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Prior-free Mechanisms

In Chapter 3 we derived optimal mechanisms for social surplus and
profit. For social surplus, the surplus maximization mechanism (Defini-
tion 3.3, page 58) is optimal pointwise on all valuation profiles. For profit,
the virtual surplus maximization mechanism (Definition 3.5, page 65) is
optimal in expectation for values drawn from the given distribution. The
difference between the statement of these results is significant: for social
surplus there is a pointwise optimal mechanism whereas optimal mech-
anisms for expected profit are parameterized by the distribution from
which values are drawn. The goal of this chapter is to design mechanisms
that obtain approximately optimal profit pointwise on all valuation pro-
files.
As an example, consider a digital good environment with n = 100

agents. Consider first the valuation profile where agent i has value vi = i
for all i. How much revenue could a mechanism hope to obtain in such
an environment? For example, this valuation profile seems similar to the
uniform distribution on [0, 100] for which the Bayesian optimal mech-
anism would post a price of 50 and obtain an expected revenue of
2500 = 50 × 50. Consider second the valuation profile where all agents
have value one. This valuation profile seems similar to a pointmass dis-
tribution where the Bayesian optimal mechanism post a price of one for
a revenue of 100. Can we come up with one mechanism that on the first
profile obtains revenue close to 2500 and on the second profile obtains
revenue close to 100? Moreover, what is an appropriate target revenue
in general and is there an auction that approximates this target? These
are the questions we address in this chapter.
The main difficulty in prior-free mechanism design for non-trivial

objectives like profit (or, e.g., social surplus with a balanced budget,
see Section 3.5) is that there is no pointwise, i.e., for all valuation pro-
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files, optimal mechanism. Recall that incentive constraints in mechanism
design bind across all valuation profiles. For example, the payment of
an agent depends on the what the mechanism would have done had the
agent possessed a lower value (Theorem 2.2). Therefore, mechanisms for
the profit objective must trade off performance on one input for another.
In Chapter 3 this tradeoff was optimized in expectation with respect to
the prior distribution from which the agents’ values are drawn; without
a prior another method for navigating this tradeoff is needed.
This challenge can be resolved with approximation by comparing the

performance of a mechanism to an economically meaningful prior-free
benchmark. A mechanism approximates a prior-free benchmark if, for
all valuation profiles, the mechanism’s performance approximates the
benchmark performance. A benchmark is economically meaningful if, for
a large class of distributions, the expected value of the benchmark is at
least the expected performance of the Bayesian optimal mechanism. If a
mechanism approximates an economically meaningful benchmark then,
as a corollary, the mechanism is also a prior-independent approximation
(as defined in Chapter 5). Notice that this approach gives a purely prior-
free design and analysis framework, but still requires returning to the
Bayesian setting for economic justification of the benchmark.
A final concern is the equilibrium concept. Recall from Chapter 2 that

we introduced the common prior assumption (Definition 2.5, page 28) so
that strategic choice in games of incomplete information is well defined.
Recall also that most of the optimal and approximately optimal mech-
anisms that we discussed in previous chapters were dominant strategy
incentive compatible. In this chapter we resolve the issue of strategic
choice absent a common prior by requiring that the designed mech-
anisms satisfy this stronger dominant-strategy incentive-compatibility
condition.
The chapter begins by formalizing the framework for design and anal-

ysis of prior-free mechanisms via an economically meaningful prior-free
benchmark. This framework is instantiated first in the structurally sim-
ple environment of a digital good and then subsequently generalized to
environments with richer structure. The prior-free mechanism discussed
will all be based a natural market analysis metaphor.

Topics Covered.

• prior-free benchmarks,

• envy-free optimal pricings,
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• random sampling auctions,
• profit extraction as a decision problem for mechanism design, and
• stochastic analysis of random walks and the gamblers ruin.

6.1 The Framework for Prior-free Mechanism
Design

A main challenge for prior-free mechanism design is in identifying an
economically meaningful method for evaluating a mechanism’s perfor-
mance. While the prior-independent mechanisms (of Chapter 5) can be
compared to the optimal mechanism for the unknown distribution, ab-
sent a prior, there is no optimal mechanism with which to compare.
This challenge can be resolved by decomposing the prior-independent
analysis into two steps. Fix a large, relevant class of prior distributions.
In the first step a prior-free benchmark is identified and normalized
so that for all distributions in the class the expected benchmark is at
least the Bayesian optimal performance. In the second step an auction
is constructed and proven to approximate the benchmark pointwise on
all valuation profiles. These steps combine to imply a prior-independent
approximation and are formalized below.

Definition 6.1 A prior-free benchmark maps valuation profiles to tar-
get performances. A prior-free benchmark (APX) is normalized for a
class of distributions if for all distributions in the class, in expecta-
tion the benchmark is at least the performance of the Bayesian opti-
mal mechanism (REFF ) for the distribution. I.e., for all F in the class,
Ev∼F [APX(v)] ≥ Ev∼F [REFF (v)].

Definition 6.2 A mechanism (APX) is a prior-free β approximation to
prior-free benchmark (REF) if for all valuation profiles, its performance
is at least a β fraction of the benchmark. I.e., for all v, APX(v) ≥
1/β REF(v).

Proposition 6.1 For any prior-free mechanism, class of distributions,
and prior-free benchmark, if the benchmark is normalized for the class
of distributions and the mechanism a prior-free β approximation to the
benchmark, then the mechanism is a prior-independent β approximation
for the class of distributions.

We can distinguish good prior-free benchmarks from bad prior-free
benchmarks by how much they overestimate the performance. (Note:
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a normalized prior-free benchmark never underestimates performance.)
The extent to which a prior-free benchmark overestimates performance
can be quantified by again considering the benchmark relative to a class
of prior distributions. As the benchmark is normalized, for any distri-
bution the expected benchmark exceeds the expected performance of
the Bayesian optimal mechanism. Of course, the performance of any
mechanism is no better than the Bayesian optimal mechanism for the
distribution; therefore, the extent to which the Bayesian optimal mecha-
nism approximates the benchmark gives a lower bound on the prior-free
approximation of any mechanism to the benchmark. This is formalized
in the following definition and proposition.

Definition 6.3 The resolution γ of a prior-free benchmark (REF) is
the largest ratio of the benchmark to the performance of the Bayesian
optimal mechanism (APXF ) for any prior-distribution F . I.e., γ satisfies
Ev∼F [REF(v)] ≥ 1/γEv∼F [APXF (v)] for all F .

Proposition 6.2 For any class of distributions and any prior-free
benchmark, the prior-free approximation β of any mechanism is at least
the benchmark’s resolution γ.

This prior-free design and analysis framework turns the question of
approximation into one of optimization. There is some mechanism that
obtains the optimal prior-free approximation relative to the benchmark.
In most of the cases we will discuss in this chapter the optimal mech-
anism has an approximation factor that matches the resolution of the
benchmark.

Definition 6.4 The optimal prior-free approximation β⋆ for a prior-
free benchmark (REF) satisfies

β⋆ = minAPXmaxv
REF(v)
APX(v)

where APX ranges over all dominant strategy incentive compatible mech-
anisms for the given environment.

In summary, we need a normalized benchmark so that its approx-
imation has economic meaning, and we need a benchmark with fine
resolution as its resolution lower bounds the best prior-free approxima-
tion. Intuitively, a benchmark with finer resolution will be better for
distinguishing good mechanisms from bad mechanisms. A first and fun-
damental task in prior-free mechanism design is to identify a benchmark
with fine resolution.
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Example: Prior-free Monopoly Pricing
We conclude this section by instantiating the framework for design and
analysis of prior-free mechanisms for the single-agent monopoly pricing
problem. This is the problem of selling a single item to a single agent
to maximize revenue. When the agent’s value is drawn from a known
distribution F , the seller’s optimal mechanism, is to post the monopoly
price v̂⋆ = argmax v̂ (1− F (v̂)) for the distribution (see Section 3.3.3).
Consider the class of distributions over a single agent’s value with

support [1, h]. The surplus gives a normalized prior-free benchmark and
is defined by the identity function. Notice that (a) for any distribution
the expected value of the benchmark exceeds the monopoly revenue
and (b) and this inequality is tight for pointmass distributions. The
latter observation implies that the surplus is the smallest normalized
benchmark (hence, it obtains the finest resolution).
We approach the problem of analyzing the resolution of a benchmark

in tandem with its optimal prior-free approximation. First, we give a
lower bound on the resolution by considering the expected benchmark
on the distribution for which all mechanisms attain the same perfor-
mance. For the revenue objective, this distribution is the equal-revenue
distribution. Second, we give a mechanism with a prior-free approxima-
tion factor that matches the lower bound. As, by Proposition 6.2, the
optimal prior-free approximation factor is at least the resolution this
upper bound implies that the lower bound on resolution is tight.

Lemma 6.3 For single-agent environments, the class of distributions
with support [0, h], and the objective of profit, the surplus benchmark has
resolution γ at least 1 + lnh.

Proof Consider the equal revenue distribution (truncated to the range
[1, h] with a pointmass at h with probability 1/h). The monopoly rev-
enue for the equal-revenue distribution is one and the expected surplus
(and therefore the expected benchmark) is 1 + lnh (as also calculated
in Example 4.2, page 142); therefore, the resolution γ of the benchmark
is at least 1 + lnh.

Now consider the purely prior-free question of posting a price to ob-
tain a revenue that approximates the surplus benchmark. It should be
clear that no deterministic price v̂ will do: if v̂ > 1 the prior-free ap-
proximation is infinite for value v = 1, and if v̂ = 1 then the prior-free
approximation is h for value v = h. On the other hand, picking a ran-
domized price uniformly from the powers of two on the [1, h] interval
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gives a logarithmic approximation to the surplus. For such a random-
ized pricing, with probability 1/log h the power of two immediately below
v is posted and when this happens the revenue is at least half of the sur-
plus benchmark. This approach and analysis can be tightened to give an
approximation ratio that exactly matches the resolution of the bench-
mark.

Lemma 6.4 For values in the interval [1, h] there is a prior-free dis-
tribution over posted prices with revenue that is a 1+lnh approximation
to the surplus benchmark.

Proof Consider the distribution over prices G with cumulative distri-
bution function G(z) = 1+ln z/1+lnh and a pointmass at one with prob-
ability 1/1+lnh. For any particular value v ∈ [1, h], the expected revenue
from a random price drawn from G is v/1+lnh.

Theorem 6.5 For single-agent environments, values in [1, h], and the
objective of profit, the resolution of the surplus benchmark and the opti-
mal prior-free approximation are 1 + lnh.

Notice that the resolution of the surplus benchmark, which is optimal
among all normalized benchmarks, is not constant. In particular, it grows
logarithmically with h and, when the agent’s value is not bounded within
some interval [1, h], it is infinite. We will address this deficiency in the
subsequent section where a benchmark with constant resolution and
prior-free mechanisms with constant approximation ratios are derived
(for n ≥ 2 agents).

6.2 The Digital-good Environment

Our foray into prior-free mechanism design begins with the benevolent
digital-good environment. In a digital-good environment any subset of
agents can be simultaneously served. The absence of a feasibility con-
straint will enable us to focus directly on the main challenge of prior-free
mechanism design which is in overcoming the lack of a prior.
We begin by deriving a benchmark with constant resolution. This

benchmark is based on a theory of envy-free pricing and we will refer to
it as the envy-free benchmark. The resolution of the envy-free benchmark
and the prior-free optimal approximation are 2.42 (in the limit with n).
In the remainder of the section, we will focus on the design of simple
mechanisms that approximate this envy-free benchmark (but are not
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optimal). First, we show that anonymous deterministic auctions cannot
give good prior-free approximation. Second, we describe two approaches
for designing randomized prior-free auctions for digital goods. The first
auction is based on a straightforward market analysis metaphor: use a
random sample of the agents to estimate the distribution of values, and
run the optimal auction for the estimated distribution on the remain-
ing agents. The approximation ratio of this auction is upper bounded
by 4.68. The second auction is based on a standard algorithmic design
paradigm: reduction to the a “decision version” of the problem. It gives a
four approximation. These mechanisms are randomizations over deter-
ministic dominant strategy incentive compatible (DSIC) mechanisms,
the characterization of which is restated from Corollary 2.14 as follows.

Theorem 6.6 A direct, deterministic mechanism M is DSIC if and
only if for all i and v,

(i) (step-function) xM
i (vi,v−i) steps from 0 to 1 at some v̂i(v−i), and

(ii) (critical value) pMi (vi,v−i) =

{

v̂i(v−i) if xM
i (vi,v−i) = 1

0 otherwise
+ pMi (0,v−i).

