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Prior-independent Approximation

In the last two chapters we discussed mechanism that performed well
for a given Bayesian prior distribution. Assuming the existence of such
a Bayesian prior is natural when deriving mechanisms for games of in-
complete information as the Bayes-Nash equilibrium concept requires
a prior distribution that is common knowledge. In this chapter we will
relax the assumption the designer has knowledge of the prior distribu-
tion and is able to tune the parameters of her mechanism with it. The
goal of prior-independent mechanism design is to identify a single mech-
anism that has good performance for all distributions in a large family
of relevant distributions, e.g., the family of i.i.d. regular distributions.

As is evident from our analysis of Bayesian optimal auctions, e.g.,
for profit maximization, for any auction that one might consider good
for one prior, there is another prior for which another auction performs
strictly better. This consequence is obvious because optimal auctions for
distinct distributions are generally distinct. Nonetheless, while no single
auction is optimal for all value distributions, there may be a single auc-
tion that is approximately optimal across a wide range of distributions.

In this chapter we will take two approaches to prior-independent mech-
anism design. The first approach considers “resource” augmentation. We
will show that in some environments the (prior-independent) external-
ity pricing mechanism with increasing competition, e.g., by recruiting
more agents, earns more revenue than the revenue-optimal mechanism
without the increased competition. The second approach is to design
mechanisms that do a little market analysis on the fly. Via this second
approach, we will show that for a large class of environments there is a
single mechanism that approximates the revenue of the optimal mecha-
nism.
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5.1 Motivation

Since prior-independence is not without loss it is important to consider
its motivation; however, before doing so recall the original justification
for the common prior assumption (see Section 2.3). Auctions and mech-
anisms are games of incomplete information and in such games, in order
to argue about strategic choice, we needed to formalize how players deal
with uncertainty. We did this by assuming a Bayesian prior. In a Stack-
elberg game, instead of moving simultaneously, players make actions in a
prespecified order. We can view mechanism design as a two stage Stack-
elberg game where the designer is a player who moves first and the
agents are players who (simultaneously) move second. To analyze the
Bayes-Nash equilibrium in such a Stackelberg game, the designer bases
her strategy on the common prior. Without such prior knowledge, the
problem of predicting the designer’s strategy is ill posed. Thus, in so
far as the theory of mechanism design should describe (or predict) the
outcome of a game, within the standard equilibrium concept for games
of incomplete information, a prior assumption is necessary.

As discussed in Chapter 1, in addition to being descriptive, the the-
ory of mechanism design should be prescriptive. It should suggest to a
designer how to solve a given mechanism design problem that she may
confront. If the designer does not have prior information, then she can-
not directly employ the suggestions of Bayesian mechanism design. The
Bayesian theory of mechanism design is, thus, incomplete in so far as
it would require the designer to acquire distribution information from
“outside the system.” In contrast, a prior-independent mechanism is
required to solve both information acquisition and incentive problems
and, therefore, must insure that loses due to inaccuracies in informa-
tion acquisition and the interplay between information acquisition and
incentives are properly accounted for.

It is important to consider the incentives of information acquisition
within the mechanism design problem; even if the designer has knowledge
of a prior distribution, it may be problematic to employ this knowledge

Chapter 5: Topics Covered.
• the Bulow-Klemperer Theorem,
• the single-sample mechanism, and
• mechanism composition.
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in a mechanism. Suppose the designer obtained her prior knowledge from
previous market experience. A problem with designing the mechanism
with this knowledge is that the earlier agents may strategize so that
information about their preferences is not exploited by the designer later.
For example, a monopolist who cannot commit not to lower the sale price
in the future cannot sell at a high price now (see Exercise 5.1).
It is similarly important to consider the loses due to inaccuracies in in-

