
4

Bayesian Approximation

One of the most intriguing conclusions from the preceding chapter is
that for i.i.d. regular single-item environments the second-price auction
with a reservation price is revenue optimal. This result is compelling as
the solution it proposes is quite simple, therefore, making it easy to pre-
scribe. Furthermore, reserve-price-based auctions are often employed in
practice so this theory of optimal auctions is also descriptive. Unfortu-
nately, i.i.d. regular single-item environments are hardly representative
of the scenarios in which we would like to design good mechanisms.
Furthermore, if any of the assumptions are relaxed, reserve-price-based
mechanisms are not optimal.

Another point of contention is that auctions, even simple ones like
the second-price auction, can be a slow and inconvenient way to allocate
resources. In many contexts posted pricings are preferred to auctions. As
we have seen, posted pricings are not optimal unless there is only a single
consumer. In addition to being preferred for their speed and simplicity,
posted pricings also offer robustness to out-of-model phenomena such
as collusion. Therefore, approximation results for posted pricings imply
that good collusion resistant mechanisms exist.

In this chapter we address these deficiencies by showing that while
posted pricings and reserve-price-basedmechanisms are not generally op-
timal, they are approximately optimal in a wide range of environments.
Furthermore, these approximately optimal mechanisms are more robust,
less dependent on the details of the distribution, and sometimes provide
more conceptual understanding than their optimal counterparts. The
approximation factor obtained by most of these approximation mech-
anisms is two. Meaning, for the worst distributional assumptions, the
mechanism’s expected performance is within a factor two of the optimal
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mechanism. Of course, in any particular environment these mechanisms
may perform better than this worst-case guarantee.
A number of properties of the environment will be crucial for enabling

good approximation mechanisms. As in Chapter 3 these are: indepen-
dence of the distribution of preferences of the agents, distributional reg-
ularity as implied by the concavity of the price-posting revenue curve,
and downward closure of the designer’s feasibility constraint. In addition,
two new structural restrictions on the environment will be introduced.
A matroid set system is one that is downward closed and satisfies an

additional “augmentation property” that is related to the substitutabil-
ity of the agents. An important characterization of the matroid property
is that the surplus maximizing allocation (subject to feasibility) is given
by the greedy-by-value algorithm: sort the agents by value, then consider
each agent in-turn and serve the agent if doing so is feasible given the
set of agents already being served. The optimality of greedy-by-value
implies that the order of the agents’ values is important for finding the
surplus maximizing outcome, but the relative magnitudes of their values
are not.
The monotone hazard rate condition is a refinement of the regularity

property of a distribution of values. Intuitively, the monotone hazard
rate condition restricts how heavy the tail of the distribution is, i.e., how
much probability mass is on very high values. An important consequence
of the monotone hazard rate assumption is that the optimal revenue and
optimal social surplus are within a factor of e ≈ 2.718 of each other. This
relation will enable mechanisms that optimize social surplus to give good
approximations to revenue.

4.1 Monopoly Reserve Pricing

We start our discussion of simple mechanisms that are approximately
optimal by showing that a natural generalization of the second-price

Chapter 4: Topics Covered.
• mechanisms: monopoly reserve pricing, anonymous reserve pricing,
sequential posted pricing, oblivious posted pricing;

• correlation gap;
• prophet inequalities;
• ordinal environments and matroids.
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auction with monopoly reserve continues to be approximately optimal
for regular but asymmetric distributions. Recall that monopoly prices
are a property of virtual value functions which are a property of the dis-
tributions from which agents’ values are drawn (Definition 3.3.4). When
the agents’ values are drawn from distinct distributions their monopoly
prices are generally distinct. The following definition generalizes the
second-price auction with a single reserve price to one with discrimi-
natory, i.e., agent-specific, reserve prices.

Technical Note. Subsequently we will consider using monopoly reserve
prices for distributions where these prices are not unique. For these dis-
tributions we should always assume the worst tie-breaking rule as it is
always possible to perturb the distribution slightly to make that worst
monopoly price unique. Recall that a regular distribution can be equiv-
alently specified by its distribution function or its revenue curve. The
equal revenue distribution has constant revenue curve, REQR(q) = 1,
and therefore any price on [1,∞) is optimal. A sufficient perturba-
tion to make unique monopoly price v̂

! = 1 is given by revenue curve
REQR(q) = 1− ε(1− q).
In the previous two chapters, with the characterization of Bayes-Nash

equilibrium (Theorem 2.5.1) and the characterization of profit-optimal
mechanisms (Corollary 3.3.12), we assumed that the values of the agents
were drawn from continuous distributions. In this chapter, especially
when describing examples that show that the assumptions of a theorem
are necessary, it will sometimes more expedient to work with discrete
distributions. A discrete distribution is specified by a set of values and
probabilities for these values.
There are two ways to relate these discrete examples to the continu-

ous environments we have heretofore been considering. First, we could
rederive Theorem 2.5.1 and Corollary 3.3.12 (and their variants) for
discrete distributions (see Exercise 2.2 and Exercise 3.6, respectively).
Importantly, via such a rederivation, it is apparent that discrete and
continuous environments are intuitively similar. Second, we could con-
sider a continuous perturbation of the discrete distribution which will
exhibit the same phenomena with respect to optimization and approx-
imation. For example, one such perturbation is, for a sufficiently small
ε, to replace any value v from the discrete distribution with a uniform
value from [v, v + ε].
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Definition 4.1.1. The second-price auction with (discriminatory) re-
serves v̂ = (v̂1, . . . , v̂n) is:

(i) reject each agent i with vi < v̂i,

(ii) allocate the item to the highest valued agent remaining (or none if
none exists), and

(iii) charge the winner her critical price.

With non-identical distributions the optimal single-item auction in-
deed depends on the exact marginal revenue functions to determine the
optimal allocation (see Example 4.1.1). This contrasts to the i.i.d. regu-
lar case where all we needed was a single number, the monopoly price for
the distribution, and reserve pricing with this number is optimal. Fig-
ure 4.1 compares allocations of the (asymmetric) optimal auction with
that of the second-price auction with (asymmetric) monopoly reserves.

Example 4.1.1. Consider a two-agent single-item auction where agent 1
(Alice) and agent 2 (Bob) have values distributed uniformly on [0, 2] and
[0, 3], respectively. The virtual value functions are ϕ1(v1) = 2v1 − 2 and
ϕ2(v2) = 2v2 − 3. Alice’s monopoly price one; Bob’s monopoly price is
3/2. Alice has a higher virtual value than Bob when v1 > v2−1/2. The op-
timal auction is asymmetric. It serves an agent only if one is above their
respective monopoly price. If both are above their respective monopoly re-
serves, it serves the highest valued agent with a penalty of 1/2 against Bob
(cf. Example 3.3.3, page 69). In contrast the monopoly-reserves auction
is the same but with no penalty for Bob. See Figure 4.1.

In the remainder of this section we show that if the agents’ values
are drawn from regular distributions then the (single item) monopoly-
reserves auction is a two approximation to the optimal revenue. We will
then show that, except for the consideration of more general feasibility
constraints, this result is tight. The approximation bound of two is tight:
we show by example that there is a non-identical regular distribution
where the ratio of the optimal to monopoly-reserves revenue is two. The
regularity assumption is tight: for irregular distributions the approxima-
tion ratio of monopoly reserves can be as bad as linear (i.e., it grows with
the number of agents). Thus, we conclude that this two-approximation
result for regular distributions in single-item environments is essentially
the right answer. Later in the chapter we will consider the extent to
which this result generalizes beyond single-item environments.
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Figure 4.1. In Example 4.1.1 Agent 1 has value v1 ∼ U [0, 2]; agent 2 has
value v2 ∼ U [0, 3]. In the space of valuation profiles v ∈ [0, 2]× [0, 3], with
agent 1’s value on the horizontal axis and agent 2’s value on the vertical
axis, the allocation x = (x1, x2) for the (asymmetric) optimal auction and
(asymmetric) monopoly-reserves auction are depicted.

4.1.1 Approximation for Regular Distributions

The main result of this section shows that, though distinct, the monopoly-
reserves auction and the revenue-optimal auction have similar revenues.

Theorem 4.1.1. For single-item environments and agents with val-
ues drawn independently from (non-identical) regular distributions, the
second-price auction with (asymmetric) monopoly reserve prices obtains
at least half the revenue of the (asymmetric) optimal auction.

The proof of Theorem 4.1.1 is enabled by the following three properties
of regular distributions and virtual value functions. First, Corollary 3.4.7
shows that for a regular distribution, a monotone allocation rule, and
virtual value given by the marginal revenue curve, the expected revenue
is equal to the expected virtual surplus. The second and third properties
are given by the two lemmas below.

Lemma 4.1.2. For any virtual value function, the virtual values corre-
sponding to values that exceed the monopoly price are non-negative.
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Proof. The lemma follows immediately from the definition of virtual
value functions which requires their monotonicity (Definition 3.3.3) .

Lemma 4.1.3. For any distribution, the value of an agent is at least
her virtual value for revenue.

Proof. We prove the lemma for regular distributions (as is necessary for
Theorem 4.1.1) and leave the general proof to Exercise 4.3. For regular
distributions, where the virtual values for revenue are given by the for-
mula ϕ(v) = v − 1−F (v)

f(v) , the lemma follows as both 1 − F (v) and f(v)
are non-negative.

Our goal will be to show that the expected revenue of the monopoly-
reserves auction is approximately an upper bound on the expected vir-
tual surplus of the optimal auction (which is equal to its revenue). Con-
sider running both auctions on the same random input. Notice that
conditioned on the event that both auctions serve the same agent, both
auctions obtain the same (conditional) expected virtual surplus. Notice
also that conditioned on the event that the auctions serve distinct agents,
the monopoly-reserves auction has higher expected payments than the
optimal auction. It is not correct to bound revenue by combining condi-
tional virtual values with conditional payments as the amortized analysis
that defines virtual values is only correct under unconditional expecta-
tions. Therefore, for the second case we will instead relate the payment
of monopoly reserves to the virtual value of the winner in the optimal
auction (for which it gives an upper bound).

Proof of Theorem 4.1.1. Let REF denote the optimal auction and its ex-
pected revenue and APX denote the second-price auction with monopoly
reserves and its expected revenue. Clearly, REF ≥ APX; our goal is to
give an approximate inequality in the opposite direction by showing that
2APX ≥ REF. Let I be the winner of the optimal auction and J be the
winner of the monopoly reserves auction. I and J are random variables.
Notice that neither auctions sell the item if and only if all virtual values
are negative; in this situation define I = J = 0. With these definitions
and Corollary 3.4.7, REF = E[ϕI(vI)] and APX = E[ϕJ(vJ)].
We start by simply writing out the expected revenue of the optimal

auction as its expected virtual surplus conditioned on I = J and I %= J .

REF = E[ϕI(vI) | I = J ]Pr[I = J ]
︸ ︷︷ ︸

REF=

+E[ϕI(vI) | I %= J ]Pr[I %= J ]
︸ ︷︷ ︸

REF !=

.

We will prove the theorem by showing that both the terms on the right-
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hand side are bounded from above by APX. Thus, REF ≤ 2APX. For
the first term:

REF= = E[ϕI(vI) | I = J ]Pr[I = J ]

= E[ϕJ(vJ) | I = J ]Pr[I = J ]

≤ E[ϕJ(vJ) | I = J ]Pr[I = J ] +E[ϕJ(vJ) | I %= J ]Pr[I %= J ]

= APX .

The inequality in the above calculation follows from Lemma 4.1.2 as even
when I %= J the virtual value of J must be non-negative. Therefore, the
term added is non-negative. For the second term:

REF"= = E[ϕI(vI) | I %= J ]Pr[I %= J ]

≤ E[vI | I %= J ]Pr[I %= J ]

≤ E[pJ (v) | I %= J ]Pr[I %= J ]

≤ E[pJ (v) | I %= J ]Pr[I %= J ] +E[pJ(v) | I = J ]Pr[I = J ]

= APX .