6.2.1 The Envy-free Benchmark

Consider the following definition of and motivation for the envy-free
benchmark. Recall that, when the agents’ values are drawn from an
i.i.d. distribution, the Bayesian optimal digital-good auction would sim-
ply post the monopoly price for the distribution as a take-it-or-leave-it
offer independently to each agent. For such a posted pricing, the agents
with values above the monopoly price would choose to purchase the item
and the agents with values below the monopoly price would not. As each
agent selects her preferred outcome, this outcome is envy free no agent
is envious of the outcome obtained by any other agent.
Without a prior, the monopoly price is not well defined. Instead, the

empirical monopoly price for valuation profile v = (v1, . . . , vn) is the
monopoly price of the empirical distribution; it is calculated as v(i⋆) with
i⋆ = argmaxi iv(i) and v(i) denoting the ith highest value in v. It is easy
to see that the empirical monopoly revenue maxi iv(i) is an upper bound
on the revenue that would be obtained by monopoly pricing if there were
a known prior distribution on values. While it is not incentive compatible
to inspect the valuation profile, calculate the empirical monopoly price
v(i⋆), and offer it to each agent; it is envy free. Furthermore, as we will see
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subsequently, for digital good environments empirical monopoly pricing
gives the envy-free optimal revenue which we will denote by EFO(v).
For the class of i.i.d. distributions, the envy-free optimal revenue is

a normalized benchmark. Unfortunately, the resolution of the envy-free
optimal revenue, as a benchmark, is super constant. When there is n = 1
agent the optimal envy-free revenue is the surplus and, from the dis-
cussion of the monopoly pricing problem in the preceding section, its
resolution is 1 + lnh for values in [1, h] and unbounded in general. The
only thing, however, preventing EFO(v) = max iv(i) from being a good
benchmark is the case where the maximum is obtained at i⋆ = 1 by sell-
ing to the highest value agent at her value. This discussion motivates the
definition of an envy-free benchmark that explicitly excludes the i⋆ = 1
case.

Definition 6.5 The envy-free benchmark EFO(2)(v) for digital goods
is the optimal revenue from posting a uniform price that is bought by
two or more agents. I.e., EFO(2)(v) = maxi≥2 iv(i).

Our discussion will distinguish between the envy-free optimal rev-
enue, EFO, and the envy-free benchmark, EFO(2). The difference be-
tween them is that the latter excludes the possibility of selling to just the
highest-valued agent. While the envy-free optimal revenue (as a bench-
mark) is normalized for all i.i.d. distributions, the envy-free benchmark
is not. The envy-free benchmark is, however, normalized for a large class
of distributions; we omit a precise characterization of this class, though
subsequently in Section 6.3, we show that it includes all i.i.d. regular
distributions on n ≥ 2 agents.
Analysis of resolution of the envy-free benchmark is difficult because

we must quantify over all distributions. We follow the same high-level
approach as for bounding the benchmark resolution in the monopoly
pricing problem. First, we analyze the ratio between the expected bench-
mark and the Bayesian optimal auction revenue for the equal revenue
distribution to get a lower bound on the resolution. Second, we observe
that an auction exists with prior-free approximation that matches this
resolution. Proposition 6.2, which states that any prior-free approxima-
tion is an upper bound on the resolution, implies that the resolution
and optimal prior-free approximation are equal. The following theorem
summarizes this analysis.

Theorem 6.7 In digital good environments, the resolution and optimal
prior-free approximation of the envy-free benchmark are equal. For n =
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2, 3, and 4, the resolution and optimal prior-free approximation are 2,
13/6 ≈ 2.17, and 215/96 ≈ 2.24, respectively; in the limit with n it is 2.42.

We give the complete two-step proof of the n = 2 special case of The-
orem 6.7: Lemma 6.8 proves a lower bound of two on the resolution,
and Lemma 6.9 proves an upper bound of two on the optimal prior-free
approximation. Proposition 6.2, then, implies the equality. The gener-
alization of this proof to n ≥ 3 agents is technical and the subsequent
discussion will treat it only at a high level.

Lemma 6.8 For two-agent digital-good environments, the resolution
of the envy-free benchmark is at least two.

Proof We give a lower bound on the resolution by comparing the ex-
pected envy-free benchmark (REF) to the expected revenue of the Bayesian
optimal auction (APX) for the equal revenue distribution. Recall that
the equal-revenue distribution (Definition 4.2, page 106) is given by dis-
tribution FEQR(z) = 1 − 1/z and the revenue from posting any price
v̂ ≥ 1 is one. Therefore, the expected revenue of the Bayesian optimal
digital-good auction for n = 2 agents is APX = n = 2.
It remains to calculate the expected value of the envy-free benchmark

REF = Ev

[

EFO(2)(v)
]

. In the case that n = 2, the envy-free benchmark

EFO(2)(v) simplifies to 2v(2). The expectation of a non-negative random
variable X can be calculated as E

[

X
]

=
∫∞
0 Pr

[

X > z
]

dz; to employ
this formula we calculate Pr

[

2v(2) > z
]

. For z ≥ 2 we have:

Prv
[

2v(2) > z
]

= Prv
[

v1 > z/2 ∧ v2 > z/2
]

= Prv
[

v1 > z/2
]

Prv
[

v2 > z/2
]

= 4/z2.

For z < 2 we have: Pr
[

2v(2) > z
]

= 1. The calculation the envy-free
benchmark’s expected value concludes as follows.

REF = Ev

[

2v(2)
]

=

∫ ∞

0
Pr

[

2v(2) > z
]

dz = 2 +

∫ ∞

2

4/z2 dz = 4.

The resolution of the envy-free benchmark is thus at least REF/APX =
4/2 = 2.

The generalization of Lemma 6.8 to n > 2 follows same proof struc-
ture. The main difficulty of the analysis is in calculating the expectation
of the benchmark. This is complicated because it becomes the maximum
of many terms. E.g., for n = 3 agents, EFO(2)(v) = max(2v(2), 3v(3)).
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Nonetheless, for general n its expectation can be calculated exactly; in
the limit with n it is about 2.42.

Lemma 6.9 For two-agent digital-good environments, the second-price
auction is a prior-free two approximation of the envy-free benchmark.

Proof For n = 2 agents the the envy-free benchmark is 2v(2) which is
twice the revenue of the second-price auction. Therefore, the second-price
auction is a prior-free two approximation to the envy-free benchmark.

The generalization of Lemma 6.9 beyond n = 2 agents is technical
and does not give a natural auction. For example, the n = 3 agent
optimal auction offers each agent a price drawn from a probability dis-
tribution with a pointmass at each of the other two agents’ values and
continuous density at prices strictly higher than these values. The prob-
abilities depend on the ratio of the two other agents’ values. For larger
n ≥ 4 no closed-form expression is known; though, the prior-free opti-
mal auction can be seen to match the lower bound on the resolution by
a brute-force construction. This prior-free optimal auction suffers from
the main drawback of optimal mechanisms: it is quite complicated. In
the next sections, we will derive simple mechanisms that approximate
the prior-free optimal digital-good auction.

6.2.2 Deterministic Auctions

The main idea that enables approximation of the envy-free benchmark is
that when selecting a price to offer agent i we can use statistics from the
values of all other agents as given by their reports v−i. This motivates
the following mechanism which differs from empirical monopoly pricing
in that the price to agent i is from the empirical distribution for v−i not
v.

Definition 6.6 The deterministic optimal price auction offers each
agent i the take-it-or-leave-it price of v̂i set as the monopoly price for
the profile of other agent values v−i.

The deterministic optimal price auction is dominant strategy incentive
compatible. It is possible to show that the auction is a prior-independent
constant approximation (cf. Chapter 5); however it is not a prior-free
approximation. In fact, this deficiency of the deterministic optimal price
auction is one that is fundamental to all anonymous (a.k.a., symmetric)
deterministic auctions.
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Example 6.1 Consider the valuation profile with ten high-valued
agents, with value ten, and 90 low-valued agents, with value one. What
does the auction do on such a valuation profile? The offer to a high-
valued agent is v̂h = 1, as v−h consists of 90 low-valued agents and 9
high-valued agents. The revenue from the high price is 90; while the rev-
enue from the low price is 99. The offer to a low-valued agent is v̂1 = 10,
as v−1 consists of 89 low-valued agents and 10 high-valued agents. The
revenue from the high price is 100; while the revenue from the low price
is 99. With these offers all high-valued agents will win and pay one, while
all low-valued agents will lose. The total revenue of ten is far from the
envy-free benchmark revenue of EFO(2)(v) = 100.

Theorem 6.10 No n-agent anonymous deterministic dominant-strategy
incentive-compatible digital-good auction is better than an n approxima-
tion to the envy-free benchmark.

Proof Consider valuation profiles v with values vi ∈ {1, h}. Let nh(v)
and n1(v) denote the number of h values and 1 values in v, respectively.
By Theorem 6.6, any deterministic and dominant strategy incentive com-
patible auction APX has a critical value at which each agent is served.
That APX is anonymous implies that the critical value for agent i, as a
function of the reports of other agents, is independent of the index i and
only a function of nh(v−i) and n1(v−i). Thus, we can let v̂(nh, n1) repre-
sent the offer price of APX for any agent i when we plug in nh = nh(v−i)
and n1 = n1(v−i). Finally, we assume that v̂(nh, n1) ∈ {1, h} as this re-
striction cannot hurt the auction profit on the valuation profiles we are
considering.
We assume for a contradiction that the auction is a good approxima-

tion and proceed in three steps.

(i) Observe that for any auction that is a good approximation, it must
be that for all m, v̂(m, 0) = h. Otherwise, on the n = m + 1 agent
all h’s input, the auction only achieves profit n while the envy-free
benchmark is hn. Thus, the auction would be at most an h ≥ n
approximation on profiles with h ≥ n.

(ii) Likewise, observe that for any auction that is a good approximation,
it must be that for all m, v̂(0,m) = 1. Otherwise, on the n = m+ 1
agent all 1’s input, the auction achieves no profit and is clearly not
an approximation of the envy-free benchmark n.

(iii) We now identify a bad valuation profile for the auction. Take m
sufficiently large and consider v̂(k,m − k) as a function of k. As
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we have argued for k = 0, v̂(k,m − k) = 1. Consider increasing k
until v̂(k,m − k) = h. This must occur since at k = m we have
v̂(k,m − k) = h. Let k⋆ = min{k : v̂(k,m − k) = h} > 1 be this
transition point. Now consider an n = m + 1 agent valuation profile
with nh(v) = k⋆ and n1(v) = m− k⋆ + 1.

• For low-valued agents: v̂(nh(v−1), n1(v−1)) = v̂(k⋆,m − k⋆) = h.
Thus, all low-valued agents are rejected and contribute nothing to
the auction profit.

• For high-valued agents: v̂(nh(v−h), n1(v−h)) = v̂(k⋆ − 1,m− k⋆ +
1) = 1. Thus, all high-valued agents are are offered a price of one
which they accept. Thus, the contribution to the auction profit
from such agents is 1× nh(v) = k⋆.

Thus, the total auction profit for this valuation profile is APX = k⋆.

(iv) For h = n, the envy-free benchmark on this valuation profile is REF =
n k⋆. There are to cases. If k⋆ = 1 then the benchmark is n (from
selling to all agents at price 1); of course, for k⋆ = 1 then n = n k⋆. If
k⋆ ≥ 2 the benchmark is also n k⋆ (from selling to the k⋆ high-valued
agents at price h = n).

In conclusion, we have identified a valuation profile where the auction
revenue is APX = k⋆ and the envy-free benchmark is REF = n k⋆; the
auction is at best a prior-free n approximation.

Theorem 6.10 implies that either randomization or asymmetry is nec-
essary to obtain good prior-free mechanisms. While either approach will
permit the design of good mechanisms, all deterministic asymmetric
auctions known to date are based on derandomizations of randomized
auctions. This text will discuss only these randomized auctions.

6.2.3 The Random Sampling Auction

We now discuss a prior-free auction based on a natural market-analysis
metaphor. Notice that the problem with the deterministic optimal price
auction in the preceding section is that it may simultaneously offer high-
valued agents a low price and low-valued agents a high price. Of course,
either of these prices would have been good if it were offered consistently
to all agents. One approach for combating this lack of coordination is to
coordinate using random sampling. The idea is roughly to partition the
agents into a market and sample and then use the sample to estimate a
good price and then offer that price to the agents in the market. With a
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random partition we expect a fair share of high- and low-valued agents
to be in both the market and the sample; therefore, a price that is good
for the sample should also be good for the market.

