocation rule and
utility functions (x, u) correspond to an incentive compatible mechanism
if and only if

(i) (convexity) u(·) is convex, and

(ii) (utility gradient identity) x(t) = (∂u(t)/∂{t}1, . . . , ∂u(t)/∂{t}m) = ∇u(t).9

Proof. Incentive compatibility is equivalent to the following inequality
holding for all pairs of types (t, t†):

u(t) ≥ u(t†) + (t− t†) · x(t†). (8.8.2)

The right-hand side of equation (8.8.2) is the utility that t obtains for the
outcome of t†. The only difference between the utility of t for an outcome
and the utility of t† for an outcome is the surplus from the allocation.
Thus, t’s utility for the outcome of t† is equal to the utility t† for this
outcome plus the difference in surplus for t and t† for the outcome.

Like the proof of Theorem 2.5.1, this proof is broken into three parts.

(i) The allocation rule and utility function (x, u) correspond to an in-
centive compatible mechanisms if convexity and the utility gradient
identity hold.

Consider any type t† and the plane orthogonal to the surface of u(·)
at t†. By convexity, this plane is lower-bounds the utility at any other
type t. In other words,

u(t) ≥ u(t†) + (t− t†) ·∇u(t†).

In this equation, the right-hand side is the point on this plane at
t. By the gradient utility identity, we can substitute the x(t†) for
∇u(t†) in the right-hand side to obtain the defining inequality (8.8.2)
of incentive compatibility.

9
Technically, the gradient ∇u = (∂u/∂{t}1, . . . , ∂u/∂{t}m) of a convex function u is
only guaranteed to exist almost everywhere (and not everywhere). For types t
where the gradient does not exist, the allocation x(t) can be any subgradient, i.e.,
the gradient of any plane through point (t, u(t)) that lower bounds the utility
function u(·); convexity of the utility function guarantees that such a plane exists.
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(ii) The allocation rule and utility function (x, u) correspond to an in-
centive compatible mechanisms only if convexity holds.

Consider types t†, t‡, and convex combination t = γ t† + (1 − γ) t‡.
Incentive compatibility requires equation (8.8.2) hold for all pairs of
types. Restating the equation for type pairs (t†, t), (t‡, t) we have:

u(t†) ≥ u(t) + (t† − t) · x(t).

u(t‡) ≥ u(t) + (t‡ − t) · x(t).

A convex combination of these equations gives:

γ u(t) + (1 + γ)u(t‡) ≥ u(t) + (γ t† + (1− γ) t‡ − t) · x(t)

= u(t) (8.8.3)

The final equation above comes from the definition of t as the convex
combination of t† and t‡. Inequality (8.8.3) implies convexity of utility
as desired.

(iii) The allocation rule and utility function (x, u) correspond to an in-
centive compatible mechanisms only if the utility gradient equality
holds.

Let ej be the unit vector corresponding to allocation of alternative

j, i.e., {ej}j = 1 and {ej}j
† = 0 for j ̸= j†. For small constant ϵ, apply

equation (8.8.2) to type pairs (t + ϵej, t) and (t− ϵej, t) to conclude:

u(t + ϵ ej)− u(t) ≥ ϵ {x(t)}j , and

u(t− ϵ ej)− u(t) ≥ −ϵ {x(t)}j.

Combine these equations to obtain upper and lower bounds on {x(t)}j

as:

1/ϵ [u(t + ϵ ej)− u(t)] ≥ {x(t)}j ≥ 1/ϵ [u(t− ϵ ej)− u(t)]

Assuming the partial derivative of u(·) with respect to {t}j is defined
at t, the limit as ϵ goes to zero is defined and both the upper and lower
bound, above, are equal to the partial derivative of u with respect to
{t}j at t which is the jth coordinate of the gradient {∇u(t)}j . If the
partial derivative is not defined, then the same limit argument implies
that x(t) is a subgradient of the utility function at type t.

The subsequent developments of this section will rely heavily on The-
orem 8.8.1.



8.8 Unit-demand Preferences 311

8.8.3 Optimal Mechanisms for Paths

A seller who segments the market by offering a differentiated product
line is engaging in what is called second-degree price discrimination. One
way to offer a differentiated product is to offer lotteries for the same
product. For example, a seller could offer (i) the good at a high price or
(ii) the same good with probability 1/2 (and nothing otherwise) at a low
price. Our analysis of single-dimensional agents of Chapter 3 has shown
pricing these lotteries is never beneficial.

In the example above, a buyer who has a value v for the allocation
of (i) and will have value v/2 for the allocation of (ii). Viewing these
allocations as two alternatives, the buyer’s type can be mapped into
the two dimensional space corresponding to her value for each alter-
native. The buyer’s type space is degenerate and lies on the line with
slope 1/2. Of course, the optimal mechanism when the buyer’s value v is
drawn from a distribution is to post the monopoly price for the distri-
bution for alternative 1 (and never sells alternative 2). In this section,
this monopoly-pricing result is generalized to type spaces given by more
general families of paths.

The results of this section will be written in general for m ≥ 2 alter-
natives.

Definition 8.8.1. A path-based agent is specified by a mapping from
quantile to type τ : [0, 1]→ T where the distribution over types is given
by τ(q) for q ∼ U [0, 1].

This definition will conveniently allow the comparison to the single-
dimensional analysis of revenue maximization in Section 3.3 when the
path is monotonically non-increasing in quantile. Under the non-increasing
assumption, q = 0 corresponds to the strongest type in every dimension
and q = 0 corresponds to the weakest type in every dimension. The
distribution of the jth coordinate of type space is given by distribution
function that satisfies Fj({τ(q)}j) = 1 − q. If we were only to sell the
jth alternative then the price-posting revenue curve is Pj(q) = q {τ(q)}j ,
and when this distribution is regular then the single-dimensional virtual
value φj({τ(q)}j) = P ′

j(q) = {τ(q)}j + q {τ ′(q)}j where, recall, {τ ′(q)}j

is non-positive. (We will not work with irregular distributions in this
section.)

Now we follow the same approach as Section 3.3 and convert the
problem of optimizing revenue in expectation to the problem of pointwise
optimizing the surplus of an amortization of revenue. The approach is the
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following. Expected profit is equal to expected surplus minus expected
utility. We will use integration by parts on the path to write the expected
utility as the integral of the gradient of the utility. By Theorem 8.8.1, the
gradient of utility is equal to the allocation. The two terms for expected
surplus and utility can then be combined to give a virtual surplus.

Lemma 8.8.2. For a path-based agent with path τ and any incentive
compatible mechanism with allocation rule y, the agent’s expected utility
is:10

E[u(τ(q))] = u(τ(1))−Eq

[

q x(τ(q)) · τ ′(q)
]

.

Proof. An explanation of the following calculus is given below.

E[u(τ(q))] =

∫ 1

0
u(τ(q)) dq

=

∫ 1

0

dq
dq u(τ(q)) dq

=
[

q u(τ(q))
]1

0
−

∫ 1

0
q d

dq [u(τ(q))] dq

= u(τ(1))−
∫ 1

0
q∇u(τ(q)) · dτ(q)

dq dq

= u(τ(1))−E
[

q x(τ(q)) · τ ′(q)
]

.

The first line is from the definition of expectation. The second line is
from the identity dq/dq = 1. The third line is by integration by parts.
The fourth line is from evaluating the first part of the third line and by
applying the product rule to the derivative of utility in the second part.
The final line is from the definition of expectation.