The first inequality in the above calculation follow from values upper
bounding virtual values (Lemma 4.1.3). The second inequality follows
because, among agents who meet their reserve, J is the highest valued
agent and I is a lower valued agent. Therefore, as APX is a second-price
auction, the winner J ’s payment pJ (v) is at least the loser I’s value vI .
The third inequality follows because payments are non-negative so the
term added is non-negative.

Theorem 4.1.1 shows that when agent values are non-identically dis-
tributed at least half of the revenue of the optimal asymmetric auction
which is parameterized by complicated virtual value functions can be
obtained by a simple auction which is parameterized by natural statisti-
cal quantities, namely, each distribution’s monopoly price. The theorem
holds for a broad class of distributions that satisfy the regularity prop-
erty. While for specific distributions the approximation bound may be
better than two, we will see subsequently, by example, that if the only as-
sumption on the distribution is regularity then the approximation factor
of two is tight.

Definition 4.1.2. The equal-revenue distribution has distribution func-
tion FEQR(z) = 1− 1/z and density function fEQR(z) = 1/z2 on support
[1,∞).
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The equal-revenue distribution is so called because the revenue ob-
tained from posting any price is the same. Consider posting price v̂ > 1.
The expected revenue from such a price is v̂ · (1−FEQR(v̂)) = 1. As the
price-posting revenue curve is the constant function PEQR(q̂) = 1, the
distribution is on the boundary between regularity and irregularity. As
it is the boundary between regularity and irregularity, it often provides
an extremal example for results that hold for regular distributions.

Lemma 4.1.4. There is an (non-identical) regular two-agent single-
item environment where the optimal auction obtains twice the revenue
of the second-price auction with (discriminatory) monopoly reserves.

Proof. For any ε > 0 we will give a distribution and show that there
is an auction with expected revenue strictly greater than 2 − ε but the
revenue of the monopoly reserves auction is precisely one.

Consider the asymmetric two-agent single-item environment where
agent 1 (Alice) has value (deterministically) one and agent 2 (Bob)
has value distributed according to the equal-revenue distribution. The
monopoly price for the equal-revenue distribution is ill-defined because
every price is optimal, but a slight perturbation of the distribution has
a unique monopoly price of v̂!2 = 1 (Technical Note on page 106). Thus
the monopoly prices are v̂! = (1, 1) and the expected revenue of the
second-price auction with monopoly reserves is one.

Of course, for this distribution it is easy to see how we can do much
better. Offer Bob a high price h. If he rejects this price then offer Alice
a price of 1. Notice that by the definition of the equal-revenue distri-
bution, Bob’s expected payment is one, but still Bob rejects the offer
with probability 1− 1/h and the item can be sold to Alice. The expected
revenue of the mechanism is h · 1/h + 1 · (1 − 1/h) = 2 − 1/h. Choosing
h > 1/ε gives the claimed result.

While the monopoly-reserves auction (parameterized by n monopoly
prices) is significantly less complex than the optimal auction (parame-
terized by n virtual value functions), it is not often used in practice. In
practice, even in asymmetric environments, auctions are often parame-
terized by a single anonymous reserve price. For regular, non-identical
distributions anonymous reserve pricing continues to give a good approx-
imation to the optimal auction. This and related results are discussed
in Section 4.4.
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Figure 4.2. The revenue curve (thin, solid, black) and price-posting revenue
curve (gray, thick, dashed) for the discrete two-point equal revenue distri-
bution from the proof of Proposition 4.1.5 with h = 2. As usual for revenue
curves, the horizontal axis is quantile.

4.1.2 Inapproximability Irregular Distributions

The second-price auction with monopoly reserve prices only guarantees a
two approximation for regular distributions. The proof of Theorem 4.1.1
relied on regularity crucially when it invoked Corollary 3.4.7 to calculate
revenue in terms of virtual surplus for all monotone allocation rules. Re-
call that for irregular distributions, revenue is only equal to virtual sur-
plus for allocation rules that are constant where the virtual value func-
tions are constant. For irregular distributions there are two challenges
that the monopoly-reserves auction must confront. First, even if the
distributions are identical, the optimal auction is not the second-price
auction with monopoly reserves; it irons (see Section 3.3.3). Second, the
distributions may not be identical. We show that the monopoly-reserves
auction is trivially an n approximation for (non-identical) irregular dis-
tributions, and that this trivial upper bound cannot be improved even
when the distributions are identical (Proposition 4.1.5).

Of course, irregular distributions that are “nearly regular” do not ex-
hibit the above worst case behavior. For example, Exercise 4.6 formal-
izes a notion of near regularity under which reasonable approximation
bounds can be proven.

Proposition 4.1.5. For (irregular) i.i.d. n-agent single-item environ-
ments, the second-price auction with monopoly reserve is at best an n
approximation.
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Proof. Consider the discrete equal-revenue distribution on {1, h}, i.e.,
with f(h) = 1/h and f(1) = 1 − 1/h, slightly perturbed so that the
monopoly price is one (Technical Note on page 106). With a monopoly
reserve of v̂! = 1 and all values at least one, the reserve is irrelevant for
the second-price auction.
Consider the expected revenues of the second-price auction APX(h)

and the optimal auction REF(h) as a function of h. We show the follow-
ing limit result which implies the proposition.

APX = lim
h→∞

APX(h) = 1, and (4.1.1)

REF = lim
h→∞

REF(h) = n. (4.1.2)

An agent is high-valued with probability 1/h and low valued with prob-
ability (1 − 1/h). The probability that there are exactly k high valued
agents is:

Pr[exactly k are high valued] =
(n
k

)

· h−k · (1− 1/h)n−k.

For constant n and k and in the limit as h goes to infinity, the first term
is constant and the last term is one. The middle term goes to zero at a
rate of h−k. Thus, for # < k:

lim
h→∞

h# ·Pr[exactly k are high valued] = 0, (4.1.3)

lim
h→∞

hk ·Pr[exactly k are high valued] =
(n
k

)

, and (4.1.4)

lim
h→∞

hk ·Pr[at least k are high valued] =
(
n
k

)

; (4.1.5)

where equation (4.1.5) follows from equations (4.1.3) and (4.1.4).
For the discrete equal-revenue distribution, virtual values satisfy ϕ(1) =

0 and ϕ(h) = h (see Figure 4.2 and Exercise 3.6). Now we can calculate
REF = limh→∞ REF(h) as ϕ(1) times the probability that there are no
high-valued agents plus ϕ(h) times the probability that there are one or
more high-valued agents. REF = 0 +

(
n
1

)

= n.
We can similarly calculate APX = limh→∞ APX(h) as one times the

probability that there are one or fewer high-valued agents plus h times
the probability that there are two or more high-valued agents. By equa-
tion (4.1.4) with k = 0 and 1, the first term is one; by equation (4.1.5)
with k = 2, the second term is zero. Thus, APX = 1.

We now show that, even for non-identication distibutions, the monopoly-
reserves auction guarantess an n-approximation.
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Proposition 4.1.6. For (non-identical, irregular) n-agent single-item
environments, the second-price auction with monopoly reserve is at worst
an n approximation.

Proof. Let REF and APX and denote the monopoly-reserve auction and
the optimal auction and their revenue, respectively, in an n-agent, single-
item environment.
As usual for approximation bounds when the optimal mechanism REF

is complex, we will formulate an upper bound that is simple. Denote by
UB the optimal auction and its revenue for the n-agent, n-unit environ-
ment (a.k.a. a digital good). Clearly, UB ≥ REF as this auction could
discard all but one unit and then simulate the outcome REF (the optimal
single-unit auction). UB is also very simple. As there are n units and n
agents there is no competition between the agents and the optimization
problem decomposes into n independent monopoly pricing problems.
Denote by R! = (R!

0, . . . , R
!
n) the profile of monopoly revenues. The

revenue of the optimal n-unit auction is:

UB =
∑

i
R!

i .

We now get a lower bound on the monopoly-reserves revenue APX.
Consider the mechanism LB that chooses, before asking for agent re-
ports, the agent i! with the highest monopoly revenue and offers this
agent her monopoly price v̂

!
i
! . LB obtains revenue

LB = maxiR
!
i .

Moreover, APX ≥ LB as if i! would accept price her monopoly price v̂!i!

then some agent in APX must accept a price of at least v̂!i! (either agent
i! or an agent beating out agent i!).
Finally, we make the simple observation that n LB ≥ UB which proves

the proposition.

4.2 Oblivious Posted Pricings and the Prophet
Inequality

Two problematic aspects of employing auctions to allocate resources is
that (a) they require multiple rounds of communication (i.e., they are
slow) and (b) they require all agents to be present at the time of the
auction. Often both of these requirements are prohibitive. In routing in
computer networks a packet needs to be routed, or not, quickly and, if
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the network is like the Internet, without state in the routers. Therefore,
auctions are unrealistic for congestion control. In a supermarket where
you go to buy lettuce, we should not hope to have all the lettuce buyers
in the store at once. Finally, in selling goods on the Internet, eBay has
found empirically that posted pricing via the “buy it now” option is
more appropriate than a slow (days or weeks) ascending auction.
Posted pricings give very robust revenue guarantees. For instance,

their revenue guarantees are impervious to many kinds of collusive be-
havior on the part of the agents. Moreover, the prices (to be posted) can
also be used as reserve prices for the first- and second-price auctions and
this only improves on the revenue from price posting.
In a posted pricing, distinct prices can be posted to the agents with

first-come-first-served and while-supplies-last semantics. In this section
we show that oblivious posted pricing, where agents arrive and consider
their respective prices in any arbitrary order, gives a two approxima-
tion to the optimal auction. In the next section, we show that sequential
posted pricing, where the mechanism chooses the order in which the
agents are permitted to consider their respective posted prices, gives an
improved approximation of e/e−1 ≈ 1.582. Both results hold for objec-
tives of revenue and social surplus and for any independent distribution
on agent values (i.e., regularity is not assumed).
There are several challenges to the design and analysis of oblivious

posted pricings. First, for any particular n-agent scenario, an oblivious
posted pricing potentially requires optimization of n distinct prices. In
high dimensions (i.e., large n) this optimization problem is computation-
ally challenging. Moreover, it is not immediately clear that the resulting
optimal prices would perform well in comparison to the optimal auction.
To justify usage of posted pricings over auctions, we must be able to eas-
ily find good prices and these prices should give revenue that compares
favorably to that of the optimal auction. The approach of this section
is to solve both problems at once by identifying a class of easy-to-find
posted pricings that perform well.

4.2.1 The Prophet Inequality

The oblivious posted pricing theorem we present is an application of a
prophet inequality theorem from optimal stopping theory. Consider the
following scenario. A gambler faces a series of n games, one on each
of n days. Game i has prize vi distributed independently according to
distribution F i. The order of the games and distribution of the prize
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values is fully known in advance to the gambler. On day i the gambler
realizes the prize vi ∼ F i of game i and must decide whether to keep
this prize and stop or to return the prize and continue playing. In other
words, the gambler is only allowed to keep one prize and must decide
whether or not to keep a given prize immediately on realizing the prize
and before any future prizes are realized.
The gambler’s optimal strategy can be calculated by backwards induc-

tion. On day n the gambler should stop with whatever prize is realized.
This results in expected value E[vn]. On day n − 1 the gambler should
stop if the prize has greater value than v̂n−1 = E[vn], the expected value
of the prize from the last day. On day n − 2 the gambler should stop
with if the prize has greater value than v̂n−2, the expected value of the
strategy for the last two days. Proceeding in this manner the gambler
can calculate a threshold v̂i for each day where the optimal strategy is
to stop with prize i if and only if vi ≥ v̂i.
This optimal strategy suffers from many of the drawbacks of optimal

strategies. It is complicated: it takes n numbers to describe it. It is
sensitive to small changes in the game, e.g., changing of the order of
the games or making small changes to distribution i strictly above v̂i.
It does not allow for much intuitive understanding of the properties of
good strategies. Finally, it does not generalize well to give solutions to
other similar kinds of games, e.g., that of our oblivious posted pricing
problem.
Approximation gives a crisper picture. A uniform threshold strategy is

given by a single threshold v̂ and requires the gambler to accept the first
prize i with vi ≥ v̂. Uniform threshold strategies are clearly suboptimal
as even on day n if prize vn < v̂ the gambler will not stop and will,
therefore, receive no prize. We refer to the prize selection procedure
when multiple prizes are above the threshold as the tie-breaking rule.
The tie-breaking rule implicit in the specification of the gambler’s game
is lexicographical, i.e., by “smallest i.”