Definition 6.7 The random sampling (optimal price) auction works
as follows:

(i) randomly partition the agents into sample S and market M (by flip-
ping a fair coin for each agent),

(ii) compute (empirical) monopoly prices v̂⋆S and v̂⋆M for S and M respec-
tively, and

(iii) offer v̂⋆S to M and v̂⋆M to S.

We first, and easily, observe that the random sampling auction is
dominant strategy incentive compatible.

Theorem 6.11 The random sampling auction is dominant strategy
incentive compatible.

Proof Fix a randomized partition of the agents into a market and sam-
ple. For this partitioning, each agent faces a critical value that is a func-
tion only of other agent reports. Theorem 6.6 then implies that the auc-
tion for this partitioning is dominant strategy incentive compatible. Of
course, if it is dominant strategy for any fixed partitioning it is certainly
dominant strategy in expectation over the random partitioning.

The following example, as a warm up exercise, demonstrates that the
random sampling auction is not better than a four approximation to the
envy-free benchmark.

Example 6.2 Consider the 2-agent input v = (1.1, 1) for which the
envy-free benchmark is EFO(2)(v) = 2. To calculate the auction’s rev-
enue on this input, notice that these two agents are in the same partition
with probability 1/2 and in different partitions with probability 1/2. In
the former case, the auction’s revenue is zero. In the latter case it is
the lower value, i.e., one. The auction’s expected profit is therefore 1/2,
which is a four approximation to the benchmark.1

1 It is natural to think this example could be improved if the auction were to
partition half of the agents into the market and half into the sample. However in
worst case, this improved partitioning cannot help. Pad the valuation profile
with agents who have zero value for the item and then observe that the same
analysis on this padded valuation profile gives a lower bound of four on the
auction’s approximation ratio.
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Theorem 6.12 For digital good environments and all valuation pro-
files, the random sampling auction is at most a 4.68 approximation to
the envy-free benchmark.

This theorem is technical and it is generally believed that the bound
it provides is loose and the random sampling auction is in fact a worst-
case four approximation. Below we will prove the weaker claim that it
is at worst a 15 approximation. This weaker claim highlights the main
techniques involved in proving that variants and generalizations of the
random sampling auction are constant approximations.

Lemma 6.13 For digital good environments and all valuation profiles,
the random sampling auction is at most a 15 approximation to the envy-
free benchmark.

Proof Assume without loss of generality that the highest-valued agent
is in the market M . This terminology comes from the fact that if the
highest agent value is sufficiently large then all agents in other partition
(in this case S) will be rejected; the role of S is then only as a sample
for statistical analysis. There are two main steps in the proof. Step (i)
is to show that the optimal envy-free revenue from the sample EFO(vS)
is close to the envy-free benchmark EFO(2)(v). Step (ii) is to show that
the revenue from price v̂⋆S on M is close to the envy-free optimal revenue
from the sample which is, recall, the revenue from price v̂⋆S on S.
We will use the following definitions. First sort the agents by value so

that vi is the ith largest valued agent. Define yi as an indicator variable
for the event that i ∈ S (the sample). Notice that E[yi] = 1/2 except
for i = 1; y1 = 0 by the assumption that the highest valued agent is in
the market. Define Yi =

∑

j≤i yj as the number of the i highest-valued

agents who are in the sample. Let EFO(2)(v) = i⋆v̂⋆ where i⋆ is the
number of winners in the benchmark and v̂⋆ = vi⋆ is the benchmark
price.

(i) With good probability, the optimal envy-free revenue for the sample,
EFO(vS), is close to the envy-free benchmark, EFO(2)(v).

Define B as the event that the sample contains at least half of the i⋆

highest-valued agents, i.e., Yi
⋆ ≥ i

⋆
/2. Of course the envy-free optimal

revenue for the sample is at least the revenue from posting price v̂⋆

(which is envy-free), i.e., EFO(vS) ≥ Yi
⋆ v̂⋆. Event B then implies

that Yi
⋆ v̂⋆ ≥ 1/2 i⋆v̂⋆, or equivalently EFO(vS) ≥ 1/2EFO(2)(v).

We now show that Pr[B] = 1/2 when i⋆ is even. Recall that the
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highest valued agent is always in the market. Therefore there are
i⋆ − 1 (an odd number) of agents which we partition between the
market and the sample. One partition receives at least i

⋆
/2 of these

and half the time it is the sample; therefore, Pr[B] = 1/2.

When i⋆ is odd Pr[B] < 1/2, and a slightly more complicated ar-
gument is needed to complete the proof. A sketch of the argument
is as follows. Define C as the event that Yi

⋆ ≥ i
⋆−1/2. When this

event occurs, by a similar analysis as in the even case, EFO(vS) ≥
1/2 (1− 1/i⋆) EFO(2)(v). The implied bound is worse than the analo-
gous bound for the even case by an 1−1/i⋆ factor. The probability that
the event C holds improves over event B, however, and this improve-
ment more than compensates for the loss. Notice that strictly more
of the top i⋆− 1 agents are in the sample or market with equal prob-
ability but event C also occurs when the numbers are equal. Thus,
Pr[C] > 1/2 = Pr[B]. The intuition that these bounds combine to
improve over the even case, above, is that the probability that the
i⋆−1 top agents are split evenly grows as Θ(

√
1/i⋆) and the loss from

the event providing a weaker bound grows as Θ(1/i⋆).

(ii) With good probability, the revenue from price v̂⋆S on M is close to
EFO(vS).

Define E as the event that for all indices i that the market contains
at least a third as many of the i highest-valued agents as the sample,
i.e., ∀i, i− Yi ≥ 1/3Yi. Notice that the left hand side of this equation
is the number of agents with value at least vi in the market, while the
right hand side is a third of the number of such agents in the sample.
Importantly, this event implies that the partitioning of agents is not
too imbalanced in favor of the sample. We refer to this event as the
balanced sample event; though, note that it is only a one-directional
balanced condition.

Let the envy-free optimal revenue for the sample be EFO(vS) =
Yi

⋆
S
v̂⋆S where i⋆S is the index of the agent whose value is used as

its price, v̂⋆S = vi⋆S is its price, and Yi
⋆
S
is its number of winners. The

profit of the random sampling auction is equal to (i⋆S−Yi
⋆
S
) v̂⋆S . Under

the balanced sample condition this is lower bounded by 1/3Yi
⋆
S
v̂⋆S =

1/3 EFO(vS).

Subsequently, we will prove a balanced sampling lemma (Lemma 6.14)
that shows that Pr[E ] ≥ 0.9.

We combine the two steps, above, as follows. If both good events E
and B hold, then the expected revenue of random sampling auction is



6.2 The Digital-good Environment 187

at least 1/6 EFO(2)(v). By the union bound, the probability of this good
fortune is Pr[E ∧ B] ≥ 1 − Pr[¬E ] − Pr[¬B] ≥ 0.4.2 We conclude that
the random sampling auction is a 15 = 6 × 1/0.4 approximation to the
envy-free benchmark.

Lemma 6.14 (Balanced Sampling) For y1 = 0, yi for i ≥ 2 an in-
dicator variable for a independent fair coin flipping to heads, and sum
Yi =

∑

j≤i yj,

Pr[∀i, (i− Yi) ≥ 1/3Yi] ≥ 0.9.

Proof We relate the condition of the lemma to the probability of ruin
in a random walk on the integers. Notice that (i − Yi) ≥ 1/3Yi if and
only if, for integers i and Yi, 3i− 4Yi + 1 > 0. So let Zi = 3i − 4Yi + 1
and view Zi as the position, in step i, of a random walk on the integers.
Since Y1 = y1 = 0 this random walk starts at Zi = 4. Notice that at
step i in the random walk with is in position Zi, so at step i+1 we have

Zi+1 =

{

Zi − 1 if yi+1 = 1, and

Zi + 3 if yi+1 = 0;

i.e., the random walk either takes three steps forward or one step back.
We wish to calculate the probability that this random walk never touches
zero. This type of calculation is known as a probability of ruin analysis
in reference to a gambler’s fate when playing a game with such a payoff
structure.
Let rk denote the probability of ruin from position k. This is the

probability that the random walk eventually takes k steps backwards.
Clearly r0 = 1, as at position k = 0 we are already ruined, and rk = rk1 ,
as taking k steps back is equivalent to stepping back k times. By the
definition of the random walk, we have the recurrence,

rk = 1/2 (rk−1 + rk+3).

Plugging in the above identities for k = 1 we have,

r1 = 1/2 (1 + r41).

2 We denote the event that E does not occur by ¬E, which should be read as “not
E.” The probabilities of any event E and its complement ¬E satisfy
Pr[¬E] = 1−Pr[E]. A typical approach for bounding the probability of the
conjunction (i.e., the “and”) of two events is by the disjunction (i.e., the “or”) of
their negations, i.e., Pr[E ∧ B] = 1−Pr[¬(E ∧ B)] = 1−Pr[¬E ∨ ¬B]. The union
bound states that the probability of the disjunction of two events is at most the
sum of the probabilities of each event. (This bound is tight for disjoint events,
while for events that may simultaneously occur, it double counts the probability
of outcomes that satisfy both events.) Thus, Pr[E ∧ B] ≥ 1−Pr[¬E]−Pr[¬B].
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This is a quartic equation that can be solved, e.g., by Ferarri’s formula
(though we omit the details). Since our random walk starts at Z1 = 4 we
calculate r4 = r41 ≤ 0.1, meaning that the probability that the balanced
sampling condition is satisfied is at least 0.9.

The proof of Theorem 6.12 follows a very similar structure to that of
Lemma 6.13. The main additional idea is that, instead of fixing the level
of imbalance to be tolerated, it is a random variable. In Lemma 6.13 the
imbalance is fixed to 1/3. Notice that the performance bound constructed
in the lemma scales linearly with the imbalance. Thus, the expected
bound can factored into the the expected imbalance times the worst
case performance for imbalance one.

6.2.4 Decision Problems for Mechanism Design

Decision problems play a central role in computational complexity and
algorithm design. Where as an optimization problem is to find the opti-
mal solution to a problem, a decision problem is to decide whether or not
there exists a solution that meets a given objective criterion. While it
is clear that decision problems are no harder to solve than optimization
problems, the opposite is also true, for instance, we can search for the
optimal objective value of any feasible solution by making repeated calls
to an algorithm that solves the decision problem. This search is single-
dimensional and can be effectively solved, e.g., by binary search. In this
section we develop a similar theory for prior-free mechanism design.

Profit Extraction
For profit maximization in mechanism design, recall, there is no point-
wise optimal mechanism. Therefore, we define the mechanism design
decision problem in terms of the envy-free optimal revenue EFO. The
decision problem for profit target Π is to design a mechanism that ob-
tains profit at least Π on any valuation profile v with EFO(v) ≥ Π. We
call a mechanism that solves the decision problem a profit extractor.

Definition 6.8 The digital good profit extractor for target Π and valu-
ation profile v finds the largest k such that v(k) ≥ 1/kΠ, sells to the top
k agents at price 1/kΠ, and rejects all other agents. If no such k exists,
it rejects all agents.

Lemma 6.15 The digital good profit extractor is dominant strategy
incentive compatible.
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Proof Consider the following ascending auction. See if all agents can
evenly split the target Π. If some agents cannot afford to pay their fair
share, reject them. Repeat with the remaining agents. Notice that the
number of remaining agents in this process is decreasing, and thus, the
fair share of each remaining agent is increasing. Therefore, each agent
faces an ascending price until she drops out. It is a dominant strategy
for her to drop out when the ascending price exceeds her value (c.f. the
single-item ascending-price auction of Definition 1.5, page 5).

The outcome selected by this ascending auction is identical to that
of the profit extractor. Therefore, we can interpret the profit extrac-
tor as the revelation principle (Theorem 2.11) applied to the ascending
auction. The dominant strategy equilibrium of the ascending auction,
then, implies that the profit extractor is dominant strategy incentive
compatible.

Lemma 6.16 For all valuation profiles v, the digital good profit extrac-
tor for target Π obtains revenue Π if EFO(v) ≥ Π and zero otherwise.

Proof Recall, EFO(v) = i⋆ v(i⋆). If Π ≤ EFO(v) then there exists a k
such that v(k) ≥ 1/kΠ, e.g., k = i⋆. In this case its revenue is exactly
Π. On the other hand, if Π > EFO(v) = maxk k v(k) then there is no
such k for which v(k) ≥ 1/kΠ and the mechanism has no winners and no
revenue.