Theorem 8.8.3. For a path-based agent with path τ and any incentive
compatible mechanism (x, p), the expected revenue is

E[p(τ(q))] = E
[

x(τ(q)) · P ′(q)
]

− u(τ(1))

where P ′(q) = (P ′
1(q), . . . , P

′
m(q)) is the vector of price-posting revenues

corresponding to quantile q.

10 Notice that, when the path τ is non-increasing, each coordinate of
τ
′
(q) = dτ(q)/dq is non-positive.
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Proof. We have:

E[p(τ(q))] = E[x(τ(q)) · τ(q)]−E[u(τ(q))]

= E
[

x(τ(q)) · [τ(q) + q τ ′(q)]
]

− u(τ(1))

= E
[

x(τ(q)) · P ′(q)
]

− u(τ(1)).

The first line writes expected revenue as expected surplus minus ex-
pected utility. The second line substitutes in Lemma 8.8.2 and combines
terms. The third line observes that for Pj(q) defined as q {τ(q)}j and
the product rule for differentiation gives P ′

j(q) = {τ(q) + q τ ′(q)}j .

In Theorem 8.8.3, the utility of the weakest type τ(1) is usually zero
for mechanisms of interest. Specifically, the revenue optimal mechanism
will satisfy u(τ(1)) = 0. Thus, Theorem 8.8.3 shows that the vector
field φ(τ(q)) = P ′(q) allows for an amortized analysis of revenue. The
expected amortized surplus with respect to φ is equal to the expected
revenue. The remaining question for revenue maximization is to choose
the allocation rule to optimize virtual surplus with respect to φ subject
to incentive compatibility.

Instead of attempting to solve for the optimal mechanism on any path
τ , we will look for sufficient conditions on the path that imply that the
optimal mechanism is posting a price for alternative 1. As in Section 3.3,
we relax the incentive compatibility constraint, and choose allocation x
to optimize the amortized surplus φ(τ(q))·x pointwise for each τ(q) ∈ T .
We then check for conditions on the environment, in this case the path
τ and distribution F1, that imply that the resulting allocation rule is
incentive compatible.

Pointwise optimization of amortized surplus serves the agent the alter-
native with the highest positive amortized value (or none if all amortized
values are negative). For pointwise optimization of amortized surplus
results in posting a price for alternative 1 if and only if φ meets the
following conditions:

(i) The amortized value of the favorite item {φ}1 is monotonically non-
decreasing in the value of the favorite item {t}1, i.e., P ′

1(q) is non-
increasing in q.

(ii) When the amortized value of the favorite item is positive {φ(t)}1 > 0,
it is at least the amortized value of any other item {φ(t)}1 ≥ {φ(t)}j ,
i.e., if P ′

1(q) > 0 then P ′
1(q) ≥ P ′

j(q).

(iii) When the amortized value of the favorite item is non-positive {φ(t)}1 ≤
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(b) Optimal mechanism

Figure 8.14. In subfigure (a), a ratio-monotone path (solid, thick, black
line) in two-dimensional type space is depicted. Ratio monotonicity of the
path implies that the slope of the path at a type t is greater than that
of the line through the type and the origin (dashed line). Subfigure (b)
depicts the optimal mechanism for this path when {τ(q)}1 = q, i.e., when
the agent’s value for alternative 1 is drawn uniformly from [0, 1]. For this
distribution the monopoly quantile is q̂

⋆
= 1/2 and the mechanism post

price 1/2 = {τ(q̂
⋆
)}1 for alternative 1.

0, the amortized value of any other item is non-positive {φ(t)}j ≤ 0,
i.e., if P ′

1(q) ≤ 0 then P ′
j(q) ≤ 0.

When these conditions hold, the allocation that optimizes the amortized
surplus will serve the agent alternative 1 when the agent’s value for
alternative 1 is at least its monopoly price, and nothing otherwise.

Definition 8.8.2. A path τ(·) is ratio monotone if the ratio {τ(q)}j/{τ(q)}1

is monotone non-decreasing in {τ(q)}1 (equivalently, monotone non-
increasing in q), i.e., stronger types are less sensitive to the differences
in alternatives; see Figure 8.14.

Theorem 8.8.4. For a path-based agent with ratio-monotone and reg-
ular path τ , the optimal mechanism is to post a price for alternative 1.

Proof. We show that the three conditions in the discussion above hold.
The regularity assumption of the theorem is identically condition (i). A
sufficient property that implies conditions (ii) and (iii) is for all quantiles
q and alternatives j:

{τ(q)}j

{τ(q)}1
{P ′(q)}1 ≥ {P ′(q)}j . (8.8.4)

Notice that a ray from the origin is “ratio constant”, thus, ratio mono-
tonicity is equivalent the path at q, relative to the ray from the origin
to τ(q), being “steeper” than the ray (as a function of {t}1). In two-
dimensions, as depicted in Figure 8.14, ratio-monotonicity is equivalent
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to the property that rays from the origin only cross the path from above
to below, i.e., at the point of intersection, the slope of the path is at least
the slope of the ray (as a function of {t}1). This equivalence generalizes
to:

{τ
′
(q)}j

{τ
′
(q)}1

≥ {τ(q)}j

{τ(q)}1
. (8.8.5)

The sufficient condition of equation (8.8.4) can be derived from ratio
monotonicity as follows,

{τ(q)}j

{τ(q)}1
{P ′(q)}1 =

{τ(q)}j

{τ(q)}1
{τ(q) + q τ ′(q)}1

≥ {τ(q)}j + q {τ ′(q)}j

= {P ′(q)}j .

Simplification of the second term in the second line follows from equa-
tion (8.8.5).

We conclude that the conditions (i)-(iii) hold, and amortized surplus
maximization results in a posted price for alternative 1. Since the amor-
tized surplus maximizer is an incentive compatible mechanism, it is the
optimal incentive compatible mechanism.

We have expressed our path based agent in terms of τ(q) and the
uniform distribution on quantiles q. A path based agent can be equiva-
lently expressed as the set of types on the path, i.e., {τ(q) : q ∈ [0, 1]}
and the distribution F1 of the agent’s value for favorite alternative. Theo-
rem 8.8.4 shows that for paths that satisfy ratio monotonicity, regularity
of the distribution for alternative 1 implies optimality of posting a price
for the favorite item. The theorem below shows that ratio-monotonicity
is a necessary condition for such a result to hold for all regular distri-
butions on alternative 1. Specifically, for any non-ratio-monotone path,
there exists distribution for the favorite item that is regular and for
which posting a price for the favorite alternative is not optimal.

Theorem 8.8.5. For any non-ratio-monotone path τ there exists a reg-
ular distribution F1 such that posting a price for alternative 1 is not
optimal for the path-based agent defined by τ and F1.

Proof. This proof is by counter example. We give the proof for a spe-
cial case; however, it is easy to apply the same argument in general by
shifting, scaling, and making only local arguments (see Exercise 8.16). In
this special case {τ(q)}1 = q, i.e., the type for alternative 1 is uniformly
distributed on [0, 1], the path {τ(q) : q ∈ [0, 1]} is not ratio monotone
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(a) Pricing alternative 1
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(b) Discounting alternative 2

Figure 8.15. Depicted is a path (thick, solid, black line) that is not ratio
monotone at t̂. In subfigure (a), the allocation from posting price {t̂}1

for alternative 1 is depicted by the shaded regions. In subfigure (b), the
allocations from posting prices v̂ = {t̂}1 for alternative 1 and {t̂}2 − ϵ
for alternative 2 are depicted by the shaded region. On the path, types t
with value {t}1 for alternative 1 in interval [v̂

†
, v̂

‡
] will buy alternative 2.