Theorem 4.2.1. For any product distribution on prize values F =
F 1 × · · · × Fn, there exists a uniform threshold strategy such that the
expected prize of the gambler is at least half the expected value of the
maximum prize; moreover, the bound is invariant with respect to the tie-
breaking rule; moreover, for continuous distributions with non-negative
support one such threshold strategy is the one where the probability that
the gambler receives no prize is exactly 1/2.

Theorem 4.2.1 is a prophet inequality: it suggest that even though
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the gambler does not know the realizations of the prizes in advance,
she can still do half as well as a prophet who does. While this result
implies that the optimal (backwards induction) strategy satisfies the
same performance guarantee, this guarantee was not at all clear from
the original formulation of the optimal strategy.
Unlike the optimal (backwards induction) strategy this prophet in-

equality provides substantial conclusions. Most obviously, it is a very
simple strategy. The result is clearly driven by trading off the prob-
ability of not stopping and receiving no prize with the probability of
stopping early with a suboptimal prize. Notice that the order of the
games makes no difference in the determination of the threshold, and if
the distribution above or below the threshold changes, neither the bound
nor suggested strategy is affected. Moreover, the invariance of the theo-
rem to the tie-breaking rule suggests the bound can be applied to other
related scenarios. The profit inequality is quite robust.

Proof of Theorem 4.2.1. Let REF denote prophet and her expected prize,
i.e., the expected maximum prize, E[maxi vi], and APX denote a gambler
with threshold strategy v̂ and her expected prize. Define q̂i = 1−F i(v̂) =
Pr[vi ≥ v̂] as the probability that prize i is above the threshold v̂ and
χ =

∏

i(1 − q̂i) as the probability that the gambler rejects all prizes.
The proof follows in three steps. In terms of the threshold v̂ and failure
probability χ, we get an upper bound on the expected prophet’s payoff.
Likewise, we get a lower bound on expected gambler’s payoff. Finally,
we choose v̂ so that χ = 1/2 to obtain the bound of the theorem. If there
is no v̂ with χ = 1/2, which is possible if the distributions F are not
continuous, we give a slightly more sophisticated method for choosing v̂.
In the analysis below, the notation “(vi − v̂)+” is shorthand for “max(vi−

v̂, 0).” The prophet is allowed not to pick any prize, e.g., if all prizes
have negative value, to denote this outcome we add a prize indexed
0 with value deterministically v0 = 0; all summations are over prizes
i ∈ {0, . . . , n}.

(i) An upper bound on REF = E[maxi vi]:

The prophet’s expected payoff is

REF = E[maxi vi] = v̂ +E[maxi(vi − v̂)]

≤ v̂ +E[maxi (vi − v̂)+]

≤ v̂ +
∑

i
E[(vi − v̂)+] . (4.2.1)

The inequalities follow because (vi − v̂)+ ≥ vi−v̂ and is non-negative.
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(ii) A lower bound on APX = E[prize of gambler with threshold v̂]:

We will split the gambler’s payoff into two parts, the contribution
from the first v̂ units of the prize and the contribution, when prize i
is selected, from the remaining vi− v̂ units of the prize. The first part
is APX1 = (1 − χ) · v̂. To get a lower bound on the second part we
consider only the contribution from the no-tie case. For any i, let Ei

be the event that all other prizes j are below the threshold v̂ (but vi
is unconstrained). The bound is:

APX2 ≥
∑

i
E[(vi − v̂)+ | Ei]Pr[Ei]

≥ χ ·
∑

i
E[(vi − v̂)+] .

The second line follows becausePr[Ei] =
∏

j "=i(1−q̂j) ≥
∏

j(1−q̂j) =
χ and because the conditioned variable (vi − v̂)+ is independent from
the conditioning event Ei. Therefore, the gambler’s payoff is at least:

APX ≥ (1− χ) · v̂+ χ ·
∑

i
E[(vi − v̂)+] . (4.2.2)

(iii) Plug in v̂ with χ = 1/2:

From the upper and lower bounds of equations (4.2.1) and (4.2.2),
if there is a non-negative v̂ such that χ = 1/2 then, for this v̂, APX ≥
1/2 REF.

For discontinuous distributions, e.g., ones with point masses, χ as
a function of v̂, denoted χ(v̂), may be discontinuous. Therefore, there
may be no v̂ with χ(v̂) = 1/2. For distributions that have negative
values in their supports the v̂ with χ(v̂) = 1/2 may be negative. For
these cases there is another method for finding a suitable thresh-
old v̂. Observe that the two common terms of equations (4.2.1) and
(4.2.2), namely v̂ and

∑

iE[(vi − v̂)+] are continuous functions of v̂.
The former is strictly increasing from v̂ = 0, the latter strictly de-
creases to zero; therefore they must cross at some non-negative v̂

†.
For v̂† satisfying v̂

† =
∑

iE[(vi − v̂
†)+], regardless of the correspond-

ing χ ∈ [0, 1], the right-hand side of equation (4.2.1) is exactly twice
that of equation (4.2.2). For this v̂† the two-approximation bound
holds.

The prophet inequality is tight in the sense that a better approxima-
tion bound cannot generally by obtained by a uniform threshold strategy
(Exercise 4.9).
As alluded to above, the invariance to the tie-breaking rule implies

that the prophet inequality gives approximation bounds in scenarios
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similar to the gambler’s game. In an oblivious posted pricing, agents
arrive in a worst-case order and the first agent who desires to buy the
item at her offered price does so. We now use the prophet inequality to
show that there is are oblivious posted pricings that guarantee half the
optimal surplus and half the optimal auction revenue, respectively.

4.2.2 Oblivious Posted Pricing

Consider attempting to allocate a resource to maximize the social sur-
plus. We know from Corollary 1.1.4 that the second-price auction obtains
the optimal surplus of maxi vi. Suppose, however, we prefer a simpler
posted pricing mechanism. A uniform posted price corresponds to a uni-
form threshold in value space. In worst case arrival order, the agent
with the lowest value above the posted price is the one who buys. This
corresponds to a game like the gambler’s with tie-breaking by smallest
value vi. The invariance of the prophet inequality to the tie-breaking
rule allows the conclusion that posting an uniform (a.k.a. anonymous)
price gives a two-approximation to the optimal social surplus.

Proposition 4.2.2. In single-item environments there is an anonymous
pricing with expected social surplus under any order of agent arrival that
is at least half of that of the optimal social surplus.

Now consider the objective of revenue. The revenue-optimal single-
item auction selects the winner with the highest (positive) virtual value
(for revenue). To draw a connection between the auction problem and
the gambler’s problem, we note that the gambler’s problem in prize space
is similar to the auctioneer’s problem in virtual-value space (with vir-
tual value functions given by the marginal revenue curves of the agents’
distributions). The gambler aims to maximize expected prize while the
auctioneer aims to maximize expected virtual value. A uniform thresh-
old in the gambler’s prize space corresponds to a uniform virtual price in
virtual-value space. Note, however, in value space uniform virtual prices
correspond to non-uniform (a.k.a., discriminatory) prices.

Definition 4.2.1. A virtual price ϕ̂ corresponds to uniform virtual pric-
ing v̂ = (v̂1, . . . , v̂n) satisfying ϕi(v̂i) = ϕ̂ for all i.

Now compare uniform virtual pricing to the gambler’s threshold strat-
egy in the stopping game. The difference is the tie-breaking rule. For
uniform virtual pricing, we obtain the worst revenue when the agents
arrive in order of increasing price (in value space). Thus, the uniform
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virtual pricing revenue implicitly breaks ties by smallest posted price v̂i.
The gambler’s threshold strategy breaks ties by the ordering assumption
on the games (i.e., lexicographically by smallest i). Recall, though, that
irrespective of the tie-breaking rule the bound of the prophet inequality
holds.

Theorem 4.2.3. In single-item environments there is a uniform virtual
pricing (for virtual values equal to marginal revenues) with expected rev-
enue under any order of agent arrival that is at least half of that of the
optimal auction.

Proof. A uniform virtual price ϕ̂ corresponds to non-uniform prices (in
value space) v̂ = (v̂1, . . . , v̂n). The outcome of such a posted pricing, for
the worst-case arrival order of agents, is as follows. When there is only
one agent i with value vi that exceeds her offered price v̂i, the revenue is
precisely v̂i. When there are multiple agents S whose values exceed their
offered prices, the one with the lowest price arrives first and pays her
offered price of mini∈S v̂i. In other words, with respect to the gambler’s
game, the tie-breaking rule is by smallest v̂i.
To derive a bound on the revenue of is uniform virtual pricing with

the worst-case arrival order we will relate its revenue to its virtual sur-
plus. For the aforementioned outcome of a uniform virtual pricing (with
virtual values as the marginal revenue) satisfies the conditions of The-
orem 3.3.9. In particular, the induced allocation rule for each agent is
constant wherever the marginal revenue is constant. Therefore, the ex-
pected revenue of a uniform virtual pricing is equal to its expected virtual
surplus.
By the prophet inequality (Theorem 4.2.1), there is a uniform virtual

price that obtains a virtual surplus of at least half the maximum virtual
value (i.e., the optimal virtual surplus for single-item environments).
Thus, the revenue of the corresponding price posting is at least half the
optimal revenue.

In Chapter 1 we saw that that an anonymous posted pricing can be a
e/e−1 ≈ 1.582 approximation to the optimal mechanism for social surplus
for i.i.d. distributions (Theorem 1.1.5). This approximation factor also
holds for revenue and i.i.d., regular distributions. In the next section
we will give a more general result that shows that if the mechanism is
allowed to order the agents (i.e., in the best-case order instead of the
worst-case order as above) then this better e/e−1 bound can be had even
for asymmetric distributions. In this context of best-case versus worst-
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case order, the i.i.d. special case is precisely the one where symmetry
renders the ordering of agents irrelevant.

4.3 Sequential Posted Pricings and Correlation Gap

In this section we consider sequential posted pricings, i.e., where the
mechanism posts prices to the agents in an order that it specifies. See
Section 4.2 for additional motivation for posted pricings.
One of the main challenges in designing and analyzing simple ap-

proximation mechanisms is that the optimal mechanism is complex and,
therefore, difficult to analyze. For single-item auctions, this complexity
arises from virtual values which come from arbitrary monotone func-
tions. The main approach for confronting this complexity is to derive a
simple upper bound on the optimal auction and then exploit the struc-
ture suggested by this bound to construct a simple approximation mech-
anism.

4.3.1 The Ex Ante Relaxation

One method for obtaining a simple upper bound for an optimization
problem is to relax some of the constraints in the problem. For example,
ex post feasibility for a single-item auction requires that, in any out-
come selected by the auction, at most a single agent is served. In other
words, the feasibility constraint binds ex post. For Bayesian mechanism
design problems, we can relax the feasibility constraint to bind ex ante.
The corresponding ex ante constraint for a single-item environment is
that the expected (over randomization in the mechanism and the agent
values) number of agents served is at most one.

Definition 4.3.1. The ex ante relaxation of mechanism design prob-
lem is the optimization problem with the ex post feasibility constraint
replaced with a constraint that holds in expectation over randomization
of the mechanism and the agents’ values. The solution to the ex ante
relaxation is the optimal ex ante mechanism. A profile of ex ante proba-
bilities q̂ is ex ante feasible if it is induced as the marginal probabilities
of a distribution over feasible sets X, i.e.,

Q = {q̂ : ∀i q̂i = E[xi] , x ∼ D, D ∈ ∆(X)}.