formation acquisition within the mechanism design problem. To learn the
prior a designer could perform a market analysis, for example, by hiring
a marketing firm to survey the market and provide distributional esti-
mates of agent preferences. This mode of operation is quite reasonable in
large markets. However, in large markets mechanism design is not such
an interesting topic; each agent will have little impact on the others and
therefore the designer may as well stick to posted-pricing mechanisms.
Indeed, for commodity markets posted prices are standard in practice.
Mechanisms, on the other hand, are most interesting in small, a.k.a.,
thin, markets. Contrast the large market for automobiles to the thin
market for spacecrafts. There may be five organizations in the world in
the market for spacecrafts; how would a designer optimize a mechanism
for selling them? First, even if the agents’ values do come from a distri-
bution, the only way to sample from the distribution is to interview the
agents themselves. Second, even if we did interview the agents, we could
obtain at most five data points. This sample size is hardly enough for
statistical approaches to be able to estimate the distribution of agent
values. A motivating question this perspective raises, and one that is
closely tied to prior-independent mechanism design, is: How many sam-
ples from a distribution are sufficient for the design of an approximately
optimal mechanism?
There are other reasons to consider prior-independent mechanism de-

sign besides the questionable origin of prior information. Perhaps the
most striking of which is the frequent inability of a designer to redesign
a new mechanism for each scenario in which she wishes to run a mech-
anism. This is not just a concern; in many settings, it is a principle.
Consider the standard Internet routing protocol IP. This protocol is
responsible for sending emails, browsing web pages, streaming video,
etc. Notice that the workloads for each of these tasks is quite different.
Emails are small and can be delivered with several minutes delay without
issue. Web pages are small, but must be delivered immediately. Com-
parably, video streaming permits high latency but requires continuous
bandwidth. It would be impractical to install new protocols in Internet
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routers each time a new network usage pattern arises. Instead, a proto-
col for computer networks, such as IP, should work pretty well in any
setting, even ones well beyond the imaginations of the original designers.

5.2 “Resource” Augmentation

In this section we describe a classical result from auction theory that
shows that a little more competition in a surplus maximizing mech-
anism revenue dominates the revenue maximizing mechanism without
the increased competition. From an economic point of view this result
questions the exogenous-participation assumption, i.e., that there a cer-
tain number of agents, say n, that will participate in the mechanism. If,
for instance, agents only participate in the mechanism when their utility
from doing so is large enough, i.e., with endogenous participation, then
running an optimal mechanism may decrease participation and thus re-
sult in a lower revenue than the surplus maximizing mechanism.
On the other hand, the suggestion of this result, that slightly increas-

ing competition can ensure good revenue, is inherently prior indepen-
dent. The designer does not need to know the prior distribution to mar-
ket her service so as to attract more agent participation.

5.2.1 Single-item Environments

The following theorem is due to Jeremy Bulow and Paul Klemperer and
is known as the Bulow-Klemperer Theorem.

Theorem 5.2.1. For i.i.d. regular single-item environments, the ex-
pected revenue of the second-price auction with n + 1 agents is at least
that of the optimal auction with n agents.

Proof. First consider the following question. What is the optimal single-
item auction for n+1 agents that always sells the item? The requirement
that the item always be sold implies that, even if all virtual values are
negative, a winner must still be selected. Clearly the optimal such auc-
tion is the one that assigns the item to the agent with the highest virtual
value (cf. Corollary 3.3.5). Since the distribution is i.i.d. and regular, the
agent with the highest virtual value is the agent with the highest value.
Therefore, this optimal auction that always sells the item is the second-
price auction.
Now consider an (n + 1)-agent mechanism LB that runs the optimal
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auction on agents 1, . . . , n and if this auction fails to sell the item, it gives
the item away for free to agent n+1. Obviously, LB’s expected revenue
is equal to the expected revenue of the optimal n-agent auction. It is,
however, an (n+1)-agent auction that always sells the item. Therefore,
its revenue is a lower bound on that of the optimal (n+1)-agent auction
that always sells.
We conclude that the expected revenue of the second-price auction

with n + 1 agents is at least that of LB which is equal to that of the
optimal auction for n agents.

This resource augmentation result provides the beginning of a prior-
independent theory for mechanism design. For instance, we can easily
obtain a prior-independent approximation result as a corollary to The-
orem 5.2.1 and Theorem 5.2.2, below.

Theorem 5.2.2. For i.i.d. single-item environments the optimal (n−1)-
agent auction is an n/n−1 approximation to the optimal n-agent auction.

Proof. See Exercise 5.2.