Relative to simply posting a price for alternative 1, offering alternative 2 at
a discount adds revenue from types t with {t}1 ∈ [v̂

†
, v̂] and loses revenue

from types t with {t}1 ∈ [v̂, v̂
‡
]. For {t}1 uniformly distributed, the types

that add revenue have measure (v̂ − v̂†) = ϵ/{t̂
′
}2; types that lose revenue

have measure (v̂‡ − v̂) = ϵ/1−{t̂
′
}2.

for some alternative j at the critical type t̂ = τ(q̂) with q̂ = 1/2 which
is the monopoly price for alternative 1, and {τ(q)}j is locally linear
around the corresponding quantile q̂. Notice that the optimal way to sell
alternative 1 is to post price {t̂}1 = 1/2. The assumption of non-ratio
monotonicity at t̂ for alternative j is:

{t̂′}j < {t̂}j/{t̂}1 (8.8.6)

where t̂′ = τ ′(q̂). Since {τ(q)}1 = q its derivative is {τ ′(q)}1 = 1 and,
thus, {t̂′}j is the slope of the agent’s value for item j as a function of
the agent’s value for item 1.

Consider adding the option of buying alternative j at price {t̂}j − ϵ.
There is a gain from types who were not buying before who now buy and
a loss from types who were buying alternative 1 before but now switch
to the lower cost alternative j; see Figure 8.15. These are:

Gain(ϵ) = ({t̂}j − ϵ) ϵ/{t̂
′}j,

Loss(ϵ) = ({t̂}1 − {t̂}j + ϵ) ϵ/1−{t̂
′}j.

The first term in each expression above is the gain or loss from each
type; the second term is the measure of such types.

To see that the gain is more than the loss in the limit as ϵ goes to
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zero, we can divide each by ϵ and take their limits. We have:

lim
ϵ→0

[Gain(ϵ)/ϵ] = {t̂}j/{t̂
′}j > {t̂}1,

lim
ϵ→0

[Loss(ϵ)/ϵ] = {t̂}1−{t̂}j/1−{t̂
′}j < {t̂}1.

The inequalities of both lines follow from the definition of ratio non-
monotonicity in equation (8.8.6), by rearranging as {t̂}j/{t̂

′}j > {t̂}1 for
the first line and by substituting {t̂}j/{t̂}1 for {t̂′}j in the second line.
Thus, the gain from additionally offering alternative j at price {t̂}j − ϵ
is strictly more than the loss and posting price {t̂}1 for alternative 1,
which is optimal among such price postings. Thus, posting a price for
alternative 1 is not optimal among all mechanisms.

8.8.4 Uniform Pricing for Ratio-monotone Distributions

This section duplicates the analysis from the warmup (Section 8.8.1)
for more general distributions F on the two-dimensional alternative-
1 preferred type space, i.e., T = {t ∈ [0, 1]1 : {t}2 ≤ {t}1}. In the
previous analysis the mechanism design problem was decomposed into
a collection of paths, solved on each path in the collection, and then it
was argued that these solutions are consistent with a single mechanism.
Critical in this analysis is the choice of the paths. The results of this
section are based on a natural guess at the right paths. (A principled
method for determining the right paths will be described in subsequent
sections.)

The following discussion gives a natural guess as to the right paths on
which to decompose the multi-dimensional mechanism design problem.
We would like to solve the mechanism design problem independently on
these paths and for the optimal mechanism on each path to post the
same price for alternative 1 (and never sell alternative 2). One sufficient
condition to guarantee that the optimal mechanisms for selling alterna-
tive 1 on each path posts the same price is to require the distribution
of the agent’s value for alternative 1, conditioned on the path on which
the agent’s type lies, be the same for all paths.

Definition 8.8.3. For two-dimensional type space T , distribution F ,
parameter θ ∈ [0, 1], and quantile q ∈ [0, 1]; the equiquantile path τ (θ)

is:11

11 Notice that q is the quantile of the agent’s type for alternative 1 and θ is the
conditional quantile of the agent’s type for alternative 2 (given the agent’s type
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• Prt∼F [{t}1 ≥ {τ (θ)(q)}1] = q,

• Prt∼F [{t}2 ≥ {τ (θ)(q)}2 | {t}1 = {τ (θ)(q)}1] = θ.

The equiquantile type subspace is T (θ) = {τ(q) : q ∈ [0, 1]}.

Lemma 8.8.6. For any quantile θ, the conditional distribution of {t}1

given t ∈ T (θ) for t ∼ F is equal to the unconditional distribution of
{t}1, i.e., for all z ∈ [0, 1],

Prt∼F

[

{t}1 ≤ z | t ∈ T (θ)
]

= Prt∼F [{t}1 ≤ z] .

Proof. By definition, given {t}1 the quantile θ corresponding to the path
type space T (θ) that contains type t is uniformly distributed. Therefore,
θ is independent of {t}1; equivalently, {t}1 is independent of θ. Thus, the
conditional distribution of {t}1 given θ is the same as its unconditional
distribution.

We are now ready to complete the construction. The set of equiquan-
tile paths {τ (θ) : θ ∈ [0, 1]} partition type space. Supposing the designer
knew the path τ (θ) on which the type was drawn, then the designer would
employ the optimal mechanism for that path. If the distribution of {t}1

is regular and the equiquantile curves are ratio monotone, then by Theo-
rem 8.8.4 the optimal mechanism for each path is to post the monopoly
price v̂⋆

1 for the distribution F1 of {t}1. This mechanism is the same
regardless of the path; thus, posting price v̂⋆

1 for alternative 1 is revenue
optimal. From this argument, we can conclude the following theorem.

Theorem 8.8.7. For distribution F on the alternative-1 preferred type
space T = {t ∈ [0, 1]2 : {t}2 ≤ {t}1} satisfying (a) the distribution of
{t}1 is regular and (b) the equiquantile paths are ratio monotone, the
revenue optimal mechanism is to post the monopoly price for alterna-
tive 1.

This theorem can easily be extended to distributions on the unit
square for which the distribution of the agent’s value for her preferred
alternative is independent of which alternative is preferred. Under this
assumption, the problem can be independently solved under each con-
ditioning, and the mechanism that posts a uniform price for each alter-
native is optimal.

This theorem can also be easily generalized to selling a single item in

for alternative 1). The notation treats these quantiles distinctly as does the
analysis.
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one of two configurations (which we will continue to refer to as alterna-
tives) to several agents. Notice that if there was a cost c for serving the
agent, then the optimal mechanism of Theorem 8.8.7 would still be a
posted price for alternative 1. The price v̂ however would be increased
to solve v̂ − 1−F1(v̂)

f1(v̂) = c. We conclude that the optimal mechanism for
several multi-dimensional agents (that each satisfy the assumptions of
the theorem) is simply the optimal mechanism that projects each agent
into a single dimension according her value for her favorite alternative.

The next section will formalize the method of virtual values employed
above to prove the optimality of posting the monopoly price for alterna-
tive 1. The section following will use this formulation to give a general
method for solving for the appropriate paths on which to solve the mech-
anism design problem.

8.8.5 Multi-dimensional Virtual Values

In this section we generalize the virtual-value-based approach to mecha-
nism design from the single-dimensional agents of Section 3.3.2 on page
65 to multi-dimensional agents. Assume that the seller has a cost func-
tion for producing a given allocation of alternatives x that is specified by
c(x). The definitions below are given for a single agent and the objective
of profit, i.e., expected payment minus expected cost, but they could be
equally well defined for multiple agents and any objective.