Proposition 4.3.1. The optimal ex ante mechanism’s performance up-
per bounds the optimal (ex post) mechanism’s performance.
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To see what the optimal ex ante mechanism is, consider any mecha-
nism and denote by q̂ = (q̂1, . . . , q̂n) the ex ante probabilities that each
of the agents is served by this mechanism. By linearity of expectation
the expected number of agents served is

∑

i q̂i. For a single-item envi-
ronment the ex ante feasibility constraint then requires that

∑

i q̂i ≤ 1.
Notice that as far as the ex ante constraint is concerned, the agents only
impose externalities on each other via their ex ante allocation probabil-
ity. If we fix attention to mechanisms for which agent i is allocated with
ex ante probability q̂i then the remaining allocation probability for the
other agents is fixed to at most 1 − q̂i. Any method of serving agent i
with probability q̂i can be combined with any other method for serving
an expected 1 − q̂i number of the remaining agents. Thus, the relaxed
optimization problem with an ex ante feasibility constraint decomposes
across the agents.
Considering an agent i, one way to serve the agent with ex ante prob-

ability q̂i is to use the ex ante pricing (Definition 3.4.1). The expected
payment of the agent is given by her revenue curve as Ri(q̂i). Thus, for
ex ante allocation probabilities q̂ the optimal revenue is

∑

iRi(q̂i). Re-
call that for regular distributions, this optimal pricing is simply to post
the price vi(q̂i) which has probability q̂i of being accepted by the agent.
Therefore, for regular distributions the optimal ex ante mechanism is a
posted pricing.
The optimal ex ante mechanism design problem is identical to the clas-

sical microeconomic problem of optimizing the amount of a unit supply
of a good (e.g., grain) to fractionally allocate across each of several mar-
kets. Each market i has a concave revenue curve as a function of the
faction of the supply allocated to it. Both of these optimization problem
are given by the following convex program:

max
q̂

∑

i
Ri(q̂i) (4.3.1)

s.t.
∑

i
q̂i ≤ 1.

As described previously, the marginal revenue interpretation provides a
simple method for solving this program. The optimal solution equates
marginal revenues, i.e., R′

i(q̂i) = R′
j(q̂j) for i and j with q̂i and q̂j strictly

larger than zero. We conclude with the following proposition.

Proposition 4.3.2. The optimal ex ante mechanism is a uniform vir-
tual pricing (with virtual values defined as marginal revenues).

Because, at least for regular distributions, the optimal ex ante mech-
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anism is a price posting, it provides a convenient upper bound for deter-
mining the extent to which price posting (with the ex post constraint)
approximates the optimal (ex post) auction. In particular, if we post the
exact same prices then the difference between the ex ante and ex post
posted pricing is in how violations of the ex post feasibility constraint
are resolved. In the former, violations are ignored, in the latter they
must be addressed. In the terminology of the previous section, we must
address how ties, i.e., multiple agents desiring to buy at their respective
prices, are to be resolved to respect the ex post feasibility constraint.
Unlike the previous section where the oblivious ordering assumption re-
quired breaking ties in worst-case order, in this section we break ties in
the mechanisms favor.

Consider the special-case where the distribution is regular and that
the optimal ex ante revenue of Ri(q̂i) = q̂iv̂i from agent i is obtained by
posting price v̂i = vi(q̂i). The best order to break ties is in favor of higher
prices, i.e., by larger v̂i. For general (possibly irregular distributions) this
corresponds to ordering the agents by Ri(q̂i)/q̂i, i.e., the agent’s bang-
per-buck. The goal of this section is to prove an approximation bound
on this sequential price posting.

4.3.2 The Correlation Gap

The sequential posted pricing theorem that we present is an application
of a correlation gap theorem from stochastic optimization. Consider a
non-negative real-valued set function g over subsets S of an n element
ground set N = {1, . . . , n} and a distribution over subsets given by D.
Let q̂i be the ex ante1 probability that element i is in the random set
S ∼ D and let DI be the distribution over subsets induced by inde-
pendently adding each element i to the set with probability equal to its
ex ante probability q̂i. The correlation gap is then the ratio of the ex-
pected value of the set function for the (correlated) distribution D, i.e.,
ES∼D[g(S)], to the expected value of the set function for the indepen-
dent distribution D

I , i.e., E
S∼D

I [g(S)]. A typical analysis of correlation
gap will consider specific families of set functions g in worst case over
correlated distributions D.

1
In probability theory, this probability is also known as the marginal probability
of i ∈ S; however to avoid confusion with usage of the term “marginal” in
economics, we will refer to it via its economic interpretation as an ex ante
probability as if S was the feasible set output by a mechanism.
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We show below that for any values v̂ the maximum-weight-element set
function gMWE(S) = maxi∈S v̂i has a correlation gap of e/e−1.

Lemma 4.3.3. The correlation gap for any maximum-weight-element
set function and any distribution over sets is e/e−1.

Proof. This proof proceeds in three steps. First, we argue that it is
without loss to consider distributions D over singleton sets. Second,
we argue that it is without loss to consider set functions where the
weights are uniform, i.e., the one-or-more set function. Third, we show
that for distributions over singleton sets, the one-or-more set function
has a correlation gap of e/e−1.

(i) We have a set function gMWE(S) = maxi∈S v̂i. Add a dummy element
0 with weight v̂0 = 0; if S = ∅ then changing it to {0} affects neither
the correlated value nor the independent value. Moreover, the corre-
lated value ES∼D[g

MWE(S)] is unaffected by changing the set to only
ever include its highest weight element. This change to the distribu-
tion only (weakly) decreases the ex ante probabilities q̂ = (q̂1, . . . , q̂n)
and the independent value E

S∼D
I [gMWE(S)] is monotone increasing

in the ex ante probabilities. Therefore, this transformation only makes
the correlation gap larger. We conclude that it is sufficient to bound
the correlation gap for distributions D over singleton sets for which
the ex ante probabilities sum to one, i.e.,

∑

i q̂i = 1.

(ii) With set distributionD over singletons and a maximum-weight-element
set function gMWE(S) = maxi∈S v̂i, the correlated value simplifies to
ES∼D[g

MWE(S)] =
∑

i q̂i v̂i. Scaling the weights v̂ = (v̂1, . . . , v̂n) by
the same factor has no effect on the correlation gap; therefore, it is
without loss to normalize v so that the correlated value is

∑

i q̂i v̂i = 1.
We now argue that among all such normalized weights v̂, the ones that
give the largest correlation gap are the uniform weights v̂i = 1 for all
i. This special case of the maximum-weight-element set function is
the one-or-more set function, gOOM(S) = 1 if |S| ≥ 1 and otherwise
gOOM(S) = 0.

The correlated value is one for both (normalized) general weights
v and uniform weights. Thus, to show that uniform weights give no
lower correlation gap than (normalized) general weights, it suffices
to show that the independent value for (normalized) general weights
upper bounds the independent value for uniform weights.

Sort the elements by v̂i and let ci =
∏

j<i(1− q̂j) denote the prob-
ability that no element with higher weight than i is in S; therefore,
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i’s contribution to the independent value is ci q̂i v̂i. We can relate the
independent value of the maximum-weight-element set function and
the one-or-more set function as follows:

E
S∈D

I [gMWE(S)]−E
S∈D

I [gOOM(S)]

=
∑

i
ci q̂i v̂i −

∑

i
ci q̂i =

∑

i
ci q̂i (v̂i − 1)

=
∑

i

[

(ci − ci+1)
∑

j≤i
q̂j (v̂j − 1)

]

≥ 0.

The third equality is summation by parts (cf. integration by parts)
with cn+1 = 0. The inequality follows from:

(a) Sequence {ci − ci+1}
n
i=1 is non-negative.

The claim follows because the sequence {ci}
n
i=1 is non-increasing.

(b) Sequence {
∑

j≤i q̂j (v̂j − 1)}ni=1 is non-negative.

By normalization,
∑

i q̂i v̂i =
∑

i q̂i = 1 and, thus,
∑

i q̂i (v̂i−1) =
0. Combining this normalization observation with the fact that
sequence {v̂i − 1}ni=1 is non-increasing, the sequence {q̂i (v̂i −
1)}ni=1 is first positive, then negative, and sums to zero. Thus,
the sum of any prefix of {q̂i (v̂i − 1)}ni=1 is non-negative.

(iii) The correlation gap of the one-or-more set function gOOM on any
distribution D over singletons can be bounded as follows. First, the
expected correlated value is one. Second, the expected independent
value is, for S ∼ DI,

E
[

gOOM(S)
]

= Pr[|S| ≥ 1] = 1−Pr[|S| = 0] = 1−
∏

i
(1− q̂i)

≥ 1− (1− 1/n)n ≥ 1− 1/e,

where the first inequality follows because
∑

i q̂i = 1 and because the
product of a set of positive numbers with a fixed sum is maximized
when the numbers are equal. The last inequality follows as (1− 1/n)n

is monotonically increasing in n and it is 1/e in the limit as n goes to
infinity.2

2
The last part of this analysis is identical to the proof of Theorem 1.1.5. Again,
(1− 1/n)n ≤ 1/e is a standard observation that can be had by taking the natural
logarithm and then applying L’Hopital’s rule for evaluating the limit.
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4.3.3 Sequential Posted Pricings

The correlation gap is central to the theory of approximation for se-
quential posted pricings. Contrast the revenue of the optimal ex ante
mechanism (a price posting) with the revenue from sequentially post-
ing the same prices. The optimal ex ante mechanism has total ex ante
service probability

∑

i q̂i ≤ 1 (by definition). If we could coordinate the
randomization (by adding correlation to the randomization of agents’
values and the mechanism) then we could obtain this optimal revenue
and satisfy ex post feasibility. In a sequential posted pricing, of course,
no such coordination is permitted. Instead, ex post feasibility is satisfied
by serving the agent that arrives first in the specified sequence.

Given any q̂ with
∑

i q̂i ≤ 1, consider the correlated distribution D

that selects the singleton set {i} with probability q̂i and the empty set
∅ with probability 1 −

∑

i q̂i. The induced ex ante probabilities of this
correlated distribution are exactly q̂i for each agent i. Assume for now
that the distribution is regular and that the revenue of Ri(q̂i) = q̂i v̂i is
obtained by posting price v̂i = vi(q̂i). For the maximum-weight-element
set function, i.e., gMWE(S) = maxi∈S v̂i. For S ∼ D the expected value
of this set function is precisely the optimal ex ante revenue

∑

i v̂i q̂i.

On the other hand, consider sequentially posting prices v̂ = (v̂1, . . . , v̂n)
to agents ordered by largest v̂i. Let S denote the set of agents whose val-
ues are at least their prices, i.e., S = {i : vi ≥ v̂i}. Each agent i is in
S independently with probability q̂i. Importantly, S may have cardinal-
ity larger than one, but when it does, the ordering of agents by price
implies that the agent i ∈ S with the highest price wins. The revenue
of the sequential posted pricing is given by the expected value of the
maximum-weight-element set function gMWE(S) on S ∼ DI .