Approximate Reduction to Decision Problem

We now employ random sampling to approximately reduce the mecha-
nism design problem of optimizing profit to the decision problem. The
key observation in this reduction is an analogy. Notice that given a single
agent with value v, if we offer this agent a threshold v̂ the agent buys
and pays v̂ if and only if v ≥ v̂. Analogously a profit extractor with
target Π on a subset S of the agents obtains revenue Π if and only if
EFO(vS) ≥ Π. We can thus view the subset S of agents like a single
“meta agent” with value EFO(vS). The idea then is to randomly par-
tition the agents into two parts, treat each part as a meta agent, and
run the second-price auction on these two meta agents. The last step
is accomplished by attempting to profit extract the envy-free optimal
revenue for one part from the other part, and vice versa.

Definition 6.9 The random sampling profit extraction auction works
as follows:
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(i) randomly partition the agents into S and M (by flipping a fair coin
for each agent),

(ii) Calculate ΠM = EFO(vM ) and ΠS = EFO(vS), the benchmark
profit for each part.

(iii) Profit extract ΠS from M and ΠM from S.

Notice that the intuition from the analogy to the second-price auction
implies that the revenue of the random sampling profit extraction auc-
tion is exactly the minimum of ΠM and ΠS . Since the profit extractor
is dominant strategy incentive compatible, so is the random sampling
profit extraction auction.

Lemma 6.17 The random sampling profit extraction auction is dom-
inant strategy incentive compatible.

Before we prove that the random sampling profit extraction auction
is a four approximation to the envy-free benchmark, we give a simple
proof of a lemma that will be important in the analysis.

Lemma 6.18 With k ≥ 2 fair coin flips, the expected minimum of the
number of heads or tails is at least 1/4 k.

Proof Let Wi be a random variable for the minimum number of heads
or tails in the first i coin flips. The following calculations are elementary:

E[W1] = 0,

E[W2] = 1/2, and

E[W3] = 3/4.

We now obtain a general bound on E[Wi] for i > 3. Let wi = Wi −
Wi−1 representing the change to the minimum number of heads or tails
when we flip the ith coin. Notice that linearity of expectation implies
that E[Wi] =

∑k
i=1 E[wi]. Thus, it will suffice to calculate E[wi] for all

i. We consider this calculation in three cases:

Case 1 (i even): This implies that i − 1 is odd, and prior to flipping
the ith coin it was not the case that there was a tie. Assume
without loss of generality that there were more tails than heads.
Now when we flip the ith coin, there is probability 1/2 that it is
heads and we increase the minimum by one; otherwise, we get
tails have no increase to the minimum. Thus, E[wi] = 1/2.

Case 2 (i odd): Here we use the crude bound that E[wi] ≥ 0. Note
that this is actually the best we can claim in worst case since
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i−1 is even so before flipping the ith coin it could be that there
is a tie. If this were the case then regardless of the ith coin flip,
wi = 0 and the minimum number of heads or tails would be
unchanged.

Case 3 (i = 3): This is a special case of Case 2; however we can get a
better bound using the calculations of E[W2] = 1/2 and E[W3] =
3/4 above to deduce that E[w3] = E[W3]−E[W2] = 1/4.

Finally we are ready to calculate a lower bound on E[Wk].

E[Wk] =
∑k

i=1
E[wi]

≥ 0 + 1/2 + 1/4 + 1/2 + 0 + 1/2 + 0 + 1/2 + · · ·

= 1/4 + 1/2 ⌊k/2⌋

≥ 1/4 k.

Theorem 6.19 For digital good environments and all valuation pro-
files, the random sampling profit extraction auction is a four approxima-
tion to the envy-free benchmark.

Proof For valuation profile v, let REF be the envy-free benchmark
and its revenue and APX be the random sampling profit extraction
auction and its expected revenue. From the analogy to the second-price
auction on meta-agents, the expected revenue of the auction is APX =
E[min(ΠM ,ΠS)] (where the expectation is taken over the randomized of
the partitioning of agents).
Assume that the envy-free benchmark sells to i⋆ ≥ 2 agents at price

v̂⋆, i.e., REF = i⋆ v̂⋆. Of the i⋆ winners in REF, let i⋆M be the number
of them that are in M and i⋆S the number that are in S. Since there are
i⋆M agents in M above price v̂⋆, then ΠM ≥ i⋆M v̂⋆. Likewise, ΠS ≥ i⋆S v̂⋆.

APX
REF = E[min(ΠM,ΠS)]

i
⋆
v̂
⋆ ≥

E[min(i
⋆
M v̂

⋆
, i

⋆
M v̂

⋆
)]

i
⋆
v̂
⋆ =

E[min(i
⋆
M , i

⋆
S)]

i
⋆ ≥ 1

4 .

The last inequality follows by applying Lemma 6.18 when we consider
i⋆ ≥ 2 coins and heads as putting an agent in S and a tails as putting
the agent in M .
This bound is tight by an adaptation of the analysis of Example 6.2

from which we concluded that the random sampling optimal price auc-
tion is at best a four approximation.

One question that should seem pertinent at this point is whether par-
titioning into two groups is optimal. We could alternatively partition
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into three parts and run a three-agent auction on the benchmark rev-
enue of these parts. Of course, the same could be said for partitioning
into ℓ parts for any ℓ. In fact, the optimal partitioning comes from ℓ = 3,
though we omit the proof and full definition of the mechanism.

Theorem 6.20 For digital good environments and all valuation pro-
files, the random three-partitioning profit extraction auction is a 3.25
approximation to the envy-free benchmark.

6.3 The Envy-free Benchmark

The first step in generalizing the framework for prior-free approximation
from the preceding sections is to generalize the envy-free benchmark. In
this section we consider envy-free optimal pricing in general environ-
ments. We will give characterizations of envy-free pricings and envy-
free optimal pricings that mirror those of incentive compatibility. These
characterizations will promote the viewpoint that envy freedom is is a
relaxation of incentive compatibility that admits pointwise optimization.
The section will conclude with the general definition and discussion of
the envy-free benchmark.

Definition 6.10 For valuation profile v, an outcome with allocation
x and payments p is envy free if no agent prefers the outcome of another
agent to her own, i.e.,

∀i, j, vi xi − pi ≥ vi xj − pj.

Example 6.3 As a running example for this section consider an n = 90
agent, k = 20 unit environment with a valuation profile v that consists
of ten high-valued agents each with value ten and 80 low-valued agents
each with value two. The following three pricings are envy free (and
feasible for the environment).

(i) Post a price of ten. Serve the ten high-valued agents at this price,
reject the low-valued agents. This pricing is envy free: the high-valued
agents weakly prefer buying and the low-valued agents prefer not
buying. The total revenue is 100 = 10× 10.

(ii) Post a price of two. Serve the ten high-valued agents and ten of the
low-valued agents at this price. This pricing is envy free: the high-
valued agents prefer buying and the low-valued agents are indifferent
between buying and not buying. The total revenue is 40 = 20× 2.



6.3 The Envy-free Benchmark 193

(iii) Post a price of nine to buy the item with certainty and a price of 1/4
to buy the item with probability 1/8 (equivalently, a probability 1/8
chance to buy at price of two). Serve the ten high-valued agents with
the certainty outcome, and serve the 80 low-valued agents with the
probabilistic outcome. By an elementary analysis this pricing is envy
free: the high-valued agents weakly prefer to buy the certainty out-
come and the low-valued agents weakly prefer to buy the probabilistic
outcome (over nothing). The total revenue is 110 = 10× 9+ 80× 1/4.

6.3.1 Envy-free Pricing

The definition of envy freedom can be contrasted to definition of incen-
tive compatibility as given by the revelation principle and the defining
inequality of Bayes-Nash equilibrium (Proposition 2.1, page 30). Impor-
tantly, incentive compatibility constrains the outcome an agent would
receive upon a unilateral misreport where as envy freedom constrains
the outcome she would receive upon swapping with another agent. The
similarity of envy freedom and incentive compatibility enables an anal-
ogous characterization (cf. Section 2.5, page 31) and optimization (cf.
Section 3.3, page 59) of envy-free pricings. However, unlike the incentive-
compatibility constraints, envy-freedom constraints bind pointwise on
the given valuation profile; therefore, there is always a pointwise opti-
mal envy-free outcome.

Theorem 6.21 For valuation profile v (sorted with v1 ≥ . . . ≥ vn),
an outcome (x,p) is envy free if and only if

• (monotonicity) x1 ≥ . . . ≥ xn.
• (payment correspondence) there exists a p0 and monotone function

y(·) with y(vi) = xi such that for all i

pi = vixi −

∫ vi

0
y(z) dz + p0,

where usually p0 = 0.

Notice that the envy-free payments are not pinned down precisely by
the allocation; instead, there is a range of appropriate payments. As
these payment can be interpreted as the “area above the curve y(·),”
the maximum payments are given when y(·) is the smallest monotone
function consistent with the allocation. Given our objective of profit
maximization, for any monotone allocation rule, we focus on the maxi-
mum envy-free payments. These maximum envy-free payments are thus
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Figure 6.1 The allocation is depicted as points (vj , xj) for each agent j.
The envy-free payment of agent i is depicted as the total shaded area. The
jth term in the sum of equation (6.1) is the dark shaded rectangle. The
effective allocation rule y from Theorem 6.21 is the stair function depicted
by a solid line.

given by the following formula and depicted in Figure 6.1:

pi =
∑n

j≥i
vj (xj − xj+1), (6.1)

again, with v sorted as v1 ≥ . . . ≥ vn.

Proof of Theorem 6.21 We prove the theorem for the maximum envy-
free payments as specified by (6.1) and leave the general payment cor-
respondence as an exercise.
Monotonicity and the payment identity of equation 6.1 imply envy

freedom: Suppose x is swap monotone. Let p be given as by equation 6.1.
We verify that (x,p) is envy-free. There are two cases: if i ≤ j, we have:

pi − pj =
j−1
∑

k=i

vk · (xk − xk+1) ≤ vi ·
j−1
∑

k=i

(xk − xk+1) = vi · (xi − xj),

and if i ≥ j, we have:

pi − pj = −
i−1
∑

k=j

vk · (xk − xk+1) ≤ −vi ·
i−1
∑

k=j

(xk − xk+1) = vi · (xi − xj).

Each equation above can be rearranged to give the definition of envy
freedom.
Envy freedom implies monotonicity: Suppose x admits p such that

(x,p) is envy-free. By definition, vixi − pi ≥ vixj − pj and vjxj −
pj ≥ vjxi − pi. By summing these two inequalities and rearranging,
(xi − xj) · (vi − vj) ≥ 0, and hence x is monotone.
The maximum envy-free prices satisfy the payment identity of equa-

tion 6.1: Agent i does not envy i + 1 so vixi − pi ≥ vixi+1 − pi+1, or
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rearranging: pi ≤ vi(xi − xi+1) + pi+1. Given pi+1 the maximum pi sat-
isfies this inequality with equality. Letting pn = vnxn (the maximum
individually rational payment) and induction gives the payment iden-
tity: pi =

∑n
j=i vj · (xj − xj+1).

6.3.2 Envy-free Optimal Revenue

Definition 6.11 Given any symmetric environment and valuation pro-
file v, the envy-free optimal revenue, denoted EFO(v), is the maximum
revenue attained by a feasible envy-free outcome.

In Section 6.2 we discussed the envy-free optimal revenue for digital
good environments and observed that it can be viewed as the revenue
from the monopoly pricing of the empirical distribution for the valuation
profile. The empirical distribution for a valuation profile v is the discrete
distribution with probability 1/n at value vi.
Consider envy-free optimal pricing in multi-unit environments where,

unlike digital goods, there is a constraint on the number of agents that
can be be simultaneously served (see Example 6.3). Recall that for irreg-
ular multi-unit auction environments the Bayesian optimal auction is not
just the second-price auction with the monopoly reserve (in particular,
it may iron). For these environments the envy-free optimal pricing also
may iron. In particular, it corresponds to a virtual value optimization
for virtual values given by the empirical distribution. Below we define
the empirical revenue and empirical marginal revenue from which the
envy-free optimal revenue can be calculated (cf. Definition 3.11, Defini-
tion 3.12, and Definition 3.15 in Section 3.3, page 59).