Corollary 5.2.3. For i.i.d. regular single-item environments with n ≥ 2
agents, the second-price auction is an n/n−1 approximation to the optimal
auction revenue.

5.2.2 Multi-unit and Matroid Environments

Unfortunately, the “just add a single agent” result fails to generalize
beyond single-item environments. Consider a multi-unit environment; is
the revenue of the (k+1)st-price auction (i.e., the one that sells a unit to
each of the k highest-valued agents at the (k + 1)st highest value) with
n+ 1 agents at least that of the optimal k-unit auction with n agents?
No.

Example 5.2.1. For large n consider an n-unit environment and agents
with uniformly distributed values on [0, 1]. With n+1 agents, the expected
revenue of the (n + 1)st-price auction on n + 1 agents is about one as
there are n winners and the (n+1)st value is 1/n+2 ≈ 1/n in expectation.1

On the other hand, the optimal auction with n agents will post a price
of 1/2 to each agent and achieve an expected revenue of n/4.

The resource augmentation result does extend, and in a very natural

1
In expectation, uniform random variables evenly divide the interval they are over.
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way, but more than a single agent must be recruited. For k-unit environ-
ments we have to recruit k additional agents. Notice that to extend the
proof of Theorem 5.2.1 to a k-unit environment we can define the auction
LB for n+k agents to run the optimal n-agent auction on agents 1, . . . , n
and to give any remaining units to agents n+ 1, . . . , n+ k. The desired
conclusion follows. In fact, this argument can be extended to matroid
environments. Of course matroid set systems are generally asymmetric,
so we have to be specific as to the role with respect to the feasibility
constraint of the added agents. The result is more intuitive when stated
in terms of removing agents from the optimal mechanism instead of
adding agents to the (surplus maximizing) externality pricing mecha-
nism, though the consequence is analogous. Recall from Section 4.6 that
a base of a matroid is a feasible set of maximal cardinality.

Theorem 5.2.4. For any i.i.d. regular matroid environment the ex-
pected revenue of the externality pricing mechanism (Definition 3.2.1)
is at least that of the optimal mechanism in the environment obtained by
removing any set of agents that corresponds to a base of the matroid.

Recall that by the augmentation property of matroids, all bases are the
same size. Notice that the theorem implies the aforementioned result for
k-unit environments as any set of k agents forms a base of the k-uniform
matroid. Similarly, for transversal matroids, which model constrained
matching markets, recruiting a new base requires one additional agent
for each of the items.

5.3 Single-sample Mechanisms

While the assumption that it is possible to recruit an additional agent
seems not to be too severe, once we have to recruit k new agents in k-
unit environments or a new base for matroid environments, the approach
seems less actionable. In this section we will show that a single additional
agent is enough to obtain a good approximation to the optimal auction
revenue. We will not, however, just add this agent to the market; instead,
we will use this agent for market analysis.
In the opening of this chapter we discussed the need to connect the

size of the sample for market analysis with the size of the actual market.
In this context, the assumption that the prior distribution is known
is tantamount to assuming that an infinitely large sample is available
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for market analysis. In this section we show that this impossibly large
sample can be approximated by a single sample from the distribution.

Definition 5.3.1. The externality pricing mechanism with lazy reserves
v̂ is the following:

(i) simulate the externality pricing mechanism on the bids,

(x†, p†)← EP(v),

(ii) serve the winners of the simulation who exceed their reserve prices,

xi =

{

x
†
i if vi ≥ v̂i

0 otherwise, and

(iii) charge the winners (with xi = 1) their critical values pi = max(v̂i, p
†
i ),

where EP denotes the externality pricing mechanism.

Definition 5.3.2. The lazy single-sample-reserve mechanism is the ex-
ternality pricing mechanism with lazy reserves v̂ = (v̂, . . . , v̂) for v̂ ∼ F .
The lazy monopoly-reserve mechanism sets v̂ = v̂!.

Proposition 5.3.1. The externality pricing mechanism with lazy re-
serves is dominant strategy incentive compatible.