For regular distributions, the translation from the solution to the op-
timal ex ante mechanism which is given by q̂ to a sequential pricing is
direct. As described above, the prices v̂i = vi(q̂i) are posted to agents
in decreasing order of v̂i. For irregular distributions the q̂i optimal lot-
tery for agent i is not necessary a posted pricing. It may be, via Theo-
rem 3.4.8, a lottery over two prices. These lottery pricings arise when q̂i
is in an interval where the revenue curve has been ironed and is therefore
locally linear. The marginal revenue (i.e., virtual value) is constant on
this interval. If we break ties in the optimization of program (4.3.1) lex-
icographically, then for the optimal ex ante probabilities q̂ at most one
agent i has q̂i contained strictly within an ironed interval. Recall that
the marginal revenues of any agents who have non-zero ex ante alloca-
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tion probability are equal. At this marginal revenue, the lexicographical
tie breaking rule requires that we increase the allocation probability to
the early agents before later agents. We stop when we run out of ex ante
allocation probability and at this stopping point the ex ante allocation
probabilities can be within at most one agent’s ironed interval.
By the above discussion, the suggested sequential pricing potentially

has one agent receiving a lottery over two prices. The expected rev-
enue of this pricing satisfies the approximation bound guaranteed by
the correlation gap theorem. Of course, it cannot be the case that both
the pricings in the support of the randomized pricing have revenue be-
low the expected revenue of the lottery pricing. Therefore, the pricing
with the higher revenue gives the desired approximation. Notice that
the lexicographical ordering and derandomization steps may result in
prices (in value space) that are discriminatory even in the case that the
environment is symmetric (i.e., for i.i.d. distributions).

Theorem 4.3.4. For any single-item environment, there is sequential
posted pricing (ordered by price) with uniform virtual prices that obtains
a revenue that is an e/e−1 ≈ 1.582 approximation to the optimal auction
revenue (and the optimal ex ante mechanism revenue).

Proof. By Proposition 4.3.1 the optimal ex ante revenue upper bounds
the optimal auction revenue. The upper bound on the approximation
ratio then follows directly from the correspondence between the revenues
of the optimal ex ante mechanism and the sequential posted pricing
revenue and the correlated and independent values for the maximum
weight element set system (Lemma 4.3.3). The prices correspond to a
uniform virtual pricing by the characterization of the optimal ex ante
mechanism (Proposition 4.3.2).

The construction and analysis of Theorem 4.3.4 can similarly be ap-
plied to the objective of social surplus (see Exercise 4.10) to obtain an
e/e−1 by a sequential posted pricing that generalizes Theorem 1.1.5 to
non-identical distributions.

4.4 Anonymous Reserves and Pricings

Thus far we have shown that simple posted pricings and reserve-price-
based auctions approximate the optimal auction. Unfortunately, these
prices are generally discriminatory and, thus, may be impractical for
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many scenarios, especially ones where agents could reasonably expect
some degree of fairness of the auction protocol. We therefore consider
the extent to which an anonymous posted price or an auction with an
anonymous reserve price, i.e., the same for each agent, can approximate
the revenue of the optimal, perhaps discriminatory, auction.
For instance, in the eBay auction the buyers are not identical. Some

buyers have higher ratings and these ratings are public knowledge. The
value distributions for agents with different ratings may generally be
distinct and, therefore, the eBay auction may be suboptimal. Surely
though, if the eBay auction was very far from optimal, eBay would have
switched to a better auction. The theorem below gives some justification
for eBay sticking with the second-price auction with anonymous reserve.
Our approach to approximation for (first- or second-price) auctions

with anonymous reserve will be to show that anonymous price post-
ing gives a good approximation and then to argue via the following
proposition, that the auction revenue pointwise dominates the pricing
revenue. While there is not a succinct close-form expression for the
best anonymous reserve price for the second-price auction; the best
anonymous posted price is precisely the monopoly price for the distri-
bution of the maximum value. Notice that with distribution functions
F 1, . . . , Fn, the distribution of the maximum value has distribution func-
tion Fmax(z) =

∏

i F i(z). From this formula, the monopoly price can be
directly calculated.

Proposition 4.4.1. In any single-item environment, the revenues from
the first- and second-price auctions with an anonymous reserve price is
at least the revenue from the anonymous posted pricing with the same
price.

Proof. Recall that a posted pricing of v̂ obtains revenue v̂ if and only
if there is an agent with value at least v̂. For the auction, the utility
an agent receives for bidding strictly below v̂ is zero, while individual
rationality implies that an agent with value v ≥ v̂ will have a non-
negative utility from bidding on [v̂, v]. Thus, the auction sells at a price
of at least v̂ if and only if there is an agent with value at least v̂.

4.4.1 Identical Distributions

We start with results for anonymous posted pricing and identical dis-
tributions; these bounds are summarized by the first row of Figure 4.3.
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regular auction regular pricing irregular
identical 1 e/e−1 2

non-identical [2.15, 2.62] 2.62 n

Figure 4.3. Approximation bounds are given for the second-price auction
with anonymous reserve and for anonymous posted pricing. If a number is
given, then the bound is tight in worst case, if a range is given then the
bound is not known to be tight. For irregular distributions, the auction and
pricing bounds are the same. For i.i.d. regular distributions, the approxi-
mation ratio of anonymous pricing is upper bounded by e/e−1 for all n;
for small n the bound can be improved, e.g., for n = 1 pricing is optimal,
for n = 2 it is a 4/3 approximation. A nearly matching lower bound is the
subject of Exercise 4.12.

For i.i.d. regular distributions the second-price auction with an anony-
mous reserve is optimal (Corollary 3.3.5). For anonymous posted pricing,
Theorem 4.3.4 implies a e/e−1 ≈ 1.582 approximation for regular distri-
butions and Theorem 4.2.3 implies a two approximation for irregular
distributions. Notice that while Theorem 4.3.4 holds for irregular dis-
tributions, for identical irregular distributions the prices for which the
result holds may not be anonymous (due to the derandomization step).

Corollary 4.4.2. For i.i.d. regular single-item environments, anony-
mous posted pricing is an e/e−1 approximation to the optimal auction;
this bound is nearly tight.

Proof. For i.i.d. distributions, the optimization problem of the ex ante
relaxation (4.3.1) is symmetric and convex and, therefore, always ad-
mits a symmetric optimal solution. For regular distributions, this sym-
metric optimal solution corresponds to an anonymous posted pricing.
Theorem 4.3.4 shows that posting this anonymous price gives a e/e−1

approximation. For tightness, see Exercise 4.12.

Corollary 4.4.3. For i.i.d. (irregular) single-item environments, both
anonymous posted pricing and the second-price auction with anonymous
reserve are two approximations to the optimal auction revenue; these
bounds are tight.

Proof. For any (possibly irregular) distribution, Theorem 4.2.3 shows
that posting a uniform virtual price gives a two approximation to the
revenue of the optimal auction. For i.i.d. distributions where the virtual
value functions are identical, uniform virtual prices are anonymous. The
price-posting result follows. By Proposition 4.4.1, using this anonymous
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price as a reserve price in the second-price auction only improves the
revenue.
To see that this bound of two is tight, we give an i.i.d. irregular distri-

bution for which the approximation ratio of anonymous reserve pricing
for n agents is 2 − 1/n. Consider the discrete distribution and h , n
where

v =

{

h (high valued) w.p. 1/h, and

n (low valued) otherwise.

We then analyze the optimal auction revenue, REF, and the second-
price auction with any reserve, APX, for n agents and in the limit as
h goes to ∞. We show that REF = 2n − 1 and APX = n; the result
follows. For any given value of h, the probability that there are k high-
valued agents and n− k low valued agents is the same as in the proof of
Proposition 4.1.5; the analysis below makes use of equations (4.1.4) and
(4.1.5) from its proof.
We start by analyzing REF. The virtual values are ϕ(h) = h and, as h

goes to ∞, ϕ(n) = n− 1. The optimal auction has virtual surplus n− 1
if there are no high-valued agents and virtual surplus h if there is one
or more high-valued agents. The former case happens with probability
that goes to one and contributes n− 1 to the expected virtual surplus;
and in the limit, h times the probability of the latter case goes to n.
Thus, REF = 2n− 1.
We now analyze APX. We show that both a reserve of n and a reserve

of h give the same revenue of n in the limit. For the first case: a reserve
of n is never binding. The second-price auction has revenue h if there
are two or more high-valued agents and a revenue of n if there are one or
fewer. In the limit (as h goes to infinity) the contribution to the expected
revenue of the first term is zero and that of the second term is n. For
the second case: a reserve of h gives revenue of h when there is one or
more high-valued agent, and otherwise zero. As above, the product of h
and this probability is n in the limit. Thus, APX = n.

4.4.2 Non-identical Distributions

We now turn to asymmetric distributions. For asymmetric distributions,
the challenge with anonymous pricing comes from the asymmetry in
the environment. For non-identical regular distributions, an anonymous
posted pricing gives a constant approximation (implying the same for
anonymous reserve pricing). For non-identical irregular distributions,
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anonymous posted and reserve pricing are n approximations. We begin
with lower and upper bounds for regular distributions.

Lemma 4.4.4. The second-price auction with anonymous reserves is at
best a 2.15 approximation to the optimal revenue.

Proof. The proof if the 2.15-inapproximation is technical and based on
an n = 3 agent example. We instead prove a simpler 2-approximation.
This lower bound is exhibited by an n = 2 agent example where

agent 1’s value is a point-mass at one and agent 2’s value is drawn
from the equal revenue distribution (Definition 4.1.2) on [1,∞), i.e.,
F 2(z) = 1− 1/z. Recall that, for the equal revenue distribution, posting
any price v̂ ≥ 1 gives an expected revenue of one. For this asymmetric
setting the revenue of the second-price auction with any anonymous
reserve is exactly one. On the other hand, an auction could first offer
the item to agent 2 at a very high price (for expected revenue of one),
and if (with very high probability) agent 2 declines, then it could offer
the item to agent 1 at a price of one. The expected revenue of this
mechanism in the limit is two.

Theorem 4.4.5. For single-item environments and agents with values
drawn independently from regular distributions, anonymous reserve and
posted pricings give an 2.62 approximation to the optimal auction. One
such anonymous price is the monopoly price for the distribution of the
maximum value.

We will not give the a detailed proof of Theorem 4.4.5. The proof
has two main elements. The first element observes that the worst case
distributions for the approximation are have “triangle shaped” revenue
curves. A triangle shaped revenue curve is one that has its maximum
at some point and is the minimum concave (as required by regularity)
function that passes through this optimal point. The free parameters of
the distribution are now just the maxima of these revenue curves. The
ratio of the optimal auction to a uniform pricing can be written as a
program and then relaxed and optimized to get the bound of 2.62 on its
worst-case ratio. This bound can be seen to be tight by constructing an
instance according to the optimizer of the program.
There is a relatively straightforward proof of a weaker 4-approximation

bound of anonymous pricing to the ex ante relaxation (which upper
bounds the revenue of the optimal auction). This proof The proof follows
as a straight forward extension of the analysis of prophet inequalities.
Its proof is sketched here but left for formal proof as Exercise 4.13.
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Lemma 4.4.6. For single-item environments and agents with values
drawn independently from regular distributions, posted pricings give at
most a four approximation to the revenue of ex ante relaxation.

Proof. This proof combines elements from the proof of the prophet in-
equality (Section 4.2.1, page 115) theorem with the upper bound on the
optimal auction given by the ex ante relaxation (Section 4.3.1, page 121).
Let REF =

∑

i v̂iq̂i denote the optimal ex ante mechanism which posts
prices v̂i = vi(q̂i) and, with out loss of generality, satisfies

∑

i q̂i = 1.
Let APX denote the revenue from posting an anonymous price v̂. A key
part of the proof is to use regularity (i.e., convexity of the price-posting
revenue curve) to derive a lower bound on the probability that an agent
i with v̂i (from the optimal ex ante mechanism, above) has value at least
the anonymous price v̂. The full proof is left to Exercise 4.13.

We now give a tight inapproximation bound for anonymous reserves
and pricings with irregular distributions. Recall the proof of Proposi-
tion 4.1.6 which implies that, for (non-identical) irregular distributions,
posting an anonymous price that corresponds to the monopoly reserve
price of the agent with the highest monopoly revenue gives an n ap-
proximation to the optimal auction. This is, in fact, the best bound
guaranteed by the second-price auction with an anonymous reserve or
an anonymous posted pricing.

Theorem 4.4.7. For (non-identical, irregular) n-agent single-item en-
vironments the second-price auction with anonymous reserve and anony-
mous posted pricing are n approximations to the optimal auction rev-
enue; these bounds are tight.