Definition 6.12 For valuation profile v sorted as v1 ≥ . . . ≥ vn, the
empirical price-posting revenues are P = (P0, . . . , Pn) with P0 = 0 and
Pi = i vi for all i ∈ [n]. The empirical price-posting revenue curve is
the piece-wise linear function connecting the points (0, P0), . . . , (n, Pn).
The empirical revenue curve is the smallest concave function that up-
per bounds the empirical price-posting revenue curve; i.e., the empirical
revenue curve is given by ironing the empirical price-posting revenue
curve. The empirical revenues are R = (R0, . . . , Rn) with Ri obtained
by evaluating the empirical revenue curve at i. Empirical marginal rev-
enues and empirical marginal price-posting revenues are given by the
left slope of their respective empirical revenue curves, or equivalently, as
P ′
i = Pi − Pi−1 and R′

i = Ri −Ri−1.
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Figure 6.2 The empirical revenue and empirical price-posting revenue
curves corresponding to the n = 90 agent valuation profile with ten high-
valued agents and 80 low-valued agents (Example 6.3). The three envy-free
pricings of the example are depicted as P10, P20, and R20.

Example 6.4 The empirical marginal revenues for Example 6.3 (n =
90 agents, ten with value ten and 80 with value two). The empirical
revenues and price-posting revenues for this valuation profile are given
in Figure 6.3.2; The empirical marginal revenues are:

R′
i =

{

10 i ∈ {1, . . . , 10}, and

1 i ∈ {11, . . . , 90}.

Analogously to the Bayesian optimal incentive compatible auction,
the envy-free optimal pricing is a virtual value maximizer for virtual
values defined by the empirical marginal revenue. The proofs of The-
orem 6.22 and Corollary 6.23, below, are essentially the same as the
proofs of Theorem 3.12 and Corollary 3.15.

Theorem 6.22 The maximal envy-free revenue for monotone alloca-
tion x is

∑

i
P ′
i xi =

∑

i
Pi (xi − xi+1) ≤

∑

i
Ri (xi − xi+1) =

∑

i
R′

i xi

with equality if and only if Ri ̸= Pi ⇒ xi = xi+1.

Corollary 6.23 In symmetric environments, with virtual values de-
fined as the empirical marginal revenues, virtual surplus maximization
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(with random tie-breaking) gives the envy-free outcome with the maxi-
mum profit.

Proof of Theorem 6.22 The inner inequality holds by the following se-
quence of inequalities:

∑n

i=1
pi =

∑n

i=1

∑n

j=i
vj · (xj − xj+1)

=
∑n

i=1
ivi · (xi − xi+1) =

∑n

i=1
Pi · (xi − xi+1)

=
∑n

i=1
Ri · (xi − xi+1)−

∑n

i=1
(Ri − Pi) · (xi − xi+1)

≤
∑n

i=1
Ri · (xi − xi+1),

where the final inequality follows from the facts that Ri ≥ Pi and xi ≥
xi+1. Clearly the inequality holds with equality if and only if xi = xi+1

whenever Ri > Pi.
The outer equalities hold by collecting like terms in the summation

as follows,
∑n

i=1
Pi · (xi − xi+1) =

∑n

i=1
(Pi − Pi−1) · xi =

∑n

i=1
P ′
i · xi,

with the analogous equations relating Ri and R′
i.

6.3.3 Envy freedom versus Incentive Compatibility

Optimal envy-free pricing and Bayesian optimal mechanisms are struc-
turally similar; they are both virtual value maximizers. In this section
we observe that their optimal revenues are also similar.
An empirical virtual value function can be defined from a valuation

profile v with empirical marginal revenues R′ as follows (recall vn+1 =
0):

φ(v) =

{

R′
i+1 if v ∈ [vi+1, vi) for some i ∈ [n], and

v otherwise.
(6.2)

This definition is true to the geometric revenue curve interpretation
where the value v can be represented as a diagonal line from the ori-
gin with slope v and the marginal revenue for v is the left slope of the
revenue curve at its intersection with this line.
For any virtual value function, symmetric environment, and valuation

profile; virtual surplus maximization gives an allocation that is mono-
tone, i.e., vi > vj ⇒ xi ≥ xj , as well as an allocation rule that is mono-

tone, i.e., z > z† ⇒ xi(z) ≥ xi(z
†). From this allocation and allocation
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rule the incentive-compatible and envy-free revenues can be calculated
and compared. Recall that the maximal envy-free payment of agent i for
this allocation comes from equation (6.1) whereas the payment of the
incentive compatible mechanism with this allocation rule comes from
Corollary 2.13. These payments are related but distinct.

Example 6.5 Compare the envy-free revenue and incentive-compatible
revenue corresponding to Example 6.3 (k = 20 units, n = 90 agents, ten
with value ten, and 80 with value two). The virtual value function from
equation (6.2) is:

φ(v) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

−180 v < 2,

1 v ∈ [2, 10), and

v v ∈ [10,∞).

We now calculate the revenue of the incentive compatible mechanism
that serves the 20 agents with the highest virtual value. In the virtual-
surplus-maximizing auction, on the valuation profile v, the high-valued
agents win with probability one and the low-valued agents win with
probability 1/8 (as there are ten remaining units to be allocated ran-
domly among 80 low-valued agents). To calculate payments we must
calculate the allocation rule for both high- and low-valued agents. Low-
valued agents, by misreporting a high value, win with probability one.
The allocation rule for low-valued agents is depicted in Figure 6.3(a).
High-valued agents, by misreporting a low value, on the other hand,
win with probability 11/81. Such a misreport leaves only nine high-
value-reporting agents and so there are 11 remaining units to allocate
randomly to the 81 low-value-reporting agents. The allocation rule for
high-valued agents is given in Figure 6.3(b). Payments can be deter-
mined from the allocation rules: a high-valued agent pays about 8.9 and
a low-valued agent (in expectation) pays 1/4. The total incentive com-
patible revenue is about 109. Notice that this revenue is only slightly
below the envy-free optimal revenue of 110.

The revenue calculation in Example 6.5 is complicated by the fact
that when a high-valued agent reports truthfully there are ten remaining
units to allocate to the 80 low-valued agents; whereas when misreport-
ing a low value, there are 11 remaining units to allocate to 81 low-value
reporting agents. Importantly: the allocation rule for high-valued agents
and low-valued agents are not the same (compare Figure 6.3(a) and
Figure 6.3(b)). The envy-free payments for both high- and low-valued
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2 10

10/80
0

1

(a) Allocation rule xlow(v) and payment plow(2)

2 10

11/81
0

1

(b) Allocation rule xhigh(v) and payment phigh(10)

Figure 6.3 The allocation rules for high- and low-valued agents induced by
the valuation profile and mechanism with virtual values given in Exam-
ple 6.5. The incentive compatible payments are given by the area of the
shaded region.

agents, on the other hand, are calculated from the same “allocation
rule” (denoted as y(·) in Theorem 6.21) which is, in fact, identical to
the incentive-compatible allocation rule of the low-value agents (Fig-
ure 6.3(a)). Thus, the envy-free revenue can be viewed as a relaxation
of the incentive-compatible revenue that is simpler and, therefore, more
analytically tractable.
We now formalize the fact that the envy-free optimal revenue is an

economically meaningful benchmark by showing that it is pointwise nor-
malized (which implies that it is normalized for any i.i.d. distribution).

Theorem 6.24 For multi-unit environments and any virtual value
function φ(·), the envy-free revenue of virtual surplus maximization is
at least its incentive-compatible revenue.

Proof We show that the envy-free payment of agent i is at least her
incentive-compatible payment. In particular if we let xi(v) be the alloca-
tion rule of the virtual surplus optimizer, then for z ≤ vi, xi(z,v−i) (as a
function of z) is at most the smallest y(z) that satisfies the conditions of
Theorem 6.21. Since the incentive-compatible and envy-free payments,
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respectively, correspond to the area “above the allocation curve” this
inequality implies the desired payment inequality.
Since xi(z,v−i) is monotone, we only evaluate it at vj ≤ vi and show

that xi(vj ,v−i) ≥ xj(v). In particular,

xi(vj ,v−i) = xj(vj ,v−i) ≥ xj(v).

The equality above comes from the symmetry of the environment and
the fact that agent i and j have the same value in profile (vj ,v−i). The
inequality comes from greedy maximization with random tie breaking
for multi-unit auctions: when agent i reduces her bid to tie agent j’s
value vj the probability that j receives a unit does not decrease as agent
i is only less competitive.

We will see later that this theorem generalizes beyond multi-unit en-
vironments (see Section 6.5). In particular, the only properties of multi-
unit environments that we employed in the proof were symmetry and
that the greedy algorithm is optimal.

6.3.4 Permutation Environments

Envy freedom is less natural in asymmetric environments such as those
given by matroid or downward-closed feasibility constraints. To extend
the envy-free benchmark to asymmetric environments we assume a sym-
metry imposing prior-free analog of the (standard) Bayesian assump-
tion that the agents’ value distribution is independent and identically
distributed. Specifically, the valuation profile can be arbitrary, but the
roles the agents play with respect to the environment (e.g., feasibility
constraint or cost function) are assigned by random permutation.

Definition 6.13 Given an environment, specified by cost function c(·),
the permutation environment is the environment with the identities of
the agents uniformly permuted. I.e., for permutation π drawn uniformly
at random from all permutations, the permutation environment has cost
function c(π(·)).

Our goal is a prior-free analysis framework for which approxima-
tion implies prior-independent approximation in i.i.d. environments. Of
course the expected revenue of the optimal auction in an i.i.d. envi-
ronment is unaffected by a random permutation of the identities of
the agents. Therefore, with respect to the goal of obtaining a prior-
independent corollary from a prior-free analysis (by Proposition 6.1),
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it is without loss to assume a permutation environment. Importantly,
while a matroid or downward-closed environment may be asymmetric,
a matroid permutation or downward-closed permutation environment
is inherently symmetric. This symmetry admits a meaningful study of
envy freedom.
The environments considered heretofore have been given determinis-

tically, e.g., by a cost function or set system (Chapter 3, Section 3.1).
A generalization of this model would be to allow randomized environ-
ments. We view a randomized environment as a probability distribution
over deterministic environments, i.e., as a convex combination. For the
purpose of incentives and performance, we will view mechanism design in
randomized environments as follows. First, the agents report their pref-
erences; second, the designer’s cost function (or feasibility constraint) is
realized; and third, the mechanism for the realized cost function is run
on the reported preferences. The performance in such probabilistic envi-
ronment is measured in expectation over both the randomization in the
mechanism and the environment. Agents act before the set system is re-
alized and therefore from their perspective the game they are playing in
is the composition of the randomized environment with the (potentially
randomized) mechanism.
An example of such a probabilistic environment comes from display

advertising. Banner advertisements on web pages are often sold by auc-
tion. Of course the number of visitors to the web page is not precisely
known at the time the advertisers bid; instead, this number can be rea-
sonably modeled as a random variable. Therefore, the environment is a
convex combination of multi-unit auctions where the supply k is ran-
domized.

6.3.5 The Envy-free Benchmark

We are now ready to formally define the envy-free benchmark. To do
so we must address the potential asymmetry in the environment and
the technicality that the envy-free revenue itself may have unbounded
resolution (recall the discussion above Definition 6.5 on 179). Finally, we
must give economic justification to the benchmark by showing that it is
normalized.

Definition 6.14 For any environment and valuation profile v, the
envy-free benchmark, denoted EFO(2)(v), is the optimal envy-free rev-
enue in the permutation environment on the valuation profile v(2) where
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the highest value v(1) is replaced with twice the second highest value

2v(2), i.e., v
(2) = (2v(2), v(2), v(3), . . . , v(n)).

Theorem 6.25 For i.i.d., regular, n ≥ 2 agent, multi-unit environ-
ments, the envy-free benchmark is normalized.

Proof Recall that for i.i.d. regular distributions F , the n-agent k-unit
Bayesian optimal auction REFF is the k + 1st-price auction with the
monopoly reserve v̂⋆ for the distribution. We will show a stronger claim
than the statement of the lemma. The anonymous-reserve benchmark
APX for valuation profile v is the revenue of the k-unit auction with the
best reserve price for the valuation profile v

(2) = (2v(2), v(2), . . . , v(n)).
For k = 1, APX(v) = 2v(2) and in general APX(v) = max2≤i≤k i v(i).

The outcome of the anonymous-reserve benchmark is envy-free for v(2);
therefore, it lower bounds the envy-free optimal revenue for v

(2); and
therefore, the normalization of the anonymous-reserve benchmark im-
plies normalization of the envy-free benchmark.