In comparison to the externality pricing mechanism with reserve prices
discussed in Chapter 4, where the reserve prices are used filter out low-
valued agents before finding the surplus maximizing set (i.e., eagerly),
lazy reserve prices filter out low-valued agents after finding the surplus
maximizing set. It is relatively easy to find examples of downward-closed
environments for which the order in which the reserve is applied affects
the outcome (see Exercise 5.3). On the other hand, matroid environ-
ments, which include single-item and multi-unit environments, are dis-
tinct in that the order in which an anonymous reserve price is imposed
does not change the auction outcome. Thus, for i.i.d. matroid environ-
ments we will not specify the order, i.e., lazy versus eager, of the reserve
pricing.

5.3.1 The Geometric Interpretation

Consider a single-agent environment. The optimal auction in such an
environment is simply to post the monopoly price as a take-it-or-leave-it
offer. In comparison, the single-sample-reserve mechanism would post a
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Figure 5.1. The revenue curve (black line) for the uniform distribution is
depicted. REF is the area of the rectangle (gray); by geometry the area of
the inscribed triangle (white striped) is 1/2REF. APX is the area under the
revenue curve (gray); by convexity it is lower bounded by the area of the
inscribed triangle (white striped). Thus, REF ≥ APX ≥ 1/2REF.

random price that is drawn from the same distribution as the agent’s
value is drawn. We will give a geometric proof that shows that for regular
distributions, the revenue from posting such a random price is within a
factor of two of that of the (optimal) monopoly price.
This statement can be viewed as the n = 1 special case of the Theo-

rem 5.2.1, i.e., that the two-agent second-price auction obtains at least
the (one-agent) monopoly revenue. In a two-agent second-price auction
each agent is offered the a price equal to the value of the other, i.e., a ran-
dom price from the distribution. Therefore, the two-agent second-price
auction obtains twice the revenue of a single sample reserve. The result
showing that the single-sample revenue is at least half of the monopoly
revenue then implies that the two-agent second-price auction obtains at
least the (one-agent) monopoly revenue.

Lemma 5.3.2. For a regular single-agent environment, posting a ran-
dom price from the agent’s value distribution obtains at least half the
revenue from posting the (optimal) monopoly price.

Proof. Let R(·) be the agent’s revenue curve. Let q̂
! be the quantile

corresponding to the monopoly price, i.e., q̂! = argmaxq̂ R(q̂). The
expected revenue from (optimal) monopoly pricing is REF = R(q̂!);
this revenue is represented in Figure 5.1(a) by the area of the rectan-
gle (grey) of width one and height R(q̂!). Recall that drawing a ran-
dom value from the distribution is equivalent to drawing a uniform
quantile. The expected revenue from the corresponding random price is
APX = Eq̂[R(q̂)] =

∫ 1
0 R(q̂) dq̂; this revenue is depicted in Figure 5.1(b)
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by the region below the revenue curve (grey). This region is convex be-
cause the revenue curve is concave; therefore, by geometry it contains
an inscribed triangle with vertices corresponding to 0, q̂!, and 1 on the
revenue curve (Figure 5.1, white striped). This triangle has width one,
height REF = R(q̂!), and therefore its area is equal to 1/2REF. Thus,
APX ≥ 1/2REF.

Example 5.3.1. For the uniform distribution where R(q̂) = q̂− q̂2, the
quantities in the proof of Lemma 5.3.2 can be easily calculated:

REF = R(q̂!) = 1/4

≥ APX = Eq̂∼U [0,1][R(q̂)] = 1/6

≥ 1/2REF = 1/8.

5.3.2 Monopoly versus Single-sample Reserves

The geometric interpretation above is almost all that is necessary to show
that the lazy single-sample-reserve mechanism is a good approximation
to the optimal mechanism. We will show the result in two steps. First
we will show that the lazy single-sample-reserve mechanism is a good
approximation to the lazy monopoly-reserve mechanism. Then we argue
that this lazy monopoly-reserve mechanism is approximately optimal.

Theorem 5.3.3. For i.i.d. regular downward-closed environments, the
expected revenue of the lazy single-sample-reserve mechanism is at least
half of that of the lazy monopoly-reserve mechanism.