Proof. The upper bound can be seen by adapting the proof of Proposi-
tion 4.1.6 as per the above discussion. The lower bound can be seen by
analyzing the optimal revenue and the revenue of the second-price auc-
tion with any anonymous reserve on the following discrete distribution
in the limit as parameter h approaches infinity. Agent i’s value is drawn
as:

vi =

{

hi w.p. h−i, and

0 otherwise.

The details of this analysis are left to Exercise 4.15.
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4.5 Multi-unit Environments

The simplest environment we could consider generalizing approxima-
tion results to are multi-unit environments. In a multi-unit environment,
there are multiple units of a single item for sale and each agent desires
a single unit. Denote by k the number of units. For k-unit environments
the externality pricing mechanism is simply the (k + 1)st-price auction
where the k agents with the highest bids win and are required to pay
the (k + 1)st bid. Except for the anonymous reserve pricing result for
non-identical regular distributions, all of the single-item results extend
to multi-unit environments. These conclusions are described in detail
below.

Consider extending the results for monopoly reserve pricing to multi-
unit environments. For regular (non-identical) k-unit environments, the
(k+1)st-price auction with monopoly reserves continues to be a two ap-
proximation to the revenue optimal auction. We defer the statement and
proof this result to Section 4.6 where it is a special case of Theorem 4.6.6.
For irregular distributions the tight n-approximation bound for single-
unit environments of Proposition 4.1.5 and Proposition 4.1.6 generalize
to k-unit environments where the approximation ratio of monopoly re-
serve pricing is n/k (see Exercise 4.16).

It is possible to generalize and improve the prophet inequality to show
that a gambler who is able to select k prizes can, with a uniform thresh-
old, obtain a (1 +

√
8/k ln k) approximation to the prophet (i.e., the ex-

pected maximum value of k prizes) for sufficiently large k. From this gen-
eralized prophet inequality, the same bound holds for oblivious posted
pricing.

Proposition 4.5.1. For k-unit environments with sufficiently large k,
there is an oblivious posted pricing that is a (1+

√
8/k ln k) approximation

to the optimal auction.

Sequential posted pricing bounds generalize to multi-unit environ-
ments and the bound obtained improves with k and asymptotically ap-
proach one, i.e., optimal. The proof of this generalization follows from
considering the correlation gap of the k-maximum-weight-elements set
function, reducing its correlation gap to that of the k-capped-cardinality
set function g(S) = min(k, |S|) (the one-or-more set function is the 1-
capped-cardinality set function), and showing that this set function’s
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correlation gap in the limit as n approaches infinity is (1− (k/e)k 1/k!)−1

which, by Stirling’s approximation3 is (1−1/
√
2πk)−1 (see Exercise 4.17).

Proposition 4.5.2. For k-unit environments, there is a sequential posted
pricing that is a (1− 1/

√
2πk)−1 approximation to the optimal auction.

An anonymous reserve price continues to be revenue optimal for i.i.d.
regular multi-unit environments. For i.i.d. regular multi-unit environ-
ments the correlation-gap-based sequential posted pricing result (Propo-
sition 4.5.2, above) implies the same bound is attained by an anonymous
pricing because for i.i.d. regular distributions, a uniform virtual pricing
is an anonymous pricing (in value space). For i.i.d. irregular multi-unit
environments the prophet-inequality-based oblivious posted pricing re-
sult (Proposition 4.5.1, above) implies the same bound by an anonymous
pricing (and consequently for the (k+1)st price auction with an anony-
mous reserve), because for i.i.d. distributions the uniform virtual pricing
identified corresponds to an anonymous pricing (in value space).
The main family of results that does not generalize from single-unit en-

vironments to multi-unit environments is the constant approximation of
anonymous pricings and reserves for non-identical distributions. The fol-
lowing lower bound holds more generally for any set system where where
it is possible to serve k agents (see Lemma 4.5.3, below). For irregular,
non-identical distributions the n-approximation bound of Theorem 4.4.7
for single-item environments generalizes and is tight.

Lemma 4.5.3. For any (non-identical) regular environment where it is
feasible to simultaneously serve k agents, anonymous pricing and anony-
mous reserve pricing are at best an Hk ≈ ln k approximation to the
optimal mechanism revenue, where Hk =

∑k
i=1

1/i is the kth harmonic
number.

Proof. Fix a set of k agents that are feasible to simultaneously serve
and reindex them without loss of generality to be {1, . . . , k}. The value
distribution that gives this bound is the one where F i is a pointmass at
1/i for agents i ∈ {1, . . . , k} and a pointmass at zero for agents i > k. For
such a distribution, competition does not increase the price above the
reserve, therefore anonymous reserve pricing is identical to anonymous
posted pricing. For any i ∈ {1, . . . , k}, anonymous pricing of 1/i to all
agents obtains revenue i · 1/i = 1 as there are i agents with values that

3
Stirling’s approximation is k! = (k/e)

k√
2πk. This approximation is obtained by

approximating the natural logarithm as ln(k!) = ln(1) + . . .+ ln(k) by an integral
instead of a sum.
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exceed 1/i. On the other hand, the optimal auction posts a discriminatory
price to the top k agents of 1/i for agent i; its revenue is the kth harmonic
number

∑k
i=1

1/i =Hk. The kth harmonic number can be approximated

by the integral
∫ k
1

1/i di and satisfies ln k − 1 ≤Hk ≤ ln k.

To summarize the generalization of the single-item results to multi-
unit environments: all approximation and inapproximation results gen-
eralize (and some improve) except for the anonymous pricing result for
non-identical, regular distributions.

4.6 Ordinal Environments and Matroids

In Chapter 3 we saw that the second-price auction with the monopoly
reserve was optimal for i.i.d. regular single-item environments. In the
first section of this chapter we showed that the second-price auction
with monopoly reserves is a two approximation for (non-identical) reg-
ular single-item environments. We now investigate to what extent the
constraint on the environment to single-item feasibility can be relaxed
while still preserving these results. In this section we give equivalent al-
gorithmic and combinatorial answers to this question. The algorithmic
answer is “when the greedy-by-value algorithm works;” the combinato-
rial answer is “when the set system satisfies a augmentation property
(i.e., matroids).”

Definition 4.6.1. The greedy-by-value algorithm is

(i) Sort the agents in decreasing order of value (and discard all agents
with negative value).

(ii) x← 0 (the null assignment).

(iii) For each agent i (in sorted order),

if (1, x−i) is feasible, xi ← 1.

(I.e., serve i if i can be served alongside previously served agents.)

(iv) Output x.

Notice that the greedy-by-value algorithm is optimal for single-item
environments. To optimize surplus in a single-item environment we wish
to serve the agent with the highest value (when it is non-negative, and
none otherwise). The greedy-by-value algorithm does just that. Notice
also that the optimality of the greedy-by-value algorithm for all profiles
of values implies that, for the purpose of selecting the optimal outcome,



136 Bayesian Approximation

the relative magnitudes of the agents’ values do not matter, only the
order of the of the values (and zero) matters.

Definition 4.6.2. An environment is ordinal if for all valuation profiles,
the greedy-by-value algorithm optimizes social surplus.

Recall the argument for i.i.d. regular single-item environments that
showed that the optimal auction is the second-price auction with the
monopoly reserve price (Corollary 3.3.5). An agent, Alice, had to satisfy
two properties to win. She must have the highest virtual value and her
virtual value must be non-negative. Having a non-negative virtual value
is equivalent having a value of at least the monopoly price. Having the
highest virtual value, by regularity and symmetry, is equivalent to having
the highest value. Thus, Alice wins when she has the highest value and
is at least the monopoly price. This auction is precisely the second-
price auction with the monopoly reserve price. For general downward-
closed environments, the non-negativity of virtual value again suggests
any agents who do not have values at least the monopoly reserve price
should be rejected. For an ordinal environment with values drawn i.i.d.
from a regular distribution, maximization of the virtual surplus from
the remaining agents gives the same outcome as maximization of the
surplus from the remaining agents: symmetry and strictly increasing
virtual value functions imply that the relative order values is identical
to that of virtual values. We conclude with the following proposition.

Proposition 4.6.1. For i.i.d. regular ordinal environments, the exter-
nality pricing mechanism with the monopoly reserve price optimizes ex-
pected revenue in dominant strategy equilibrium.

We will see in the remainder of this section that ordinality is a suffi-
cient condition on the feasibility constraint of the environment to per-
mit the extension of several of the single-item results from the preceding
sections. In particular, for regular (non-identical) distributions, surplus
maximization with (discriminatory) monopoly reserves continues to be a
two approximation. For general distributions, a sequential posted pricing
continues to be an e/e−1 approximation. Of course, neither anonymous
posted prices nor anonymous reserve prices generalize (as they do not
generalize even for the special case of multi-unit environments, see Sec-
tion 4.5).

Definition 4.6.3. The externality pricing mechanism with reserves v̂

is:
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(i) filter out agents who do not meet their reserve price, v† ← {agents with vi ≥ v̂i}
(ii) simulate the externality pricing mechanism on the remaining agents,

and

(x, p†)← EP(v†)

(iii) set prices p from critical values as:

pi ←
{

max(v̂i, p
†
i ) if xi = 1, and

0 otherwise,

where EP is the externality pricing mechanism with no reserves.

4.6.1 Matroid Set Systems

As ordinal environments enable good approximation mechanisms, it is
important to be able to understand and identify environments that are
ordinal. For general feasibility environments (Definition 3.1.1) subsets
of agents that can be simultaneously served are given by a set system.
We will see shortly, that set systems that correspond to ordinal environ-
ments, i.e., where the greedy-by-value algorithm optimizes social surplus,
are matroid set systems. Checking ordinality of the environment then is
equivalent to checking whether the matroid conditions hold.

Definition 4.6.4. A set system is (N,X) where N is the ground set
of elements and X is a set of feasible subsets of N .4 A set system is a
matroid if it satisfies:

• downward closure: subsets of feasible sets are feasible.
• augmentation: given two feasible sets, there is always an element from

the larger whose union with the smaller is feasible.

∀I, J ∈ X, |J | < |I|⇒ ∃i ∈ I \ J, {i} ∪ J ∈ X.

The augmentation property trivially implies that all maximal feasible
sets of a matroid have the same cardinality. These maximal feasible
sets are referred to as bases of the matroid; the cardinality of the bases
is the rank of the matroid. To get some more intuition for the role of
the augmentation property, the following lemma shows that if the set
system is not a matroid then the greedy-by-value algorithm is not always
optimal.

4
For matroid set systems the feasible sets are often referred to as independent
sets. To avoid confusion with independent distributions and to promote the
connection between the set system and a designer’s feasibility constraint, we will
prefer the former term.
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Lemma 4.6.2. The greedy-by-value algorithm selects the feasible set
with largest surplus for all valuation profiles only if feasible sets are a
matroid.

Proof. The lemma follows from showing for any non-matroid set system
that there is a valuation profile v that gives a counterexample. First, we
show that downward closure is necessary and then, for downward-closed
set systems, that the augmentation property is necessary.
If the set system is not downward closed there are subsets J ⊂ I with

I ∈ X and J %∈ X. Consider the valuation profile v with

vi =











2 if i ∈ J ,

1 if i ∈ I \ J , and
0 otherwise.

The optimal outcome is to select set I which is feasible and contains
all the elements with positive value. The greedy-by-value algorithm will
start adding elements i ∈ J . As J is not feasible, it must fail to add at
least one of these elements. This element is permanently discarded and,
therefore, the set selected by greedy is not equal to I and, therefore, not
optimal.
Now, assume that the set system is downward-closed but does not

satisfy the augmentation property. In particular there exists sets J, I ∈
X with |J | < |I| but there is no i ∈ I \ J that can be added to J ,
i.e., such that J ∪ {i} ∈ X. Consider the valuation profile v with (for a
ground set N of size n)

vi =











n+ 1 if i ∈ J ,

n if i ∈ I \ J , and
0 otherwise.