We first argue the n = 2 agent, k = 2 unit special case (a.k.a., the
two-agent digital good environment). Fix an i.i.d. regular distribution F

over valuation profiles. We show that the expected anonymous-reserve
benchmark (APX) is at least the performance of the Bayesian optimal
mechanism (REFF ) for the distribution, i.e., that Ev∼F [APX(v)] ≥
Ev∼F [REFF (v)].
Recall Theorem 5.1 (also Lemma 5.6) which states that for i.i.d. reg-

ular distributions that the revenue of the two-agent second-price auc-
tion exceeds that of the single-agent monopoly pricing. Thus, twice the
second-price revenue exceeds twice the monopoly pricing revenue. For
n = k = 2, the former is equal to the expected anonymous-reserve bench-
mark and the latter is equal to the expected Bayesian optimal revenue.
Under the regularity assumption, the normalization of the anonymous-

reserve benchmark for the two-agent digital good environment implies
its normalization for multi-unit environments with general n ≥ 2 agents
and k units. To show this extension, consider any k ≥ 2 and any n ≥ 2
and condition on the third-highest value v(3). The following argument
shows that E

[

APX(v) | v(3)
]

≥ E
[

REFF (v) | v(3)
]

for v(3) < v̂⋆ and
v(3) ≥ v̂⋆ considered as separate cases.
When the third-highest value v(3) is less than the monopoly price v̂⋆,

then all agents except for the top two are rejected. The conditional dis-
tribution on of the two highest valued agents is regular (the conditioning
only truncates and scales the revenue curve; therefore, its convexity is
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preserved), moreover, the remaining feasibility constraint is that of a
digital good. Hence, the normalization for the two-agent digital good
environment implies normalization for this conditional environment.
When the third-highest value v(3) is more than the monopoly price

v̂⋆, then the Bayesian optimal auction REFF on v sells at least two
units at a uniform price and the empirical anonymous-reserve revenue
from selling the same number of units is pointwise no smaller. Thus, the
desired bound holds pointwise.
Now consider the final case of k = 1 unit, n ≥ 2 agent environments.

We will reduce normalization of the anonymous-reserve benchmark in
this environment to that of the k = 2 unit environment. The benchmark
in the two environments is the same: the one-unit benchmark is 2v(2);
the two-unit benchmark is 2v(2). The Bayesian optimal revenue is only
greater for two units than with one unit. Therefore, normalization for
two units implies normalization for one unit.

It is evident from this proof that the anonymous-reserve benchmark
is also normalized for multi-unit environments. We will prefer to use the
envy-free benchmark for three reasons. First, the envy-free benchmark
remains normalized for a larger class of distributions which admit a large
degree of irregularity (though not arbitrary irregular distributions). Sec-
ond, the envy-free benchmark is easier to work with as it is structurally a
virtual surplus optimization. Third, for position environments discussed
subsequently, the envy-free benchmark is linear in the position weights,
while the anonymous reserve benchmark is not. This linearity will be
important for our analysis.

6.4 Multi-unit Environments

In this section we will discuss two approaches for multi-unit environ-
ments. In the first, we will give an approximate reduction to digital good
environments. This reduction will give a β+1 approximation mechanism
for multi-unit environments from any β approximation mechanism for
digital goods. Applied to the prior-free optimal digital good auction,
a 2.42 approximation, this approach yields a multi-unit 3.42 approxi-
mation. The second approach will be to directly generalize the random
sampling optimal price auction to multi-unit environments. This gener-
alization randomly partitions the agents into a market and sample, cal-
culates the empirical distribution of the sample, and then runs optimal
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multi-unit auction on the market according to the empirical distribution
for the sample.

6.4.1 Reduction to Digital Goods

Our first approach is an approximate reduction. For i.i.d. irregular single-
item environments, Corollary 4.16 shows that the second-price auction
with anonymous reserve is a two approximation to the optimal auc-
tion. I.e., the loss in performance from not ironing when the distribution
is irregular is at most a factor of two. In fact, this result extends to
multi-unit environments (as does the prophet inequality from which it
is proved) and the approximation factor only improves. Given the close
connection between envy-free optimal outcomes and Bayesian optimal
auctions, it should be unsurprising that this result translates between
the two models.
Consider the revenue of the surplus maximization mechanism with

the best (ex post) anonymous reserve price. For instance, for the k-unit
environment and valuation profile v, this revenue is maxi≤k iv(i). It is
impossible to approximate this revenue with a prior-free mechanism so,
as we did for the envy-free benchmark, we exclude the case that it sells
to only the highest-valued agent at her value. Therefore, for k-unit envi-
ronments the anonymous-reserve benchmark is max2≤i≤k iv(i) for k > 2
(and 2v(2) for k = 1), i.e., it is the optimal anonymous reserve revenue

for the valuation profile v(2) = (2v(2), v(2), . . . , v(n)). Notice that for dig-
ital goods, i.e., k = n, the anonymous-reserve benchmark is equal to the
envy-free benchmark. Of course, an anonymous reserve is envy free so
the envy-free benchmark is at least the anonymous-reserve benchmark.
We now give an approximate reduction from multi-unit environments

to digital-good environments in two steps. We first show that the envy-
free benchmark is at most twice the anonymous-reserve benchmark in
multi-unit environments. We then show an approximation preserving re-
duction from multi-unit to digital-good environments with respect to the
anonymous-reserve benchmark. In the next section a more sophisticated
approach that attains a better bound is given.

Theorem 6.26 For any valuation profile, in multi-unit environments,
the envy-free benchmark (resp. optimal revenue) is at most the sum of
the anonymous-reserve benchmark (resp. optimal revenue) and k + 1st-
price auction revenue, which is at most twice the anonymous-reserve
benchmark (resp. optimal revenue).
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Figure 6.4 Depiction of ironed revenue curve R for the geometric proof of
Theorem 6.26. The solid piece-wise linear curve is R, the convex hull of
P , and contains the line-segment connecting point A = (i, Pi) and point
D = (j, Pj). The envy-free benchmark is achieved at point C = (k,Rk).
The parallel dashed lines have slope v(j), the other dashed line has slope
v(i).

Proof We prove the statement with respect to the optimal revenues
and any valuation profile v and then apply the theorem to the valuation
profile v

(2) to obtain the statement with respect to the benchmarks.

If the envy-free optimal revenue sells fewer than k units or the revenue
curve is not ironed at k then the anonymous-reserve revenue equals the
envy-free revenue and the theorem trivially holds. Otherwise, assume
that the envy-free optimal revenue sells all k units and irons between
index i < k and j > k (see Figure 6.4). In terms of empirical revenue
curves (Definition 6.12), the envy-free optimal revenue for v is REF =
Rk = C. Note that the AC line has slope R′

k, i.e., C = A+(k−i)R′
k. The

line from the origin to D has slope v(j). By geometry v(j) > R′
k. Thus,

extending a line from A = Ri with slope v(j) to point B = A+(k−i) v(j)
satisfies B > C.

The anonymous-reserve revenue exceeds the k+1st-price auction rev-
enue; thus, twice the anonymous-reserve revenue exceeds the sum of the
anonymous-reserve revenue and the k + 1st-price auction revenue. The
anonymous-reserve revenue is at least Ri and the k + 1st-price revenue
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is k v(k+1) ≥ (k − i) v(j) (as j ≥ k + 1 and i ≥ 1); thus the sum of
their revenues exceeds Ri + (k − i) v(j) = B > C = REF. The theorem
follows.

Theorem 6.26 reduces the problem of approximating the envy-free
benchmark to that of approximating the anonymous-reserve benchmark.
There is a general construction for converting a digital good auction
A into a limited supply auction and if A is a β approximation to
the anonymous-reserve benchmark (which is identical to the envy-free
benchmark for digital goods) then so is the resulting multi-unit auction.

Definition 6.15 The k ≥ 2 unit restriction Ak of digital good auction
A is the following:

(i) Simulate the k + 1st-price auction (i.e., the k highest valued agents
win and pay v(k+1)).

(ii) Simulate A on the k winners v(1), . . . , v(k).

(iii) Serve the winners from the second simulation and charge them the
higher of their prices in the two simulations.

The 1-unit restriction A1 is the second-price auction.

Implicit in this definition is a new notion of mechanism composition
(cf. Chapter 5, Section 5.4.2). It is easy to see that this mechanism com-
position is dominant strategy incentive compatible. In general such a
composition is DSIC whenever no winner of the first mechanism can
manipulate her value to change the set of winners while simultaneously
remaining a winner (see Exercise 6.3); mechanisms that satisfy this prop-
erty are said to be non-bossy.

Theorem 6.27 If A is a β approximation to the envy-free benchmark
in digital good environments then its multi-unit restriction Ak is a 2β
approximation in multi-unit environments.

Proof For 1-unit environments, the second-price auction (with revenue
v(2)) is a 2-approximation to the 1-unit envy-free benchmark EFO(2)(v) =
2v(2). For k ≥ 2 unit environments, the k-unit restriction is a β approx-
imation to the envy-free benchmark restricted to the k highest-valued
agents. This benchmark is equal to the anonymous-reserve benchmark
on the full set of agents. This benchmark, by Theorem 6.26, is at least
half the envy-free benchmark on the full set of agents. Thus, the k-unit
restriction is a 2β approximation to the envy-free benchmark.
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This theorem can be applied to any digital good auction; for instance,
from Theorem 6.7 we can conclude that there is a multi-unit auction
that is a 4.84 approximation to the envy-free benchmark.

6.4.2 Combination of Benchmarks and Auctions

Theorem 6.26, which shows that the envy-free benchmark is bounded
by the sum of the anonymous-reserve benchmark and the k + 1st-price
auction revenue, can be employed to construct a β + 1 approximation
for multi-unit environments from a β approximation for digital goods.
Applied to the prior-free optimal auction for digital goods, this yields
an multi-unit 3.42 approximation. The approach is to view the envy-
free benchmark as the sum of two benchmarks, design prior-free mech-
anisms for each benchmark, and then consider an appropriate convex
combination of the two mechanisms to optimize the approximation with
respect to the original benchmark. This approach provides two conclu-
sions. First, it gives a modular approach to prior-free mechanism design.
Second, it suggests that, even in pursuit of prior-free approximation with
respect to the economically motivated envy-free benchmark, it may be
useful to understand prior-free approximation for other benchmarks.

Definition 6.16 For benchmark G(v) = GA(v) + GB(v), mechanism
MA giving a prior-free βA approximation to benchmark GA, and mech-
anism MB giving a prior-free βB approximation to benchmark GB; the
prior-free combination M runs MA with probability βA/βA+βB and MB

with probability βB/βA+βB.

Theorem 6.28 With respect to Definition 6.16, the prior-free com-
bination M is a prior-free β = βA + βB approximation to benchmark
G(v) = GA(v) + GB(v).

Proof

M(v) =
βA

βA + βB
MA(v) +

βB

βA + βB
MB(v)

≥
βA

βA + βB

GA(v)

βA
+

βB

βA + βB

GB(v)

βB
=

GA(v) + GB(v)

βA + βB
.

As described above, the k-unit restriction Ak of β approximate digi-
tal good auction A is an β approximation to the multi-unit anonymous
reserve benchmark. The k + 1st-price auction is, obviously, a one ap-
proximation to the k + 1st-price auction revenue. Thus, we can invoke
Theorem 6.26 and Theorem 6.28 to obtain the following corollary. The
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best multi-unit auction via this construction is attained by instantiating
the reduction with the prior-free optimal digital good auction which is
a 2.42 approximation (Theorem 6.7).

Corollary 6.29 For prior-free β-approximate digital-good auction A,
the prior-free combination of the multi-unit restriction Ak (with prob-
ability β/β+1) and the k + 1st-price auction (with probability 1/β+1) is
a prior-free β + 1 approximation to the envy-free benchmark in multi-
unit environments. For the prior-free optimal digital-good auction, this
multi-unit auction is a prior-free 3.42 approximation.

6.4.3 The Random Sampling Auction

An alternative approach to the multi-unit auction problem is to directly
generalize the random sampling optimal price auction. Intuitively, the
random sampling auction partitions the agents into a market and sample
and then runs the optimal auction for the empirical distribution of the
sample on the market. For digital goods the optimal auction for the
empirical distribution sample is just the to post the empirical monopoly
price. For multi-unit environments, the optimal auction irons when the
empirical distribution of the sample is irregular.