Proof. With the values v−i of the other agents fixed, we will argue the
stronger result that the contribution to the expected revenue from any
agent i (Alice) in the lazy single-sample-reserve mechanism is at least
half of that in the lazy monopoly-reserve mechanism (in expectation over
her value and the sampled reserve). Let REF denote the lazy monopoly-
reserve mechanism and Alice’s contribution to its revenue, and let APX
denote the lazy single-sample-reserve mechanism and her contribution
to its revenue (again, both for fixed v−i).
Denote the monopoly quantile by q̂!, denote the critical quantile for

Alice in the externality pricing mechanism with no reserve by q̂EP
i , and

denote the quantile of a lazy reserve by q̂. Alice’s wins in the externality
pricing mechanism with this lazy reserve when her quantile is below
min(q̂, q̂EP

i ). For a fixed q̂EP
i , the revenue from Alice, in expectation

over her own quantile and as a function of the lazy reserve quantile q̂,
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Figure 5.2. In each diagram, the revenue curve R(·) (thick, dashed, grey
line) of the uniform distribution and the induced revenue curve R

†
(·) =

R(max(·, q̂EP
i )) (thin, solid, black line). On the left is the case that q̂

EP
i ≤

q̂
!; on the right is the case that q̂

EP
i ≥ q̂

!. On the top the revenue of REF
is shaded grey; on the bottom the revenue of APX is shaded in gray. The
inscribed triangles (white striped) have area 1/2REF. Both on the left and
on the right REF ≥ APX ≥ 1/2REF.

induces the revenue curve R†(q̂) = R(min(q̂, q̂EP
i )). Figure 5.2 depicts

Alice’s original revenue curve R(·) and this induced revenue curve R†(·)
in the cases that q̂EP

i ≤ q̂
! and q̂

EP
i ≥ q̂

!.

Alice’s expected payment in the lazy monopoly-reserve mechanism
is REF = R†(q̂!) which is geometrically the maximum height of the
revenue curve R†; and her expected payment in the lazy single-sample-
reserve mechanism, where q̂ ∼ U [0, 1], is APX = Eq̂[R

†(q̂)]. We conclude
with the same geometric argument as in Lemma 5.3.2 that relates REF
to a rectangle, APX to the area under the induced revenue curve, and
1/2REF to the area of an inscribed triangle (see Figure 5.2).
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5.3.3 Optimal versus Lazy Single-sample-reserve
Mechanism

We have shown that lazy single-sample reserve pricing is almost as good
as lazy monopoly reserve pricing. We now connect lazy monopoly reserve
pricing to the revenue-optimal mechanism to show that the lazy single-
sample mechanism is a good approximation to the optimal mechanism.

For i.i.d. matroid environments, as discussed previously, lazy monopoly
reserve pricing is identical to (eager) monopoly reserve pricing. More-
over, the externality pricing mechanism with the monopoly reserve is
revenue optimal (Proposition 4.6.1). We conclude the following corol-
lary. Recall that matroid environments include multi-unit environments
as a special case.

Corollary 5.3.4. For any i.i.d. regular matroid environment, the rev-
enue of the single-sample-reserve mechanism is a two approximation to
that of the revenue-optimal mechanism.

Theorem 4.7.4 shows that for monotone-hazard-rate distributions the
externality pricing mechanism with (eager) monopoly reserves is a two
approximation to the optimal mechanism; however, as in downward-
closed environments, where eager and lazy reserve pricing are not iden-
tical (see Exercise 5.3), we have slightly more work to do. Recall Theo-
rem 4.7.1 which states that for MHR distributions the optimal revenue
and the optimal surplus are within an e factor of each other. One way
to prove this theorem is, in fact, by showing that the revenue of the
externality pricing mechanism with lazy monopoly reserve prices is an
e approximation to the optimal social surplus and hence so is the opti-
mal revenue (see Exercise 4.25). Combining this observation with Theo-
rem 5.3.3 it is evident that the lazy single-sample-reserve mechanism is
a 2e approximation. The approximation bound can be improved to four
via a more careful analysis (Exercise 5.7).

Theorem 5.3.5. For any i.i.d. monotone-hazard-rate downward-closed
environment, the revenue of the lazy single-sample-reserve mechanism is
a four approximation to that of the revenue-optimal mechanism.

Proof. See Exercise 5.7.
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5.4 Prior-independent Mechanisms

We now turn to mechanisms that are completely prior independent. Un-
like the mechanisms of the preceding section, these mechanisms will not
require any distributional information, not even a single sample from the
distribution. We will, however, still assume that there is a distribution.