The greedy-by-value algorithm first attempts to and succeeds at adding
all the elements of J . As there are no elements in I \ J that are feasible
when added to J , the algorithm terminates selecting exactly the set J .
Because I has at least one more element than J , the value of I exceeds
the value of J , and the optimality of the algorithm is contradicted.

The following matroids will be of interest.

• In a k-uniform matroid all subsets of cardinality at most k are feasible.
The 1-uniform matroid corresponds to a single-item auction; the k-
uniform matroid corresponds to a k-unit auction.
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• In a transversal matroid the ground set is the set of vertices of part A
of the bipartite graph G = (A,B,E) (where vertices A are adjacent
to vertices B via edges E) and feasible sets are the subsets of A that
can be simultaneously matched. E.g., if A is people, B is houses, and
an edge from a ∈ A to b ∈ B suggests that house b is acceptable to
person a; then the feasible sets are subsets of people that can simul-
taneously be assigned acceptable houses with no two people assigned
the same house. Notice that the k-uniform matroid is the special case
where |B| = k and all houses are acceptable to each person. Therefore,
transversal matroids represent a generalization of k-unit auctions to a
market environment where not all units are acceptable to every agent,
i.e., a single-dimensional constrained matching market.

• In a graphical matroid the ground set is the set of edges E in graph
G = (V,E) and feasible sets are subsets of edges that induce acyclic
subgraphs (a.k.a., forests). Maximal feasible sets in a connected graph
are spanning trees. The greedy-by-value algorithm for graphical ma-
troids is known as Kruskal’s algorithm.

The matroid properties characterize the set systems for which the
greedy-by-value algorithm optimizes social surplus. Typically the most
succinct method for arguing that matroid/ordinal environments have
good properties is by using the fact that the greedy-by-value algorithm
is optimal. Typically the most succinct method for arguing that an en-
vironment is matroid/ordinal is by showing that it satisfies the augmen-
tation property (and is downward closed).

Theorem 4.6.3. The greedy-by-value algorithm selects the feasible set
with largest surplus for all valuation profiles if and only if feasible sets
are a matroid.

Proof. The “only if” direction was shown above by Lemma 4.6.2. The
“if” direction is as follows. Let r be the rank of the matroid. Let I =
{i1, . . . , ir} be the set of agents selected in the surplus maximizing as-
signment, and let J = {j1, . . . , jr} be the set of agents selected by greedy-
by-value. The surplus from serving a subset S of the agents is

∑

i∈S vi.
Assume for a contradiction that the surplus of set I is strictly more

than the surplus of set J , i.e., greedy-by-value is not optimal. Index the
agents of I and J in decreasing order of value. With respect to this
ordering, there must exist a first index k such that vik > vjk . Let Ik =
{i1, . . . , ik} and let Jk−1 = {j1, . . . , jk−1}. Applying the augmentation
property to sets Ik and Jk−1 we see that there must exist some agent
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i ∈ Ik \ Jk−1 such that Jk−1 ∪ {i} is feasible. Of course, the ordering of
Ik with vi ≥ vik > vjk implies that agent i was considered by greedy-by-
value before it selected jk. By downward closure and feasibility of Jk−1∪
{i}, when agent i was considered by greedy-by-value it was feasible. By
definition of the algorithm, agent i should have been added; this is a
contradiction.

To verify that an environment is ordinal/matroid the most direct ap-
proach is to verify the augmentation property. As an example we show
that constrained matching markets (a.k.a., the transversal matroid) are
indeed a matroid.

Lemma 4.6.4. For matching agents N = {1, . . . , n} to items K =
{1, . . . , k} via bipartite graph G = (N,K,E) where an agent i ∈ N can
be matched to an item j ∈ K if edge (i, j) ∈ E, the subsets of agents N
that correspond to matchings in G are the feasible sets of a matroid on
ground set N .

Proof. Consider any two subsets N † and N ‡ of N that are feasible, i.e.,
that correspond to matching in G, with |N †| < |N ‡|. We argue that
there exists an i ∈ N ‡ \N † such that N † ∪ {i} is feasible.
A matchingM corresponds to a subset of edges E such each vertex (ei-

ther an agent in N or an item in K) in the induced subgraph (N,K,M)
has degree (i.e., number of adjacent edges in M) at most one. Denote the
matching that witnesses the feasibility of N † by M †, and likewise, M ‡

for N ‡. Consider the induced subgraph (N,K,M † ∪M ‡). The vertices
in this subgraph have degree at most two. A graph of degree at most
two is a collection of paths and cycles.
There must be a path that starts at a vertex corresponding to an agent

i ∈ N ‡ \ N † and ends with a vertex corresponding to an item j ∈ K.
This is because paths that start with agents i ∈ N ‡ \N † can only end
at items or at agents i ∈ N † \N ‡. By the assumption |N †| < |N ‡|, there
are more agents in N ‡ \ N † than N † \ N ‡ and so a path ending in an
item must exist.
This path that ends at an item must alternate between edges in M ‡

and M †. This path has an odd number of edges as it starts with an
agent and ends with an item. As it starts with an agent matched by M ‡.
It has one more edge from M ‡ than M †. In matching theory and with
respect to matching M † this path is an augmenting path as swapping the
edges between the matchings results in a new matching for M † with one
more matched edge, and consequently one more agent is matched. This



4.6 Ordinal Environments and Matroids 141

additional matched agent is i. The existence of this new matching implies
that N † ∪ {i} is feasible. Thus, the matroid augmentation property is
satisfied.

As an application of Corollary 4.6.5 to single-dimensional constrained
matching markets, a.k.a., transversal matroids, we obtain the following
corollary.

Corollary 4.6.5. For i.i.d. regular single-dimensional constrained match-
ing markets, the externality pricing mechanism with the monopoly re-
serve price optimizes expected revenue in dominant strategy equilibrium.

4.6.2 Monopoly Reserve Pricing

In matroid environments that are inherently asymmetric, the i.i.d. as-
sumption is unnatural and therefore restrictive. However, as in single-
item environments, the externality pricing mechanism with (discrimi-
natory) monopoly reserves continues to be a good approximation even
when the agents’ values are non-identically distributed.

Theorem 4.6.6. In regular, matroid environments the revenue of the
externality pricing mechanism with monopoly reserves is a two approxi-
mation to the optimal mechanism revenue.

There are two very useful facts about the externality pricing mecha-
nism in ordinal environments that enable the proof of Theorem 4.6.6.
The first shows that the critical value (which determine an agent’s
payment) for an agent is the value of the agent’s “best replacement.”
The second shows that the externality pricing mechanism is pointwise
revenue monotone, i.e., if the values of any subset of agents increases
the revenue of the mechanism does not decrease. These properties are
summarized by Lemma 4.6.8 and Theorem 4.6.7, below. We will prove
Lemma 4.6.8 and leave the formal proofs of Theorem 4.6.6 and Theo-
rem 4.6.7 for Exercise 4.19 and Exercise 4.20, respectively.

Definition 4.6.5. If I ∪ {i} ∈ X is surplus maximizing set containing
i then the best replacement for i is j = argmax{k : I∪{k}∈X} vk.

Definition 4.6.6. A mechanism is revenue monotone if for all valuation
profiles v ≥ v† (i.e., for all i, vi ≥ v†i ), the revenue of the mechanism on
v is at least its revenue on v†.

Theorem 4.6.7. In matroid environments, the externality pricing mech-
anism is revenue monotone.
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Lemma 4.6.8. In matroid environments, the externality pricing mech-
anism on valuation profile v has the critical values v̂ satisfying, for each
agent i, v̂i = vj where j is the best replacement for i.

Proof. The greedy-by-value algorithm is ordinal, therefore we can as-
sume without loss of generality that the cumulative values of all subsets
of agents are distinct. To see this, add a U [0, ε] random perturbation to
each agent value, the event where two subsets sum to the same value
has measure zero, and as ε → 0 the critical values for the perturbation
approach the critical values for the original valuation profile, i.e., from
equation (4.6.1) below.
To proceed with the proof, consider two alternative calculations of

the critical value for player i. The first is from the proof of Lemma 3.2.1
where OPT(0, v−i) and OPT−i(∞, v−i) are optimal surplus from agents
other than i with i is not served and served, respectively.

v̂i = OPT(0, v−i)−OPT−i(∞, v−i). (4.6.1)

The second is from the greedy algorithm. Sort all agents except i by
value, then consider placing agent i at any position in this ordering.
Clearly, i is served when placed first. Let j be the first agent after which
i would not be served. Then,

v̂i = vj . (4.6.2)

Now we compare these the two formulations of critical values given
by equations (4.6.1) and (4.6.2). Consider i ordered immediately before
and immediately after j and suppose that i is served in former order
and not served in the later order. In the latter order, it must be that
j is served as this is the only possible difference between the outcomes
of the greedy algorithm for these two orderings up to the point that
both i and j have been considered. Therefore, agent j must be served
in the calculation of OPT(0, v−i). Let J ∪ {j} be the agents served in
OPT(0, v−i) and let I ∪ {i} be the agents served in OPT(∞, v−i). We
can deduce from equations (4.6.1) and (4.6.2) that,

vj = v̂i

= OPT(0, v−i)−OPT−i(∞, v−i)

= vj + v(J) − v(I),

where v(S) denotes
∑

k∈S vk. We conclude that v(I) = v(J) which, by
the assumption that the cumulative values of distinct subsets are dis-
tinct, implies that I = J . Meaning: j is a replacement for i; furthermore,
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by optimality of J∪{j} for OPT(0, v−i), j must be the best, i.e., highest
valued, replacement.

4.6.3 Oblivious and Adaptive Posted Pricings

Recall that an oblivious posted pricing predetermines prices to offer each
agent and its revenue must be guaranteed in worst case over the order
that the agents arrive. It is conjectured that oblivious posted pricing is
a constant approximation for any matroid environment. In contrast, an
adaptive posted pricing is one that, for any arrival order of the agents,
calculates the price to offer each agent when she arrives. The calculated
price can be a function of the agents identity, the agents that have pre-
viously arrived and the agents that are currently being served by the
mechanism. The proof of the following theorem is based on a matroid
prophet inequality (that we will not cover in this text).

Theorem 4.6.9. For (non-identical, irregular) matroid environments,
there is an adaptive posted pricing that is a two approximation to the
optimal mechanism revenue.

4.6.4 Sequential Posted Pricings

The e/e−1 approximation for single-item sequential posted pricing and its
proof via correlation gap extends to matroid environments. To present
this extension, we first extend the definition of the optimal ex ante mech-
anism to matroids. We then relate the sequential posted pricing question
to the optimal ex ante mechanism via the correlation gap. Finally, we
conclude with a necessary extra step for adapting the pricing to irregular
distributions.
Consider a matroid set system (N,X). Previously we defined the rank

of a matroid as the maximum cardinality of any feasible set. We can
similarly define the rank of a not-necessarily-feasible subset S of the
ground set N as the maximum cardinality of any feasible subset of it. In
other words, it is the rank of the induced matroid on (S,X). Let rank(S)
denote this matroid rank function.
A profile of ex ante probabilities q̂ = (q̂1, . . . , q̂n) is ex ante feasible,

if there exists a distribution D over feasible sets X of the matroid that
induces these ex ante probabilities, i.e., q̂ ∈ Q with

Q = {q̂ : ∀i q̂i = E[xi] , x ∼ D, D ∈ ∆(X)}.
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For matroid set systems, this definition can be simplified by the following
characterization. For any distribution D over feasible sets and any not-
necessarily-feasible set S it must be that the expected number of agents
served by D is at most the rank of that set. I.e., for all subsets S of the
ground set N ,

∑

i∈S
q̂i ≤ rank(S). (4.6.3)

This inequality follows as the left-hand side is the expected number
of agents in S that are served and the right hand side is the maximum
number of agents in S that can be simultaneously served. It is impossible
for this expected number to be higher than this maximum possible. In
fact, this necessary condition is also sufficient.