Definition 6.17 The random sampling (virtual surplus maximization)
auction for the k-unit environment

(i) randomly partitions the agents into market M and sample S by as-
signing the highest-valued agent to M and flipping a fair coin for all
other agents,

(ii) computes virtual valuation function φS for the empirical distribution
of S, and

(iii) maximizes virtual surplus of selling at most k units to S with respect
to φM .

The proof of the following theorem can be derived similarly to the
proof of Lemma 6.13 (page 185); we omit the details.

Theorem 6.30 For multi-unit environments and all valuation profiles,
the random sampling auction is a constant approximation to the envy-
free benchmark.

The random sampling auction shares some good properties with op-
timal mechanisms. The first is that the mechanism on the market is a
virtual-surplus optimization. I.e., it sorts the agents in the market by
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virtual value and allocates to the agents greedily in that order. This
property is useful for two reasons. First, in environments where the sup-
ply k of units is unknown in advance, the mechanism can be implemented
incrementally. Each unit of supply is allocated in to the agent remaining
in the market with the highest virtual valuation. Second, as we will see
in the next section, it can be applied without specialization to matroid
permutation and position environments.

6.5 Matroid Permutation and Position
Environments

Position environments are important as they model auctions for selling
advertisements on Internet search engines such as Google andMicrosoft’s
Bing. In these auctions agents bid for positions with higher positions
being better. The feasibility constraint imposed by position auctions is
a priori symmetric.

Definition 6.18 A position environment is one with n agents, n po-
sitions, each position j described by weight wj . An auction assigns each
position j to an agent i which corresponds to setting xi = wj . Posi-
tions are usually assumed to be ordered in non-increasing order, i.e.,
wj ≥ wj+1. (Often w1 is normalized to one.)

Position auctions correspond to advertising on Internet search engines
as follows. Upon each search to the search engine, organic search results
appear on the left-hand side and sponsored search results, a.k.a., ad-
vertisements, appear on the right-hand side of the search results page.
Advertiser i receives a revenue of vi in expectation each time her ad is
clicked (e.g., if the searcher buys the advertiser’s product) and if her ad
is shown in position j it receives click-through rate wj , i.e., the proba-
bility that the searcher clicks on the ad is wj . If the ad is not clicked
on the advertiser receives no revenue. Searchers are more likely to click
on the top slots than the bottom slots, hence wj ≥ wj+1. An adver-
tiser i shown in slot j receives value viwj . Understandably, this model
of Internet search advertising omits many details of the environment;
nonetheless, it has proven to be quite relevant.
We now show that mechanism design for matroid permutation envi-

ronments can be reduced to that for position environments which can
be reduced to that for multi-unit environments. These reductions follow,
essentially, because each of these environments are ordinal, i.e., because
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surplus is maximized by the greedy algorithm. The greedy algorithm
does not compare magnitudes of the values of agents, it only consid-
ers their relative order. This intuition is summarized by the following
definition.

Definition 6.19 The characteristic weights w for a matroid are de-
fined as follows: Set vi = n − i + 1, for all i, and consider the surplus
maximizing allocation when agents are assigned roles in the set system
via random permutation and then the maximum feasible set is calcu-
lated, e.g., via the greedy algorithm. Let wi be the probability of serving
agent i, i.e., the ith highest-valued agent.

To see why the characteristic weights are important, notice that since
the greedy algorithm is optimal for matroids, the cardinal values of the
agents do not matter, just the sorted order. Therefore, e.g., when maxi-
mizing virtual value, wi is the probability of serving the agent with the
ith highest virtual value.

Theorem 6.31 The problem of revenue maximization (or approxima-
tion) in matroid permutation environments reduces to the problem of
revenue maximization (or approximation) in position environments.

Proof We show two things. First, we show that for any matroid permu-
tation environment with characteristic weights w, the position environ-
ment with weights w has the same optimal expected revenue. Second,
for any such environments any position auction can be converted into an
auction for the matroid permutation environment that achieves the same
expected revenue as the position auction in the position environment
given by the characteristic weights of the matroid. These two results im-
ply that any Bayesian, prior-independent, or prior-free approximation
results for position auctions extend to matroid permutation environ-
ments.

(i) Revenue optimal auctions are virtual surplus optimizers. Letw be the
characteristic weights for the given matroid environment. By the def-
inition of w, the optimal auctions for both the matroid permutation
and position environments serve the agent with the jth highest posi-
tive virtual value with probability wj . (In both environments agents
with negative virtual values are discarded.) Expected revenue equals
expected virtual surplus; therefore, the optimal expected revenues in
the two environments are the same.

(ii) Consider the following matroid permutation mechanism which is based
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on the position auction with weights w. The input is v. First, simu-
late the position auction and let j be the assignment where ji is the
position assigned to agent i, or ji = ⊥ if i is not assigned a slot. Re-
ject all agents i with ji = ⊥. Now run the greedy matroid algorithm
in the matroid permutation environment on input v†i = n− ji+1 and
output its outcome.

Notice that any agent i is allocated in the matroid permutation
setting with probability equal to the expected weight of the position
it is assigned in the position auction. Therefore the two mechanisms
have the exact same allocation rule (and therefore, the exact same
expected revenue).

We are now going to reduce the design of position auctions to that of
multi-unit auctions. This reduction implies that the prior-free approxi-
mation factor for multi-unit environments extends to matroid permuta-
tion and position environments. Furthermore, the mechanism that gives
this approximation can be derived from the multi-unit auction.

Theorem 6.32 The problem of revenue maximization (or approxima-
tion) in position auctions reduces to the problem of revenue maximization
(or approximation) in k-unit auctions.

Proof This proof follows the same high-level argument as the proof of
Theorem 6.31.
Let w′

j = wj − wj+1 be the difference between successive position
weights. Recall that without loss of generality w1 = 1 so

∑

j w
′
j = 1 and

w
′ can be interpreted as a probability measure over [m].

(i) The expected revenue of an optimal position auction is equal to the
expected revenue of the convex combination of optimal j-unit auc-
tions under measure w′. In the optimal position auction and the opti-
mal auction for the above convex combination of multi-unit auctions
the agent with the jth highest positive virtual value is served with
probability wj . (In both settings agents with negative virtual values
are discarded.) Therefore, the expected revenues in the two environ-
ments are the same.

(ii) Now consider the following position auction which is based on a multi-
unit auction. Simulate a j-unit auction on the input v for each j ∈ [m]
and let x(j)

i be the (potentially random) indicator for whether agent

i is allocated in simulation j. Let xi =
∑

j x
(j)
i w′

j be the expected al-
location to j in the convex combination of multi-unit auctions given
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by measure w
′. The vector of position weights w majorizes the allo-

cation vector x in the sense that
∑k

i wi ≥
∑k

i xi (and with equality
for k = m). Therefore we can write x = Sw where S is a doubly
stochastic matrix. Any doubly stochastic matrix is a convex combi-
nation of permutation matrices, so we can write S =

∑

ℓ ρℓPℓ where
∑

ℓ ρℓ = 1 and each Pℓ is a permutation matrix (Birkhoff–von Neu-
mann Theorem). Finally, we pick an ℓ with probability ρℓ and assign
the agents to positions according to the permutation matrix Pℓ. The
resulting allocation is exactly the desired x.

Let β be the worst case, over number of units k, approximation
factor of the multi-unit auction in the Bayesian, prior-independent,
or prior-free sense. The position auction constructed is at worst a β
approximation in the same sense.

We conclude that matroid permutation auctions reduce to position
auctions which reduce to multi-unit auctions. But multi-unit environ-
ments are the simplest of matroid permutation environments, i.e., the
uniform matroid (Section 4.6.1, page 131), where even the fact that the
agents are permuted is irrelevant because uniform matroids are inher-
ently symmetric. Therefore, from the perspective of optimization and
approximation all of these problems are equivalent.
It is important to note, however, that this reduction may not preserve

non-objective aspects of the mechanism. For instance, we have discussed
that anonymous reserve pricing is a two approximation to virtual sur-
plus maximization in multi-unit environments (e.g., Corollary 4.16 and
Theorem 6.26). The reduction from matroid permutation and position
environments does not imply that surplus maximization with an anony-
mous reserve gives a two approximation in these more general envi-
ronments. This is because in the multi-unit two approximation via an
anonymous reserve, the reserve is tailored to k, the number of units.
Therefore, constructing a position auction or matroid mechanism would
require simulating the multi-unit auction with potentially distinct re-
serve prices for each supply constraint; the resulting mechanism will not
generally be an anonymous-reserve mechanism.
In fact, for i.i.d., irregular, position and matroid permutation environ-

ments the surplus maximization mechanism with anonymous reserve is
not generally a constant approximation to the optimal mechanism. The
approximation factor via the anonymous reserve in these environments
is Ω(logn/ log logn), i.e., there exists a distribution and matroid per-
mutation and position environments such that the anonymous-reserve
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mechanism has expected revenue that is a Θ(logn/ log log n) multiplica-
tive factor from the optimal mechanism revenue (Exercise 6.4). The same
inapproximation result holds with comparison between the anonymous-
reserve and envy-free benchmarks.

Theorem 6.33 There exists an i.i.d. distribution (resp. valuation pro-
file), a matroid permutation environment, and position environment such
that the (optimal) anonymous-reserve mechanism (resp. benchmark) is a
Θ(logn/ log logn) approximation the Bayesian optimal mechanism (resp. envy-
free benchmark).

Implicit in the above discussion (and reductions) is the assumption
that the characteristic weights for a matroid permutation setting can be
calculated, or fundamentally, that the weights in the position auction are
precisely known. Notice that in our application of position auctions to
advertising on Internet search engines the position weights were the like-
lihood of a click for an advertisement in each position. These weights can
be estimated but are not known exactly. The general reduction from ma-
troid permutation and position auctions to multi-unit auctions requires
foreknowledge of these weights.
Recall from the discussion of the multi-unit random sampling auction

(Definition 6.17) that, as a virtual surplus maximizer, it does not require
foreknowledge of the supply k of units. Closer inspection of the reduc-
tions of Theorem 6.32 reveals that if the given multi-unit auction is a
virtual surplus maximizer then the weights do not need to be known to
calculate the appropriate allocation. Simply maximize the virtual sur-
plus for the realized environment.
In the definition of permutation environments, it is assumed that the

agents are unaware of their roles in the set system, i.e., the agents’ in-
centives are taken in expectation over the random permutation. A mech-
anism that is incentive compatible in this permutation model may not
generally be incentive compatible if agents do know their roles. There-
fore, matroid permutation auctions that result from the above reductions
are not generally incentive compatible without the uniform random per-
mutation. Of course the random sampling auction is a virtual surplus
maximizer for the market and virtual surplus maximizers are dominant
strategy incentive compatible (Theorem 3.14). Thus, the reduction ap-
plied to the random sampling auction is incentive compatible even if the
permutation is known.

Corollary 6.34 For any matroid environment and valuation profile,
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the random sampling auction is dominant strategy incentive compatible
and when the values are randomly permuted, its expected revenue is a β
approximation to the envy-free benchmark where β is its approximation
factor for multi-unit environments.

6.6 Downward-closed Permutation Environments

In this section we consider downward-closed permutation environments.
In multi-unit, position, and matroid permutation environments, virtual
surplus maximization is ordinal, i.e., it depends on the relative order
of the virtual values and not their magnitudes. In contrast, the main
difficulty of more general downward-closed environments is that virtual
surplus maximization is not generally ordinal. Nonetheless, variants of
the random sampling (virtual surplus maximization) and the random
sampling profit extraction auctions give constant approximations to the
envy-free benchmark in downward-closed environments. We will describe
only the latter result, which can be viewed as transforming the non-
ordinal environment into an ordinal one.
The first step in this construction is to generalize the notion of a

profit extractor (from Section 6.2.4). Our approach to profit extraction
in downward-closed permutation environments will be the following. The
true (and unknown) valuation profile is v. Suppose we knew a profile
v
† that was a coordinate-wise lower bound on v, i.e., v(i) ≥ v†(i) for all i

(short-hand notation: v ≥ v
†). A natural goal with this side-knowledge

would be to design an incentive compatible mechanism that obtains at
least the envy-free optimal revenue for v

†. We refer to mechanism that
obtains this revenue, in expectation over the random permutation and
whenever the coordinate-wise lower-bound assumption holds, as a profit
extractor.

Definition 6.20 The downward-closed profit extractor for v
† is the

following:

(i) Sort v and v
† in decreasing order.

(ii) Reject all agents if there exists an i with vi < v†i .

(iii) Calculate the empirical virtual values φ† for v†.