Definition 8.8.4. A virtual value function φ is a vector field that sat-
isfies three properties:

(i) Amortization of revenue: For any incentive compatible mechanism
(x, p), the agent’s expected virtual surplus is an upper bound on ex-
pected revenue, i.e., E[φ(t) · x(t)] ≥ E[p(t)].

(ii) Incentive compatibility: A point-wise virtual surplus maximizer x⋆(t) ∈
argmaxx φ(t) ·x−c(x) is incentive compatible, i.e., there exists a pay-
ment rule p⋆ such that mechanism (x⋆, p⋆) is incentive compatible.

(iii) Tightness: For this point-wise virtual surplus maximizer (x⋆, p⋆), the
agent’s expected virtual surplus is equal to the expected revenue, i.e.,
E

[

φ(t) · x⋆(t)
]

= E
[

p⋆(t)
]

.

Definition 8.8.4 makes a distinction between the agent’s virtual surplus
φ(t) · x and the virtual surplus of the mechanism φ(t) · x − c(x) which
includes the seller’s cost. A special case of interest is a uniform cost c
where virtual surplus is φ(t) · x − c

∑

j{x}j. This uniform cost could
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represent the opportunity cost the seller faces for serving this agent. For
example, with two agents with virtual value functions and a single-item
environment, the opportunity cost of serving one agent is the maximum
of the virtual value of the other agent and zero.

Proposition 8.8.8. For any mechanism design problem that admits a
virtual value function, a virtual surplus maximizer is the optimal mech-
anism.

Proof. Denote the incentive compatible virtual surplus maximizer (guar-
anteed to exist by Definition 8.8.4) by allocation and payment rules
(x⋆, p⋆); denote any other incentive compatible mechanism by allocation
and payment rules (x, p); then,

Et

[

p⋆(t)− c(x⋆(t))
]

= E
[

φ(t) · x⋆(t)− c(x⋆(t))
]

≥ E[φ(t) · x(t)− c(x(t))] ≥ E
[

p(t)− c(x⋆(t))
]

.

The first equality is by tightness (the expected cost term E
[

c(x⋆(t))
]

is the same on both sides of the equality), the second inequality is by
the fact that x⋆ is a virtual surplus maximizer, the third inequality is
because φ is an amortization of revenue (again, the expected cost term
E[c(x(t))] is the same on both sides of the inequality).

In Section 8.8.3, we derived a virtual value function for types on a
ratio-monotone path and with regularly distributed value for the pre-
ferred alternative. In Section 8.8.4, we guessed a set of paths, solved the
mechanism design problem on each path, and argued that under some
distributional assumptions these optimal mechanisms are consistent with
one mechanism. In this section we will develop a general framework for
deriving virtual value functions absent a good guess of the decomposi-
tion to paths. The main idea is to leave the paths as variables, that can
then be solved for later. To do this we will employ a multi-dimensional
integration by parts (which is defined with respect to any vector field;
see the Mathematical Note on page 321), with the constraint that this
vector field corresponds to paths.

Our goal is to use integration by parts to rewrite the expected utility
E[u(t)] =

∫

t∈T u(t) f(t) dt in terms of the gradient of the utility ∇u,
which by Theorem 8.8.1 is equal to the allocation x, and a boundary
integral. Thus, we need to identify a vector field α with divergence equal
to the (negated) density. The term corresponding to the boundary in-
tegral, we would prefer to be zero, but for an upper bound it would be
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sufficient for it to be negative. Thus, we seek a vector field α to satisfy
properties of the following definition.

Definition 8.8.5. For distribution F and type space T , a vector field
α : R

m → R
m satisfies

• the divergence density equality if ∇ · α(t) = −f(t) for all t ∈ T , and

• boundary influx if α(t) · η(t) ≤ 0 for all t ∈ ∂T .

Theorem 8.8.9. If α : R
m → R

m is a vector field satisfying the diver-
gence density equality and boundary influx on type space T then vector
field φ(t) = t − α(t)/f(t) is an amortization of revenue. Moreover, the
amortization φ is tight for incentive compatible mechanisms that have
binding individual rationality constraint u(t) = 0 on all boundary types
t with non-trivial flux, i.e., α(t) · η(t) ̸= 0.

Mathematical Note. Multi-dimensional integration by parts is defined
for function u : R

m → R and vector field α : R
m → R

m on region T
with boundary ∂T as follows:
∫

t∈T
∇u(t) · α(t) dt =

∫

t∈∂T
u(t) (α(t) · η(t)) dt −

∫

t∈T
u(t) (∇ · α(t)) dt.

In the formula above, ∇ · α(t) is the divergence of α at point t ∈ T and
is defined as ∇ · α(t) =

∑

j{∇α(t)}j ; and η(t) is a unit-length normal
vector to the boundary at point t ∈ ∂T .

The divergence theorem is the application of multi-dimensional inte-
gration by parts to the vector field α and the function u(·) = 1 (which
has trivial gradient ∇u(·) = (0, . . . , 0)). Viewing the vector field as a
flow, the divergence theorem shows that the divergence of a flow in a
region T is equal to magnitude of the flux out of the region.

∫

t∈T
∇ · α(t) dt =

∫

t∈∂T
α(t) · η(t) dt.
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Proof. Rewrite expected utility as

E[u(t)] =

∫

t∈T
u(t) f(t) dt

= −
∫

t∈T
u(t) (∇ · α(t)) dt

= −
∫

t∈∂T
u(t) (α(t) · η(t)) dt +

∫

t∈T
∇u(t) · α(t) dt

≥
∫

t∈T
∇u(t) · α(t) dt

=

∫

t∈T
x(t) · α(t) dt

= E[x(t) · α(t)/f(t)] .

The first line is the definition of expectation, the second line applies the
divergence density equality, the third line is integration by parts, the
fourth line follows from individual rationality, i.e., u(t) ≥ 0 for all t ∈ T ,
and boundary influx (implying that the first term on the third line is
non-negative), the fifth line is from Theorem 8.8.1, and the sixth line is
the definition of expectation.

A type t with binding participation constraint has zero utility, i.e.,
u(t) = 0. If all boundary types with non-trivial boundary influx, i.e.,
with α(t) · η(t) ̸= 0, have binding participation constraint u(t) = 0 then
u(t) (α(t) · η(t)) = 0 at all boundary types t ∈ ∂T . In this case, the
first term on the third line is identically zero and the whole sequence of
inequalities is tight.

Expected revenue is equal to the expected surplus less the agent’s
expected utility, i.e.,

E[p(t)] = E[t · x(t)]−E[u(t)]

≤ E[t · x(t)]−E[α(t)/f(t) · x(t)]

= E[φ(t) · x(t)] .

The second line is from the previous derivation, and the third line is from
the definition of vector field φ. This sequence of inequalities is tight when
the previous sequence of inequalities is tight.