Definition 5.4.1. A mechanism APX is a prior-independent β approx-
imation if

∀F , Ev∼F [APX(v)] ≥ 1
βEv∼F [REFF (v)]

where REFF is the (prior-dependent) optimal mechanism for distribu-
tion F and “ ∀F” quantifies over all distributions in a given family.

The central idea behind the design of prior-independent mechanisms is
that a small amount of market analysis can be done while the mechanism
is being run. For example, the bids of some agents can be used as a
market analysis to calculate the prices to be offered to other agents.
Consider the following k-unit auction:

(i) Solicit bids,
(ii) randomly reject an agent j, and
(iii) run the (k + 1)st-price auction with reserve vj on v−j .

This auction is clearly incentive compatible. Furthermore, it is easy
to see that it is a 2n/n−1 approximation for n ≥ 2 agents with values
drawn i.i.d. from a regular distribution. This follows from the fact that
rejecting a random agent loses at most a 1/n fraction of the optimal
revenue (Theorem 5.2.2), and from the previous single-sample-reserve
result (Corollary 5.3.4). This approximation bound is clearly worst for
n = 2 where it guarantees a four approximation. The same approach
can be applied to matroid and downward-closed environments as well;
instead, we will discuss a slightly more sophisticated approach.

5.4.1 Digital Good Environments

An important single-dimensional agent environment is that of a digital
good, i.e., one where there is little or no cost for duplication. In terms of
single-dimensional environments for mechanism design, the cost function
for digital goods is c(x) = 0 for all x; in other words, all outcomes are
feasible. Digital goods can also be viewed as the special case of k-unit
auctions where k = n. Therefore the mechanism above obtains a 2n/n−1

approximation.
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There are a number of approaches for improving this mechanism to
remove the n/n−1 from the approximation factor. The following two ap-
proaches are natural.

Definition 5.4.2. For digital-good environments,

• the (digital good) pairing auction arbitrarily pairs agents and runs the
second-price auction on each pair (assuming n is even), and

• the (digital good) circuit auction orders the agents arbitrarily (e.g.,
lexicographically) and offers each agent a price equal to the value of
the preceding agent in the order (the first agent is offered the last
agent’s value).

The random pairing auction and the random circuit auction are the
variants where the pairing or circuit is selected randomly.

Theorem 5.4.1. For i.i.d. regular digital-good environments, any auc-
tion wherein each agent is offered the price of another random or ar-
bitrary (but not value dependent) agent is a two approximation to the
optimal auction revenue.

The proof of this theorem follows directly from the geometric analysis
of single-sample pricing (Lemma 5.3.2). Clearly, the pairing and circuit
auctions satisfy the conditions of the above theorem. In conclusion, in
i.i.d. environments it is relatively easy to obtain samples from the dis-
tribution while running a mechanism.

5.4.2 General Environments

We now adapt the results for digital goods to general environments.
Consider the externality pricing mechanism with a lazy reserve price.
First, the surplus maximizing set is found. Second, the agents that do
not meet the reserve are rejected. We can view this second step as a
digital good auction as, once we have selected a surplus maximizing
feasible set, downward closure requires that any subset is feasible. The
main idea of this section is to replace the lazy reserve part of the single-
sample mechanism with any approximately optimal digital good auction
(e.g., the circuit or pairing auction).
Consider the following definition of mechanism composition (cf. Exer-

cise 5.10). Notice that the mechanisms we have been discussing can all
be interpreted as calculating a critical value for each agent, serving each
agent whose value exceeds her critical value, and charging each served
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agent her critical value. In fact, by Corollary 2.10.4, any randomization
over deterministic dominant strategy incentive compatible mechanisms
admits such an interpretation.

Definition 5.4.3. The parallel composite M of two (randomizations
over) deterministic DSIC mechanisms, M† and M‡ is as follows:

(i) Calculate the critical values v̂† and v̂‡ of M† and M‡, respectively.

(ii) The critical values of M are v̂i = max(v̂†i , v̂
‡
i ) for each agent i.