(iv) For all i, assign the ith highest-valued agent the ith highest virtual
value φ†

i .

(v) Serve the agents to maximize the virtual surplus.
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Theorem 6.35 For any downward-closed environment and valuation
profiles v and v

†, the downward-closed profit extractor for v† is dominant
strategy incentive compatible and if v ≥ v

† then its expected revenue
under a random permutation is at least the envy-free optimal revenue
for v

†.

Proof See Exercise 6.5.

To make use of this profit extractor we need to find a v
† that sat-

isfies the assumption of the theorem and that is non-manipulable. The
idea is to use biased random sampling. In particular, if the agents are
partitioned into a sample with probability p < 1/2 and market with
probability 1 − p, then there is a high probability the valuation profile
of the sample is a coordinate-wise lower bound on that of the market.
Furthermore, we will show that even conditioned on this event, the ex-
pected optimal envy-free revenue of the sample approximates the envy-
free benchmark. The approximate optimality of the mechanism follows.

Definition 6.21 The biased (random) sampling profit extractionmech-
anism for downward-closed environments (with parameters p ∈ (0, 1/2)
and ℓ ∈ {0, 1, 2, . . .}) is:

(i) Assign the top ℓ agents to the market M .
(ii) Randomly partition the remaining agents into S (with probability p)

and M (with probability 1− p).
(iii) Reject agents in S.
(iv) Run the downward-closed profit extractor for vS on M .3

Lemma 6.36 The biased sampling profit extraction mechanism is dom-
inant strategy incentive compatible.

Proof Fix any outcome of the n coins. Each agent i faces a critical
value. Pretend the agent is in the market, and simulate the rest of the
auction. The profit extractor is deterministic and dominant strategy
incentive compatible; thus by Theorem 6.6, it induces a critical value v̂i.
Now consider i’s coin. If the coin puts i in the market then she is offered
critical value v̂i; if the coin puts i in the sample, then she is offered
max(v(ℓ+1), v̂i), i.e., she wins only if she is in the top ℓ and would win
in the profit extractor.

3
The payments of the top ℓ agents are adjusted as follows. Flipping a biased coin
for each such agent, but if she ends up in the sample (with probability p), she
can buy her way into the market by agreeing to pay at least v(ℓ+1). In such a
case, her final payment is the maximum of her payment in the profit extraction
mechanism and v(ℓ+1).
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The following lemma, which is key to the analysis, shows that the
probability that vM ≥ vS in the biased sampling profit extraction auc-
tion is at least 1− (p/1−p)ℓ+1.

Lemma 6.37 The probability of ruin of a biased random walk on the
integers;4 that steps back with probability p < 1/2, steps forward with
probability 1 − p, and starts from position one; is exactly p/1−p. If it
starts at position k the probability of ruin is (p/1−p)k.

Proof The proof is similar to that of Lemma 6.14. See Exercise 6.6.

The remainder of this section follows the the approach of prior-free
combination developed in Section 6.4.2. Lemma 6.39 will bound the
envy-free benchmark by the sum of two benchmarks, the envy-free bench-
mark restricted to the two highest-valued agents and the envy-free op-
timal revenue excluding these two agents. Lemma 6.40 will show that
the second-price auction (to serve at most one agent) is a two approxi-
mation to the first benchmark and Lemma 6.41 will show that a biased
sampling profit extraction auction is a 4.51 approximation to the second
benchmark. We will conclude by Theorem 6.28 that the prior-free com-
bination (Definition 6.16) of the two auctions is a 6.51 approximation to
the envy-free benchmark.

Theorem 6.38 In downward-closed permutation environments, the
prior-free combination of the second-price auction with a biased sam-
pling profit extraction auction is a 6.51 approximation to the envy-free
benchmark.

Lemma 6.39 For any valuation profile v, the envy-free optimal rev-
enue for a subset S of agents is a subadditive function S. In particular,
EFO(v) ≤ EFO(v1, v2) + EFO(v−1,2).

Proof Observe for disjoint sets A and B of agents,

EFO(vA∪B) = EFOA(vA∪B) + EFOB(vA∪B)

≤ EFO(vA) + EFO(vB).

The first line follows by definition where EFOA(vA∪B) denotes the con-
tribution to the envy-free optimal revenue of A ∪ B from the agents in
A, likewise for B. Of course, the envy-free optimal outcome for A∪B is
envy free with respect to subset A. However, if we are only to consider

4 Recall, the probability of ruin of a random walk is the probability that it ever
reaches position zero
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envy-freedom constraints of A, then this outcome for A∪B is not neces-
sarily optimal. Thus, EFOA(vA∪B) ≤ EFO(vA); likewise for B; and the
second line follows. The left- and right-hand side of this equation give
the definition of subadditivity.

Lemma 6.40 For any downward-closed environment, the second-price
auction is a 2-approximation to the envy-free benchmark restricted to
the two highest-valued agents.

Proof Assume all singleton sets are feasible with respect to the downward-
closed environment and the two highest valued agents have values v1 ≥
v2. The second-price auction, which always only serves a single agent,
is feasible and its revenue is v2. For the valuation profile v

† = (2v2, v2),
the revenues are R† = (2v2, 2v2) and the marginal revenues are (2v2, 0).
Thus, the envy-free optimal revenue is obtained by only serving the first
agent at a price of 2v2.

Lemma 6.41 For any downward-closed permutation environment and
any valuation profile, the biased sampling profit extraction auction with
p = .29 and ℓ = 2 is a 4.51 approximation to the envy-free optimal
revenue on the valuation profile without the two highest-valued agents.

Proof Index the two highest-valued agents by 1 and 2. Let REF(v) =
EFO(v−1,2) be the envy-free optimal revenue on the valuation profile
without the two highest valued agents, and APX(v) be the expected
revenue of the biased sampling profit extraction mechanism. We have,

REF(v) ≥ E[EFO(vS) | vM ≥ vS ] Pr[vM ≥ vS ]

= E[EFO(vS)]−E[EFO(vS) | vM ̸≥ vS ] Pr[vM ̸≥ vS ] .

≥ p EFO(v−1,2)− EFO(v−1,2)Pr[vM ̸≥ vS ]

≥
(

p− ( p
1−p )

3) REF(v).

The first line is by the definition of the mechanism and Theorem 6.35.
The second line is by the definition of conditional expectation. The first
and second part of the third line are by subadditivity (Lemma 6.39) and
monotonicity of the envy-free optimal revenue, respectively. The last
line is from Pr[vM ̸≥ vS ] ≤ (p/1−p)3 as guaranteed by Lemma 6.37 for
a random walk starting at position ℓ+ 1 = 3.
The expression p − (p/1−p)3 is maximized at p ≈ 0.29 giving an ap-

proximation of about 4.51 with respect to REF(v).
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Exercises

6.1 Complete the prior-free analysis framework for the objective of
residual surplus in a two-agent single-item environment. The resid-
ual surplus is the sum of the values of the winners less any payments
made.

(a) Identify a normalized benchmark.

(b) Identify a distribution for which all auctions have the same
residual surplus.

(c) Give a lower bound on the resolution of your benchmark.

(d) Give an upper bound on the prior-free optimal approximation
with respect to your benchmark.

Ideally, your lower bound on resolution should match your upper
bound on prior-free optimal approximation.

6.2 Consider the design of prior-free incentive-compatible mechanisms
with revenue that approximates the (optimal) social-surplus bench-
mark, i.e., OPT(v), when all values are known to be in a bounded
interval [1, h]. For downward-closed environments, give a Θ(log h)
approximation mechanism.

6.3 Consider a generalization of the mechanism composition from the
construction of the multi-unit variant of a digital good auction,
i.e., where the k + 1st-price auction and the given digital good
auction are composed (Definition 6.15). Two dominant strategy
incentive compatible mechanisms A and B can be composed as
follows: Simulate mechanism A; run mechanism B on the winners
of mechanism A; and charge the winners of B the maximum of
their critical values for A and B. A deterministic mechanism is
non-bossy if there are no two values for any agent i such that the
sets of winners of the mechanism are distinct but contain i.

(a) Show that the composite mechanism is dominant strategy in-
centive compatible when mechanism A is non-bossy.

(b) Show that the surplus maximization mechanism in any single-
dimensional environment is non-bossy.

6.4 Prove the envy-free variant of Theorem 6.33, i.e., that there ex-
ists a valuation profile and a position environment for which the
anonymous-reserve benchmark is a Ω(log n/ log logn) approxima-
tion to the envy-free benchmark.

6.5 Show that for any downward-closed environment and valuation
profiles v and v

†, the downward-closed profit extractor for v
† is
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dominant strategy incentive compatible and if v ≥ v
† then its

expected revenue under random permutation is at least the envy-
free optimal revenue for v†. I.e., prove Theorem 6.35.

6.6 Prove Lemma 6.37: The probability of ruin of a biased random
walk on the integers; that steps back with probability p < 1/2,
steps forward with probability 1− p, and starts from position one;
is exactly p/1−p. If it starts at position k the probability of ruin is
(p/1−p)k.

Chapter Notes

The prior-free auctions for digital good environments were first studied
by Goldberg et al. (2001) where the deterministic impossibility theorem
and the random sampling optimal price auction were given. The random
sampling optimal price auction was shown to be a constant approxima-
tion by Goldberg et al. (2006). The proof that the random sampling
auction is a prior-free 15 approximation is from Feige et al. (2005); the
bound was improved to 4.68 by Alaei et al. (2009). The profit extrac-
tion mechanism and the random sampling profit extraction mechanism
were given by Fiat et al. (2002). The extension of this auction to three
partitions was studied by Hartline and McGrew (2005).

The lower-bound on the approximation factor of prior-free auctions
for digital goods of 2.42 was given by Goldberg et al. (2004); this bound
was proven to be tight by Chen et al. (2014b). For the special cases of
n = 2 and n = 3 agents the form of the optimal auction is known. For
n = 2, Fiat et al. (2002) showed that the second-price auction is optimal
and its approximation ratio is β⋆ = 2. For n = 3, Hartline and McGrew
(2005) identified the optimal three-agent auction and showed that its
approximation ratio is β⋆ = 13/6 ≈ 2.17.

The formal prior-free design and analysis framework for digital good
auctions was given by Goldberg et al. (2006). This framework was refined
for general symmetric auction problems and grounded in the theory of
Bayesian optimal auctions by Hartline and Roughgarden (2008). The
connection between prior-free mechanism design and envy-freedom was
given by Devanur et al. (2014) (originally as Hartline and Yan, 2011).
The 2-approximate reduction from multi-unit to digital-good environ-

ments combines results from Fiat et al. (2002) and Devanur et al. (2014).
The improved reduction via “prior-free combination” that gives a multi-
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unit β + 1 approximation from a digital-good β approximation is from
Chen et al. (2014a).
Analysis of the random sampling auction for limited supply, position,

matroid permutation, and downward-closed permutation environments
was given was given by Devanur et al. (2014) (originally as Devanur and
Hartline, 2009). For multi-unit auctions they prove the random sampling
auction is a 9.6 approximation to the envy-free benchmark (i.e., Theo-
rem 6.30) by extending the analysis of Alaei et al. (2009). They prove the
equivalence between distributions over multi-unit environments, position
environments, and matroid permutation environments which allows the
9.6 approximation bound for multi-unit environments to extend. For
downward-closed permutation environments they give a variant of the
random sampling auction that is a prior-free 189 approximation.
The downward-closed profit extractor is from Ha and Hartline (2011).

Devanur et al. (2013) study the random sampling profit extraction auc-
tion, similar to the one described in this chapter, and show that it
is a 7.5 approximation in downward-closed permutation environments.
(They also give a variant of the auction for the case that the agents
have a common budget.) The biased sampling profit extraction auction
(Definition 6.21) and its analysis (Theorem 6.38) are from Chen et al.
(2014a).
This chapter omitted discussion of a very useful technique for design-

ing prior-free mechanisms using a “consensus mechanism” on statisti-
cally robust characteristics of the input. In this vein the consensus esti-
mates profit extraction mechanism from Goldberg and Hartline (2003)
obtains a 3.39 approximation for digital goods. This approach is also cen-
tral in obtaining an asymmetric deterministic auction that gives a good
approximation (Aggarwal et al., 2005). Ha and Hartline (2011) extend
the consensus approach to downward-closed permutation environments.
This chapter omitted asymptotic analysis of the random sampling

auction which is given Balcan et al. (2008). This analysis allows agents
to be distinguished by publicly observable attributes and agents with
distinct attributes may receive distinct prices.