While Theorem 8.8.9 does not explicitly mention paths, paths are im-
plicit in the choice of vector fields α that give tight amortizations. With
two-dimensional type space oriented as for considering the optimality
of pricing only alternative 1 with weaker types towards the left and
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+0

+1

+
0

+
1

Figure 8.16.
Depicted is the type space T = {t ∈ [0, 1]

2
: {t}2 ≤ {t}1}

(light gray region), its boundary ∂T (dark gray boarder), and a path (thick,
black line) through type space. The vector field α (white arrows) that cor-
responds to this path is shown. The lengths of the arrows are proportional
to the magnitude of vectors in the field (the first coordinate of which is
the remaining probability density f left to distribute on the path). All such
paths originate at type (0, 0) (the left boundary) and terminate on the right
boundary, i.e., with types {t ∈ T : {t}1 = 1}.

stronger types towards the right, the boundary will have four regions;
see Figure 8.16. Paths will originate on the left boundary with an influx
of flow. On this path the direction of vector field α is the direction of
the path; the magnitude of the first coordinate {α(t)}1 of this flow is cu-
mulative the density on the remainder of the path. The path terminates
on the right boundary where vector field α is the zero vector (there is
no remaining density according to f). The top and bottom boundary
regions are parallel to paths and thus the dot-product of vector field α
with the normal to the boundary is zero. By these interpretation, the
influx on the boundary is trivial (equal to zero) on all types except those
on the left where the paths originate. If these types t on the left are cho-
sen so that the mechanisms under consideration have binding individual
rationality constraint, i.e., u(t) = 0, then vector field φ constructed in
Theorem 8.8.9 is tight, as desired.Definition 8.8.6. An amortization of revenue φ is canonical if is de-

rived as φ(t) = t−α(t)/f(t) from vector field α that satisfies the divergence
density equality and boundary influx.

Notice that a vector field α that satisfies the divergence density equal-
ity and boundary influx will have divergence−1 on type space T . Conse-
quentially, by the divergence theorem, the outflux on the boundary must
also be −1. For mechanism where this non-trivial outflux is concentrated
on boundary types that have zero utility, then the amortization of rev-
enue φ defined from α is tight.
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Example 8.8.1. Consider a single-dimensional agent with type t uni-
formly distributed on type space T = [1, 2]. The density function is
f(t) = 1. There is only one path and it goes from type 1 to type 2. The
(single-dimensional) vector field α at t is the remaining cumulative den-
sity on [t, 2], i.e., α(t) = 2− t. Notice that there is boundary influx only
at type t = 1. Any mechanism where type 1 has zero utility, e.g., posting
a price at 1 or higher, will have a binding participation constraint for
type 1. Thus, u(1)α(1) · η(1) = 0 where the (single-dimensional) normal
vector at 1 is η(1) = −1. The resulting amortization of revenue is vector
field φ(t) = t − α(t)/f(t) = 2t − 2. Notice that α(t) is equal to 1 − F (t)
(for cumulative distribution function F (t) = t − 1), so this formula is
identical to the single-dimensional virtual value derived in Chapter 3.
Notice that for mechanisms that post prices less than one, say, at 1/2,
the amortization of revenue is not tight. The expected virtual surplus of
this mechanism is one, while its revenue is 1/2, the virtual surplus less
the utility of the weakest type, i.e., type 1.

Unfortunately, except in single dimensional environments, canonical
amortizations of revenue are not unique. Any covering of type space by
paths will give a canonical amortization. Generally, at most one of these
canonical amortizations can be a virtual value function. In the next
section we will develop a systematic method for identifying a virtual
value function, or equivalently, the right set of paths.

We conclude this section by observing that the existence of a vir-
tual value function for the family of single-agent environments with uni-
form costs implies revenue linearity (Definition 3.4.5), i.e., Rev[ŷ] =
Rev[ŷ†] + Rev[ŷ‡] for ŷ = ŷ† + ŷ‡. Essentially, virtual surplus is a
linear objective. Thus, as described in Section 8.4, multi-agent service
constrained mechanism design problems reduce to single-agent ex ante
problems.

Theorem 8.8.10. Consider a unit-demand agent (given by type space
and distribution), if vector field φ is a virtual value function for the
single-agent environment with any non-negative uniform cost c then the
agent is revenue linear.

Proof. Sort the types t in decreasing order of the virtual value of the
alternative with the highest virtual value, i.e. maxj{φ(t)}j . Let q̂⋆ be
the measure of types where this highest virtual value is non-negative.
The q̂ ex ante optimal mechanism serves the first min(q̂, q̂⋆) measure of
types in this order. The ŷ interim optimal mechanism serves the first
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q̂⋆ measure of types greedily by this order (and discards the remaining
types). By the linearity of virtual surplus, the expected virtual surplus of
the latter is the appropriate convex combination of the expected virtual
surplus of the former. Since expected virtual surplus equals expected
revenue, the agent is revenue linear.

8.8.6 Reverse Solving for Virtual Values

In multi-dimensional environments, because there are multiple ways to
cover type space by paths, there are multiple canonical amortizations
of revenue. If we can find an amortization of revenue that is incentive
compatible, i.e., for which its pointwise optimization gives an incentive
compatible mechanism (Definition 8.8.4), then Proposition 8.8.8 implies
that this mechanism is optimal. Except in edge cases, optimal mecha-
nisms for a single agent are unique. Thus, we are searching among these
canonical amortizations for the one, if any, that is incentive compatible.
In Section 8.8.4, we guessed the right paths, in this section we give a
principled approach for identifying them.

Consider an agent with the two-dimensional alternative-1 preferred
type space, i.e., T = {t ∈ [0, 1]2 : {t}1 ≥ {t}2}. The goal of this setting
is to describe sufficient conditions on the distribution F (as specified by
density function f) so that posting a price for alternative 1 (only) is
revenue optimal. As in Section 8.8.4 the solution to this problem will
generalize to the full type space [0, 1]2; moreover, it will also generalize
to m ≥ 2 alternatives.

Definition 8.8.7. The single-dimensional favorite-alternative projec-
tion is given by value v = {t}1, distribution function F1, density function
f1, amortization of revenue φ1(v) = v− 1−F1(v)

f1(v) , and monopoly price v̂⋆
1

that solves φ1(v̂
⋆
1) = 0.

Proposition 8.8.11. For non-negative uniform costs c, a vector field φ
is a virtual value that proves the the optimality of the favorite-alternative
single-dimensional projection, i.e., the mechanism that projects the agent’s
type to her value for alternative-1 and is optimal for this projection, if
(a) the alternative-1 virtual value {φ(·)}1 is a virtual value for the single-
dimensional projection, and (b) the alternative 2 virtual value never
maximizes virtual surplus, i.e., {φ(t)}1 ≥ 0 implies {φ(t)}2 ≤ {φ(t)}1

and {φ(t)}1 ≤ 0 implies {φ(t)}2 ≤ 0 for all types t.

Proof. By property (b), virtual surplus maximization only serves alter-



326 Multi-dimensional and Non-linear Preferences

native 1 (or nothing if {φ(t)}1 < c);12 by property (a) and Proposition 8.8.8,
virtual surplus maximization is optimal among all mechanisms that only
sell alternative alternative 1.

The goal of this section is to identify a vector field φ that satisfies the
conditions of Proposition 8.8.11. The approach is to use property (a) of
the proposition to reduce a degree of freedom in defining a canonical
amortization, and then to identify conditions on the distribution that
are sufficient to imply property (b). Specifically, set the first coordinate
of the virtual value function, denoted {φ(t)}1, to the virtual value of
the single-dimensional projection, denoted φmax({t}1). The definition of
the canonical amortization φ for vector field α (Definition 8.8.6) gives
{α(t)}1 from {φ(t)}1; the divergence density equality gives {α(t)}2 from
{α(t)}1 (and identifies the right paths); and Definition 8.8.6, again, gives
{φ(t)}2 from {α(t)}2. With amortization φ(·) fully defined, sufficient
conditions on the distribution to imply property (b) can be identified.

Definition 8.8.8. The two-dimensional extension of the favorite-alternative
projection defines vector fields φ and α as follows:

(i) {φ(t)}1 = φmax({t}1),

(ii) {α(t)}1 =
[

{t}1 − {φ(t)}1

]

f(t) = 1−F1({t}1)
f1({t}1)

f(t),

(iii) {α(t)}2 = −
∫ {t}2

0

[

f({t}1, z) + d/d{t}1{α({t}1, z)}1

]

dz.