(iii) Allocation and payments are xi = x†i x
‡
i and pi = v̂ixi for all i, respec-

tively.

Notice that in the parallel composite,M, the set of agents served is the
intersection of those served by M

† and M
‡. By downward closure, then,

the outcome of the composition is feasible as long as the outcome of one
of M† or M‡ is feasible. The mechanism is dominant strategy incentive
compatible by its definition via critical values and Corollary 2.10.4.

Proposition 5.4.2. The parallel composite of two (randomizations over)
deterministic dominant strategy incentive compatible mechanisms is dom-
inant strategy incentive compatible and, if one of the mechanisms is fea-
sible, feasible.

Notice that the externality pricing mechanism with a lazy reserve price
is the composition, in the manner above, of the externality pricing mech-
anism with a (digital good) uniform posted pricing. Consider composing
the externality pricing mechanism with either the pairing or circuit auc-
tions. Both of the theorems below follow from analyses similar to that
of the single-sample-reserve mechanism.

Definition 5.4.4. For downward-closed environments,

• the pairing mechanism is the parallel composite of the externality pric-
ing mechanism with the (digital goods) pairing auction, and

• the circuit mechanism is the parallel composite of the externality pric-
ing mechanism with the (digital goods) circuit auction.

Theorem 5.4.3. For i.i.d. regular matroid environments, the revenues
of the pairing and circuit mechanisms are two approximations to the
optimal mechanism revenue.

Theorem 5.4.4. For i.i.d. monotone-hazard-rate downward-closed en-
vironments, the revenues of the pairing and circuit mechanisms are four
approximations to the optimal mechanism revenue.
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The results presented in this chapter are representative of the tech-
niques for the design and analysis of prior-independent approximation
mechanisms; however, a number of extensions are possible. If we use
more that one samples from the distribution, bounds for regular distri-
butions can be improved and bounds for irregular distributions can be
obtained. Both of these directions will be taken up during our discus-
sion of prior-free mechanisms in Chapter 7. Finally, the i.i.d. assumption
can be relaxed, either by assuming that agents are partitioned by demo-
graphic (see Exercise 5.11) or by an ordering assumption.

Exercises

5.1 Consider the sale of a magazine subscription over two periods to
a single agent who has a linear uniform additive value for each
period’s issue of the magazine. Her value v is drawn from a regular
distribution F and if x1, x2, p1, and p2 denote her allocation and
payments in each period then her utility is v (x1 + x2)− p1− p2. In
each period, the designer publishes her mechanism and then the
agent bids for receiving that period’s issue of the magazine.

(a) Suppose that the designer can commit to the mechanism to be
used in period two before the agent bids in period one, describe
the revenue optimal mechanisms and the equilibrium behavior
of the agent.

(b) Suppose that the designer cannot commit to the mechanism
to be used in period two before the agent bids in period one,
describe the revenue optimal mechanisms and the equilibrium
behavior of the agent. Assume that the designer deterministi-
cally posts a price in period 1 and the agent follows a threshold
strategy, i.e., the agent accepts the price if her value is at least
some threshold and otherwise she rejects the price.

(c) Compare the revenues from the previous steps for the uniform
distribution.

5.2 Prove Theorem 5.2.2: For i.i.d. single-item environments the opti-
mal auction with n− 1 agents auction is an n/n−1 approximation
to the optimal auction with n agents.

5.3 Consider the externality pricing mechanism with an anonymous
reserve that is either lazy or eager.

(a) Find a valuation profile, downward-closed feasibility constraint,
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and anonymous reserve price such that different outcomes result
from lazy and eager reserve pricing.

(b) Prove that for anonymous reserve pricing in matroid environ-
ments, lazy and eager reserve pricing give the same outcome.

5.4 Consider a regular single-agent environment. Show that posting the
median price from the agent’s value distribution obtains at least
half the revenue from posting the monopoly price. The median
price for an agent with inverse demand function v(·) is v̂ = v(1/2).

5.5 In Example 5.3.1 it is apparent that the approximation bound of
a sample reserve to the monopoly reserve for a uniform distribu-
tion is 3/2. Use this bound to derive better bounds for the lazy
single-sample-reserve mechanism versus the lazy monopoly-reserve
mechanism. In particular, show that if the single-agent approxima-
tion of sample reserve to monopoly reserves is β then the the same
bound holds in general for the lazy single-sample-reserve and lazy
monopoly reserve mechanism.

5.6 Consider the externality pricing mechanism with lazy monopoly
reserve prices in downward-closed monotone-hazard-rate environ-
ments.

(a) Show that in a single-agent environment, that its expected sur-
plus is at most twice its expected revenue.

(b) Show that in a downward-closed environment, that its expected
surplus is at most twice its expected revenue.

5.7 Prove Theorem 5.3.5: For any i.i.d. monotone-hazard-rate downward-
closed environment, the revenue of the lazy single-sample-reserve
mechanism is a four approximation to that of the revenue-optimal
mechanism.

5.8 Suppose we are in a non-identical environment, i.e., agent i’s value
is drawn from independently from distribution F i, and suppose the
mechanism can draw one sample from each agent’s distribution.

(a) Give a constant approximation mechanism for regular, matroid
environments (and give the constant).

(b) Give a constant approximationmechanism for monotone-hazard-
rate, downward-closed environments (and give the constant).

5.9 This chapter has been mostly concerned with the profit objective.
Suppose we wished to have a single mechanism that obtains good
surplus and good profit.
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(a) Show that the externality pricing mechanism with monopoly re-
serves is not generally a constant approximation to the optimal
social surplus in regular, single-item environments.

(b) Show that the lazy single sample mechanism is a constant ap-
proximation to the optimal social surplus in i.i.d., regular, ma-
troid environments.

(c) Investigate the Pareto frontier between prior-independent ap-
proximation of surplus and revenue. I.e., if a mechanism is an
α approximation to the optimal surplus and a β approximation
to the optimal revenue, plot it as point (1/α, 1/β) in the positive
quadrant.

5.10 Define the sequential composite M of two mechanism M† and M‡

as first simulating M
†, second simulating M

‡ on the winners of
M

†, and serving the agents served by the second mechanism at
the maximum of their prices in the two mechanisms.

(a) Give an example of deterministic DSIC mechanisms M† and
M‡ such that the sequential composite M is not DSIC.

(b) Show that if M† is the externality pricing mechanism (and M
‡

is any randomization over DSIC mechanisms) then the compo-
sition is DSIC.

(c) Describe a property of the externality pricing mechanism as
M† that enables the incentive compatibility of the sequential
composite M.

5.11 Suppose the agents are divided into k markets where the value of
agents in the same market are identically distributed, e.g., by de-
mographic. Assume that the partitioning of agents into markets is
known, but not the distributions of the markets. Assume there are
at least two agents in each market. Unrelated to the markets, as-
sume the environment has a downward-closed feasibility constraint.

(a) Give a prior-independent constant approximation to the revenue-
optimal mechanism for regular matroid environments.

(b) Give a prior-independent constant approximation to the revenue-
optimal mechanism for monotone-hazard-rate downward-closed
environments.
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Chapter Notes

The resource augmentation result that shows that recruiting one more
agent to a single-item auction raises more revenue than setting the opti-
mal reserve price is due to Bulow and Klemperer (1996). The proof of the
Bulow-Klemperer Theorem that was presented in this text is due to René
Kirkegaard (2006). A generalization of the Bulow-Klemperer Theorem
to non-identical distributions was given by Hartline and Roughgarden
(2009).
The single-sample mechanism and the geometric proof of the Bulow-

Klemperer theorem are due to Dhangwatnotai et al. (2010). They also
considered a relaxation of the i.i.d. assumption where there is a known
partitioning of the agents into markets, e.g., by demographic or zip code,
where there are at least two agents in each market. The pairing auction
for digital good environments was proposed by Goldberg et al. (2001);
however, in the possibly irregular environments that they considered it
does not have good revenue guarantees.
A line of work has investigated optimal single-sample and prior-independent

mechanisms for i.i.d. regular distributions. Notably, Fu et al. (2015)
proves that (a) the optimal single-agent mechanism with a single sample
does not simply offer the agent the sample and (b) the optimal two-agent
single-item auction is not the second-price auction. In both cases the op-
timal mechanism is strictly better than a two-approximation.