(iv) {φ(t)}2 = {t}2 − {α(t)}2/f(t).

Lemma 8.8.12. The two-dimensional extension of the favorite-item
projection defines vector field α that satisfies the divergence density equal-
ity and boundary inflow, and vector field φ is a canonical amortization
that is tight for mechanisms for which individual rationality binds on
type (0, 0).

Proof. By Theorem 8.8.9, it suffices to show that vector field α satisfies
the divergence density equality and trivial boundary influx at t ∈ ∂T \
{(0, 0)}.

The divergence density equality is satisfied by definition; to see this,
differentiate both sides of the definition of {α(t)}2 with respect to {t}2.

12 Notice that the assumptions of the proposition are insufficient if the uniform
service cost c is negative. With a negative service cost the agent may receive a
non-trivial alternative even when her virtual value for this alternative is negative.
This restriction limits the applicability of the proposition to single-agent
problems where the ex ante constraint holds as an inequality, and to multi-agent
service-constrained environments that are downward closed.
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Figure 8.17. Depicted are the regions to which the divergence theory is
applied in Lemma 8.8.12 and Lemma 8.8.13. The flux on the right and
bottom boundaries are zero by definition. In subfigure (a), the divergence

of the subspace of types S
(v̂)

= {t ∈ T : {t}1 ≥ v̂} (gray region) and the
outflux of the left boundary are both equal to −(1 − F1(v̂)). In subfigure

(b), the divergence of the the subspace of types S
(v̂θ̂)

= {t ∈ T : {t}1 ≥
v̂ ∧ {t}2 ≤ τ

(θ̂)
({t}1)} (gray region) and the outflux of the left boundary

are both equal to −θ̂ (1 − F1(v̂)). For both, the remaining flux out the top
boundary must be zero.

We now analyze the flux α(t) · η(t) for types t on the right, bottom, and
top boundaries.

• Right boundary, i.e., t with {t}1 = 1: Normal η(t) = (1, 0) and
{α(t)}1 = 0 as 1− F1(1) = 0, so α(t) · η(t) = 0.

• Bottom boundary, i.e., t with {t}2 = 0: Normal η(t) = (0,−1) and
{α(t)}2 = 0 as the integral from 0 to 0 of any function is zero, so
α(t) · η(t) = 0.

• Top boundary, i.e., t with {t}1 = {t}2: Apply the divergence theorem
to vector field α on the type subspace with value at least v̂ for alterna-
tive 1, i.e., S(v̂) = {t ∈ T : {t}1 ≥ v̂}; see Figure 8.17. The divergence
theorem requires that the divergence of α on this subspace is equal
the outflux. By the divergence density equality, the divergence of sub-
space S(v̂) is −

∫

t∈S
(v̂)f(t) dt = −(1− F1(v̂)). The outflux on the left-

boundary is−
∫ 1
0 {α(v̂, z)}1 dz = −

∫ 1
0

1−F1(v̂)
f1(v̂) f(v̂, z) dz. Note that the

density of the favorite-alternative projection is f1(v̂) =
∫ 1
0 f(v̂, z) dz

and, thus, this outflux is −(1 − F1(v̂)). The remaining total outflux
for the top boundary is zero. This equality holds for all values v̂, thus
the outflux at each type t on the top boundary is identically zero.

Though unnecessary for the proof, observe that the above calculation of
the outflux on the left-boundary applied to full type space T (equal to
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the subspace S(v̂) when v̂ = 0) implies that the outflux at type (0, 0) in
the direction of (−1, 0) is −1.

The remaining task is to identify sufficient conditions on the distri-
bution F so that uniform pricing optimizes virtual surplus with respect
to the amortization defined by the two-dimensional extension of the
favorite-alternative projection. Recall that the monopoly price v̂⋆

1 for the
distribution F1 is the optimal price to post for alternative 1 when the
agent’s value for the alternative is drawn from distribution F1. A suffi-
cient condition on the virtual value function φ is that (a) for types t with
{t}1 ≥ v̂⋆

1 that {φ(t)}2 ≤ {φ(t)}1; and (b) for types t with {t}1 < v̂⋆
1 ,

that {φ(t)}2 ≤ 0.
Our approach will be to show that the paths defined by vector field α,

i.e., the direction of α, are the equiquantile paths (Definition 8.8.3) and
that ratio-monotonicity of these paths (Definition 8.8.2) implies both
conditions (a) and (b) when the distribution of the agents value {t}1 for
her favorite alternative is regular.

Lemma 8.8.13. The vector field α of the two-dimensional extension of
the favorite-item projection corresponds to the equiquantile paths.

Proof. Consider subspace of types who value alternative 1 more than v̂

but lie below the θ̂-equiquantile path τ (θ̂), i.e., S(v̂θ̂) = {t ∈ T : {t}1 ≥
v̂ ∧ {t}2 ≤ τ (θ̂)({t}1)}; see Figure 8.17. We will show that the outflux

of α on the top boundary, namely the types on the path τ (θ̂), is zero by

applying the divergence theorem to subspace S(v̂θ̂).
By the divergence density equality, the divergence of α on subspace

S(v̂θ̂) can be evaluated as:
∫

t∈S
(v̂θ̂)
∇ · α(t) dt = −

∫

t∈S
(v̂θ̂)

f(t) dt

= −Pr
[

t ∈ S(v̂θ̂)]

= −θ̂ [1 − F1(v̂)].

The first line is by the divergence density, and the second line is by the
definition of probability. The third line follows because the probabilities

that {t}1 ≥ v̂ and {t}2 ≤ τ (θ̂)({t}1) are independent (Lemma 8.8.6);
equal to [1−F1(v̂)] and θ̂, respectively; and the probability of the inter-
section of two independent events is the product of their probabilities.

As before, the outflux of α on the right and bottom boundary is zero.
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Figure 8.18.
An equiquantile path τ

(θ)
(solid, thick, black line) is depicted.

For the case where the distribution of {t}1 is uniform on [0, 1] the virtual
values for six types on this path are depicted. By the definition of canonical
amortization, φ(t) = t−α(t)/f(t); thus, the virtual values can be calculated
by starting at the type t (white bullets) and moving backwards (white
arrows) a magnitude of |α(t)/f(t)| in the direction of −α(t). The gray shaded
region represents the allowable space {φ ∈ [−1, 1]

2
: {φ}2 ≤ {φ}1 ∨{φ}2 ≤

0} of virtual values for which selling only alternative 1 is optimal. Ratio
monotonicity of the path implies that the slope of the path at a type t is
greater than that of the line through the type and the origin (depicted for

type (1/2, τ
(θ)

(1/2)); gray, dashed line). Since the direction of α is tangent to
the path, the virtual value for the type is below the line and, consequentially,
within the allowable space.

The outflux of α on the left boundary can be calculated by integrat-
ing the formula {α(t)}1 = 1−F1({t}1)

f1({t}1)
f(t) with respect to {t}2 when

{t}2 = v̂. The first term in this integral is independent of {t}2 and can
be factored out. Integrating second-term, i.e., the density, on the left
boundary up to quantile θ̂ gives θ̂ f1(v̂) as the total density of types
with {t}1 = v̂ is f1(v̂). The product of these quantities gives influx

1− F1(v̂)

f1(v̂)
× θ̂ f1(v̂) = θ̂ (1 − F1(v̂)),

and its negation is the outflux. Thus, the remaining outflux for the top

boundary of type subspace S(v̂θ̂) is zero. This equality holds for all values
v̂, thus the outflux at each type t on the top boundary is identically zero.
In other words, α is tangent to the equiquantile paths.
Theorem 8.8.14. For distribution F on type space T = {t ∈ [0, 1]

2 :
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{t}2 ≤ {t}1} satisfying (c) the distribution of {t}1 is regular and (d) the
equiquantile paths are ratio monotone, the two-dimensional extension of
the favorite-alternative projection φ satisfies properties (a) and (b) of
Proposition 8.8.11, i.e., the alternative 1 coordinate of φ is a virtual
value for the single dimensional projection and alternative 2 coordinate
of φ never maximizes virtual surplus.

Proof. Property (c), the regularity of the distribution of {t}1, implies
that the amortization of revenue for the single-dimensional projection is
a virtual value function. Hence, property (a) holds.

We argue that property (d) implies property (b) as follows. Recall from
Definition 8.8.6 that φ(t) = t − α(t)/f(t). Consider this vector addition
geometrically as the vector from the origin to t plus the vector back in
the direction of −α(t) (the magnitude will not be important). Since the
paths defined by vector field α are ratio monotone, this vector back lies
below the line that connects the type t to the origin; see Figure 8.18. In
other words,

{φ(t)}2 ≤ {t}2
{t}1

{φ(t)}1. (8.8.7)

Thus, when {φ}1 > 0 then {φ}2 ≤ {φ}1, and when {φ}1 ≤ 0 then
{φ}2 ≤ 0.

We wrap this section up by applying this virtual value theory to the
two-alternative uniform unit-demand agent of Example 8.2.2 to solve
the three single-agent problems of Section 8.2.

Example 8.8.2. For the two-alternative uniform unit-demand agent of
Example 8.2.2 the two-dimensional extension of the single-dimensional
projection satisfies the assumptions of Proposition 8.8.11. The virtual
value function (on t ∈ {t ∈ T : {t}2 ≤ {t}1}):

φ(t) = (1, {t}2/{t}1) [{t}1 − 1−F1({t}1)/f1({t}1)].

The three single-agent problems are solved by optimizing revenue under
the single-dimensional favorite-alternative projection. The optimal un-
constrained mechanisms posts a uniform price of

√
1/3, the q̂ ex ante

optimal mechanism for post a uniform price that sells with ex ante prob-
ability q̂ (for q̂ ≤ q̂⋆ = 2/3), the ŷ interim optimal mechanism is the
distribution over uniform prices that give allocation rule y(q) = ŷ(q) for
q ≤ q̂⋆ (and y(q) = 0, otherwise).
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8.8.7 Optimal Lottery-pricing via Linear Programming

There are not general closed-form descriptions of the optimal mecha-
nism for unit-demand agents, beyond the ratio-monotone distributions
discussed previously in this section. Nonetheless, these problems can be
partially understood via the mathematical program that identifies the
optimal mechanism. For unit-demand agents, which as we argued at the
onset of this section are completely general, the optimal mechanism is
given by a linear program with a quadratic, in the size of the type space
|T |, number of constraints.13

Below we express the unconstrained m-alternative single agent opti-
mization problem as a program where each type t ∈ T is mapped to
an outcome w(t) = ({x(t)}1, . . . , {x(t)}m, p(t)). For each type t ∈ T ,
the allocation and payments {x(t)}1, . . . , {x(t)}1, p(t) are variables
in the program and the type’s values and probability {t}1, . . . , {t}1,
f(t) are constants. The type t agent’s utility for the outcome prescribed
for type t† is t · x(t†) − p(t†), where t · x(t†) is the vector dot product
∑

j{t}j {x(t†)}j . The type of the agent is a random draw from distri-
bution F with probability mass function f . The linear program will
maximizes expected payments (weighted by the distribution) subject to
incentive constraints, individual rationality constraints, and probabili-
ties summing to at most one (feasibility).

Maximize:

∑

t
p(t) f(t) (expected revenue)

Subject to:

∀t, t′ t · x(t)− p(t) ≥ t · x(t†)− p(t†) (incentive compatibility)

∀t t · x(t)− p(t) ≥ 0 (individual rationality)

∀t
∑

j
{x(t)}j ≤ 1 (unit demand)

Lottery pricings correspond to fractional solutions of the linear pro-
gram above; when the variables {x(t)}j are integral then these are simply
(deterministic) item pricings.

This program can be modified correspond to the ex ante constrained

13
Multi-dimensional type spaces are generally large, so this program can be quite
big. For example, with m alternatives the type space of any agent who could
have either a high or low value for any alternative independently of her value for
other alternatives has size |T | = 2

m
.
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problem with ex ante allocation probability at most q̂ by adding the fea-
sibility constraint that

∑

t f(t)
∑

j{x(t)}j ≤ q̂. It can also be modified to
incorporate the interim constrained problem with allocation constraint
ŷ (see Exercise 8.17).

Exercises

8.1 Consider the design of prior-free incentive-compatible mechanisms
with revenue that approximates the (optimal) social-surplus bench-
mark, i.e., OPT(v), when all values are known to be in a bounded
interval [1, h]. For general (multi-dimensional) combinatorial auc-
tions, i.e., there are k items and each agent i has a value vi(S) ∈
[1, h] for each subset S ⊆ {1, . . . , k} of the k items, give a prior-free
Θ(log h) approximation mechanism.

8.2 The second-price auction for allocating a single-item to one of sev-
eral single-dimensional agents is revenue monotone. Specifically,
with more agents or if the existing agents have higher values,
the revenue of the mechanism does not decrease. The external-
ity pricing mechanism for combinatorial auction problems is not
revenue monotone. Give a succinct example that illustrates this
non-revenue-monotonicity.

8.3 Consider two agents with independent, identical, and uniformly
distributed values on [0, 1] and budget B = 1/4. Solve for the equi-
librium of the highest-bid-wins all-pay auction by identifying the
critical type that is indifferent between following the budget un-
constrained equilibrium of bidding s(t) = t

2
/2 (see Section 2.8) and

bidding the budget B assuming all higher types bid the budget. Is
this equilibrium unique?

8.4 Prove Theorem 8.5.2: Let ŷ = (ŷ, . . . , ŷ) be the n-agent allocation
constraints induced by the k strongest-agents-win mechanism and
y = (y, . . . , y) the allocation rules induced by any symmetric k-unit
mechanism for n i.i.d. agents, then y is feasible for ŷ.

8.5 Let ŷ = (ŷ, . . . , ŷ) be the n-agent allocation constraints induced
by the assortative matching of agents to n positions with weights
w = (w1, . . . , wn), i.e., stronger agents are matched to positions
with larger weights. The position weights correspond to a stochas-
tic probability of service. Let y = (y, . . . , y) be the allocation rules
induced by any symmetric mechanism for position weights w and
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n i.i.d. agents. Prove that y is feasible for ŷ. (Hint: Use Theo-
rem 8.5.2.)

8.6 Consider a three-agent position environment with position weights
1, 1/2, and 0 for the first, second, and third positions; respectively.
Recall that in a position environment (Definition 7.5.1), an agent
assigned to the kth position is served with probability given by the
kth position weight. Consider three agents with values drawn in-
dependently, identically, and uniformly from the interval [0, 1] and
each with a public budget constraint of B = 1/4 (Example 8.2.1).
Derive the revenue optimal auction.

8.7 Consider the all-or-none set system that corresponds to a public
project. Consider two agents with types drawn uniformly from type
space T = {L, H} and characterize the class of symmetric interim
feasible allocation rules. Specifically, what are the pairs of alloca-
tion probabilities (x(L), x(H)) that are induced by a symmetric ex
post feasible mechanism?

8.8 Consider the all-or-none set system that corresponds to a public
project. Consider two agents with quantiles drawn independently,
identically, and uniformly from [0, 1] and characterize the class of
interim feasible allocation rules y : [0, 1] → [0, 1] that are induced
by a symmetric ex post feasible mechanism. (Recall, y is monotone
non-increasing by definition.)

8.9 Prove that the quantile space and type space inequalities (8.5.5)
and (8.5.6) that characterize interim feasibility are equivalent (The-
orem 8.5.5).

8.10 Extend Theorem 8.5.9 from general feasibility environments, i.e.,
where only x ∈ X are feasible, to general cost environments, i.e.,
where x ∈ {0, 1}n has service cost c(x). Prove that if there exists
a mechanism that induces the profile of allocation rules y with
expected cost C, then there is a stochastic weighted optimizer that
induces y with expected cost C.

8.11 Prove Theorem 8.5.13: For any type distribution F and mecha-
nisms M̂ and M with allocation rules ŷ and y satisfying y ≼ ŷ,
the composite mechanism (Definition 8.5.6) induces a distribution
over allocations that is in the downward closure of the distribution
of allocations of M̂ and the same interim mechanisms as M.14

8.12 Use the analysis of the public budget agent from Section 8.7 with

14
One distribution of allocations is in the downward closure of a second
distribution of allocations if there is a coupling of the distributions so that the
set of agents served by the first is a subset of those served by the second.
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the uniform public-budget agent (Example 8.2.1; budget B = 1/4)
to solve the single-agent problems as described in Section 8.2.1. In
particular derive the unconstrained optimal mechanism, the 1/2 ex
ante optimal mechanism, and the ŷ interim optimal mechanism for
allocation constraint ŷ(q) = 1−q. In your derivation of each of these
mechanisms explicitly identify the correct Lagrangian parameter λ
that gives the right Lagrangian revenue curves.

8.13 Consider the objective of optimizing welfare for an agent with a
public budget. Adapt a version of Corollary 8.7.6 for the welfare
objective. Specifically:

(a) Identify the optimal auction for any interim allocation con-
straint ŷ under sufficiently general assumptions on the distri-
bution of types, e.g., regularity.

(b) Clearly state the necessary assumptions on the distribution.

(c) Identify the optimal auction for two agents with uniformly dis-
tributed types on [0, 1] and public budget B = 1/4.

8.14 Consider a single-item, i.i.d., public-budget regular environment.
Prove that the expected revenue of the highest-bid-wins all-pay
auction (with no reserve or explicit intervals on which types are
ironed) on n + 1 agents obtains at least optimal revenue for n
agents. In other words, generalize Theorem 5.2.1 to public budgets.

8.15 Give a complete proof Theorem 8.8.5. Relative to the discussion
in the text, your proof should apply to any path where 1 is the
favorite alternative. In particular, you will need to relax the as-
sumption of locally linearity of the path τ at the type t̂ where
it is non-ratio-monotone. Hint: Instead of deriving limit equations
for limϵ→0[Gain(ϵ)/ϵ] give a general expression for Gain(ϵ), take its
derivative with respect to ϵ, and evaluate at ϵ = 0; likewise for
Loss(ϵ).

8.16 Consider an agent with multi-dimensional type t where her value
for alternative 1 is {t}1 is drawn from regular distribution F1 sup-
ported on [a, b] and her value for the other m − 1 are fixed non-
negative constants. Derive the optimal mechanism for selling the
agent one of the alternatives (or nothing).

8.17 Give a linear program that corresponds to the interim constrained
single-agent revenue maximization problem for a unit-demand agent
and piecewise constant allocation constraint ŷ. You may assume
that the types are drawn uniformly from finite type space T with
size N = |T | and the allocation constraint ŷ is piece-wise constant
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with N pieces, each with width 1/N. Your program should have a
polynomial number of constraints in N .

Chapter Notes

Exact reductions from multi-agent to single-agent mechanism design
problems for multi-dimensional and non-linear agents and the objective
of revenue were considered by Alaei et al. (2012) and Alaei et al. (2013).
The former considered the general case of non-revenue-linear agents; the
latter defined revenue linearity as a property of interest and generalized
the optimality of the marginal revenue mechanism of Myerson (1981)
and Bulow and Roberts (1989).

For single-item environments the necessary and sufficient conditions
for ex post implementation of an interim mechanism were developed by
Maskin and Riley (1984), Matthews (1984), and Border (1991). For sym-
metric single-item environments, the latter gave a characterization of in-
terim feasible mechanisms that is similar to the one presented here (char-
acterizing them as stochastic weighted optimizers). These results were
generalized to asymmetric single-item environments by Border (2007)
and Mierendorff (2011) and to matroid environments by Alaei et al.
(2012) and Che et al. (2013). In Cai et al. (2012a,b) and Alaei (2012)
these results were generalized beyond matroids to show that any in-
terim feasible allocation for a general feasibility environment could be
implemented as a stochastic weighted optimizer optimization. Cai et al.
(2012a,b) additionally address environments with multi-dimensional ex-
ternalities and the results presented here for multi-service service con-
strained environments, such as n-agent m-item matching environments,
are an adaptation of their results.

Optimization of revenue and welfare for single-dimensional agents with
public budgets was considered by Laffont and Robert (1996) and Maskin
(2000), respectively. The derivation in this text is a simplification of the
one from Laffont and Robert (1996) that is enabled by the marginal
revenue framework of Bulow and Roberts (1989) and can be found in
Devanur et al. (2013). For the analogous, and more challenging, opti-
mization problem where the budget of the agent is private see Pai and
Vohra (2014) and Alaei et al. (2012).

The multi-dimensional characterization of Bayesian incentive compat-
ibility is due to Rochet (1985). Though it was not discussed in this text,
there is generalization of this characterization to agents with non-linear
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utility by McAfee and McMillan (1988). The canonical amortizations
which underlie the theory of multi-dimensional virtual values were char-
acterized by Rochet and Choné (1998) and further refined in Rochet and
Stole, 2003. Armstrong (1996) developed the approach of integration by
parts on rays from the origin which, as we described in the text, can
be used to prove the optimality of uniform pricing for an agent with
multi-dimensional type drawn from the uniform distribution. The meth-
ods given in the text for solving for optimal mechanisms on paths and
for reverse-solving for the right paths are from Haghpanah and Hartline
(2015).

Haghpanah and Hartline (2015) apply their framework for multi-dimensional
virtual values to prove the optimality of uniform pricing, broadly. This
result can be viewed as a “no haggling” result for substitutes. Single-
dimensional no-haggling theorems come from Stokey (1979) and Riley
and Zeckhauser (1983). The no-haggling characterization of Haghpanah
and Hartline for multi-dimensional types on paths shows that these
single-dimensional no-haggling result are on the boundary between hag-
gling and no haggling. The part of this characterization that shows when
haggling can be expected is a simplification of an example from Thanas-
soulis (2004).

A similar characterization of expected revenue (to the canonical amor-
tizations presented in the text) was given by Daskalakis et al. (2015)
where, instead of integration by parts to rewrite expected revenue in
terms of the allocation rule, they use integration by parts to rewrite ex-
pected revenue in terms of expected utility. This alternative approach is
also useful in identifying optimal mechanisms, e.g., see Giannakopoulos
and Koutsoupias (2014).