Proposition 4.6.10. For a matroid set system (N,X), a profile of ex
ante probabilities q̂ is ex ante feasible if and only if

∑

i∈S q̂i ≤ rank(S)
holds for all subsets S of N .

From the above characterization of ex ante feasibility, we can write
the optimal ex ante pricing program as follows.

max
q̂

∑

i
R(q̂i) (4.6.4)

s.t.
∑

i∈S
q̂i ≤ rank(S), ∀S ⊂ N.

If the objective were given by linear weights instead of concave revenue
curves, this program would be optimized easily by the greedy-by-value
algorithm (with values equal to weights).5 With convex revenue curves,
the marginal revenue approach enables this program to be optimized via
a simple greedy-by-value based algorithm.6

Suppose for now that the distribution over agent values is regular.
The revenue curve for an agent with inverse demand curve v(·) is conse-
quently given by R(q̂) = q̂ v̂ for v̂ = v(q̂) since, for a regular distribution,
the q̂ optimal ex ante pricing posts price v̂. The optimal ex ante revenue
from program (4.6.4) is thus

∑

i q̂iv̂i.

5
Readers familiar with convex optimization will note that the matroid rank
function is submodular and therefore the constraint imposed by ex ante
feasibility is that of a polymatroid.

6 Discretize quantile space [0, 1] into " evenly sized pieces. Consider the "-wise
union of the matroid set system (the class of matroid set systems is closed under
union). Calculate marginal revenues of each discretized quantile of each agent.
Run the greedy-by-marginal-revenue algorithm. Calculate q̂i as the total quantile
of agent i that is served by algorithm, i.e., 1/" times the number of i’s discretized
pieces that are served.
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The ex ante optimal revenue can be interpreted as the correlated value
of a set function as follows. Consider the matroid weighted rank function
rankv̂(·) for weights v̂ defined for a feasible set S ∈ X as

∑

i∈S v̂i and
in general for not-necessarily-feasible set S ⊂ N as that maximum over
feasible subsets of S of the weighted rank of that subset. As q̂ is ex ante
feasible, there exists a correlated distribution D over feasible sets which
induces ex ante probabilities q̂. The correlated value of this distribution
for the matroid weighted rank set function is exactly the optimal ex ante
revenue.
Now consider the sequential posted pricing that orders the agents by

decreasing price v̂i. When an agent i arrives in this order, if it is feasible
to serve the agent along with the set of agents who have been previously
served, then offer her price v̂i; otherwise, offer her a price of infinity
(i.e., reject her). Consider the outcome of this process for valuation pro-
file v where the set of agents willing to buy at their respective price
is S = {i : vi ≥ v̂i} (which may not be feasible). The revenue from
this sequential posted pricing is given by the matroid-weighted-rank set
function as rankv̂(S).
We conclude that the approximation factor of sequential posted pric-

ing with respect to the optimal ex ante revenue (which upper bounds
the optimal revenue for ex post feasibility) is given by the correlation
gap of the matroid-weighted-rank set function. Thus, it remains to an-
alyze the correlation gap of the matroid-weighted-rank set function. An
approach, which we will discuss here to analyze the correlation gap of
the matroid weighted rank set functions, is to observe that the matroid
weighted rank function is submodular and that the correlation gap of
any submodular function is e/e−1.
For ground set N , consider a real valued set function g : 2N → R.

Intuitively, submodularity corresponds to diminishing returns. Adding
an element i to a large set increases the value of the set function less
than it would for adding it to a smaller subset.

Definition 4.6.7. A set function g is submodular if for S† ⊂ S‡ and
i %∈ S‡,

g(S† ∪ {i})− g(S†) ≥ g(S‡ ∪ {i})− g(S‡).

Importantly, the matroid-rank and matroid-weighted-rank set func-
tions are submodular (Definition 4.6.7). Therefore, the matroid structure
imposes diminishing returns.



146 Bayesian Approximation

Theorem 4.6.11. The matroid rank function is submodular; for any
real valued weights, the matroid weighted-rank function is submodular.

Proof. We prove the special case of uniform weights (equivalently: that
the matroid-rank set function is submodular; for the general case, see
Exercise 4.21). Though we consider the (unweighted) matroid-rank set
function, to understand structural properties of the set system, the proof
of submodularity will use the fact that the greedy-by-value algorithm is
optimal for any weights. Consider S† ⊂ S‡ and i %∈ S‡ and the weights
v−i as

vj =










4 if j ∈ S†,

2 if j ∈ S‡ \ S†,

0 otherwise.

Consider the cases of vi = 1 and vi = 3. If i is added by greedy-by-value
when vi = 1 then i is certainly added by greedy-by-value when vi = 3:
moving i earlier in the greedy ordering only makes it more plausible that
it is feasible to add i at the time i is considered. Therefore, the difference
in rank of S† with and without i is at least the difference in rank of S‡

with and without i. Hence, the defining equation (Definition 4.6.7) for
submodularity holds.

We omit the proof of the following theorem and instead refer readers
to the simpler proof that the maximum value element set function has
correlation gap e/e−1 (see Lemma 4.3.3, Section 4.3.2).

Theorem 4.6.12. The correlation gap for a submodular set function
and any distribution over sets is e/e−1.

For regular distributions and by the above discussion, the ex ante
service probabilities from the ex ante program (4.6.4) corresponds to a
sequential posted pricing that has approximation factor bounded by the
correlation gap. The same bound can be obtained for irregular distribu-
tions as well (see Section 4.3 and Exercise 4.22).

Theorem 4.6.13. For matroid environments, there is a sequential posted
pricing with revenue that is an e/e−1 approximation to the optimal auc-
tion revenue.
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4.6.5 Anonymous Reserves and Pricings

While Proposition 4.6.1 showed that anonymous reserves are optimal for
i.i.d. regular matroid environments, this result is essentially the extent
to which anonymous reserves obtain good revenue in matroid environ-
ments. Specifically, the lower bounds for multi-unit environments of Sec-
tion 4.5 extend to matroids where results for k-unit environments gener-
alize to rank k matroid environments. Moreover, for i.i.d. regular matroid
environments, anonymous posted pricing does not give a constant ap-
proximation and for i.i.d. (irregular) matroid environments, anonymous
reserves do not give a constant approximation (Exercise 4.23).

4.6.6 Beyond Ordinal Environments

Generalizing reserve and posted pricing approximation beyond ordinal
environments is difficult because in general environments (even downward-
closed ones) the optimal mechanism may choose to serve one agent over
a set of other agents, or vice versa. For example, this would happen when
the first agents virtual value exceeds the sum of the other agents’ virtual
values. Recall that the matroid property discussed previously guarantees
that tradeoffs between serving agents is always done one for one (e.g.,
via Lemma 4.6.8). There are two, in fact opposite, effects we should
be worried about when proceeding to general environments. First, in a
general downward-closed environment one agent could potentially block
many agents, each with significant potential payments. Second, many
agents with minimal payments could potentially block a few agents who
would have made significant payments.
We illustrate the first effect with an impossibility result for posted

pricing mechanisms.

Lemma 4.6.14. For (i.i.d., regular) downward-closed environments the
approximation ratio of posted pricing (oblivious or sequential) is at best
Ω(logn/ log logn).

Proof. Fix an integer h, set n = hh+1, and partition the n agents into hh

parts of size h each. Consider the one-part-only feasibility constraint that
forbids simultaneously serving agents in distinct parts, but allows and
number of agents in the same part to be served. The agents’ values are
i.i.d. from the equal revenue distribution on [1, h], i.e., with F (z) = 1−1/z
and a pointmass of 1/h at value h. Call an agent high-valued if her value is
h and, otherwise, low-valued. We show that the approximation factor of
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posted pricing is at least h/2 · e−1/e and conclude that the approximation
factor is Ω(h) = Ω(log n/log logn).7

To get a lower bound on the optimal revenue, REF, consider the mech-
anism that serves a part only if all agents in the part are high valued,
charges each of the agents in the part h, and obtains a total revenue
of h2. As there are hh parts and each part has probability h−h of be-
ing all high valued, the probability that one or more of these parts is
all high valued is given by the correlation gap of the one-or-more set
function as e−1/e (Lemma 4.3.3). Thus, the optimal revenue is at least
REF ≥ h2 · e−1/e.
To get an upper bound on the revenue of any posted pricing, notice

that once one agent accepts a price, only agents in that same part as
this agent can be simultaneously served. Since the distribution is equal
revenue, the revenue from serving these remaining agents totals exactly
h− 1 (one from each of h− 1 agents). The best revenue we can get from
the first agent in the part is h. Thus, any posted pricing mechanism’s
revenue is upper bounded by 2h− 1, and so APX ≤ 2h.

Before we illustrate the second effect (many low-paying agents block-
ing a few high-paying agents), notice that the tradeoffs of optimizing
virtual values (for revenue) can be much different from the tradeoffs of
optimizing values (for social surplus). Therefore, the outcome from sur-
plus maximization could be much different from that of virtual surplus
maximization.

Example 4.6.1. The expected value the equal revenue distribution on
[1, v‡] is 1+ ln v‡ (for the unbounded equal revenue distribution it is infi-
nite). This can be calculated from the formula E[v] =

∫∞
0 (1−FEQR(z)) dz

with FEQR(z) = 1 − 1/z. On the other hand, the monopoly revenue for
the equal revenue distribution is one. Therefore, the optimal social sur-
plus and optimal revenue for a regular single-agent environment can be
arbitrarily separated.

Because of the difference between social surplus and potential revenue
(i.e., virtual surplus) can be large, there may be a set of agents with high
social surplus that collectively block another set of agents from whom a
large revenue could be obtained. In the externality pricing mechanism
with reserves, the payment an agent makes is either her reserve price or

7
To see the asymptotic behavior of the approximation ratio in terms of n, notice
that by definition logn = (h+ 1) log h, so (a) rearranging h = logn/log h − 1 and
(b) taking the logarithm log logn > log(h+ 1) + log log h. From (b),
log logn = Θ(log h) and plugging this into (a) h = Θ(log n/log log n).
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the externality she imposes on the other agents. In the scenario under
consideration it may be that none of the agents in the first set is indi-
vidually responsible for other agents being rejected, consequently none
impose any externality. Therefore, the revenue they contribute need not
exceed the revenue that could have been obtained by serving the second
set. We illustrate this phenomenon with an impossibility result for sur-
plus maximization with monopoly reserves in regular downward-closed
environments.

Lemma 4.6.15. For (regular) downward-closed environments the ap-
proximation factor of the second-price auction with monopoly reserves
is Ω(logn).

Proof. Consider a one-versus-many set system on n+ 1 agents where it
is feasible to serve agent 1 (Alice) or any subset of the remaining agents
2, . . . , n+ 1 (the Bobs). This set system is downward closed.
A sketch of the argument is as follows. The Bobs’ values are distributed

i.i.d. from an equal revenue distribution. If we decide to sell to the Bobs
the best we can get is a revenue of n total (one from each). Of course,
the social surplus of the Bobs is much bigger than the revenue that
selling to them would generate (see Example 4.6.1, above). We then
set Alice’s value deterministically to a large value that is Θ(n logn)
but with high probability below the social surplus of the Bobs. The
optimal auction could always sell to Alice at her high value; thus, REF
is Θ(n logn). Unfortunately, the monopoly reserves for the Bobs are
one and, therefore, not binding. Surplus maximization with monopoly
reserves will with high probability not serve Alice, and therefore derive
most of its revenue from the Bobs. The maximum expected revenue
obtainable from the Bobs is n; thus, APX = Θ(n). See Exercise 4.24 for
the details.

In the next section we show; for a large class of important distributions
that, intuitively, do not have tails that are too heavy; that virtual values
and values are close. Consequently, maximizing surplus is similar enough
to maximizing virtual surplus that monopoly reserve pricing gives a good
approximation to the optimal mechanism.

4.7 Monotone-hazard-rate Distributions

An important property of electronic devices, such as light bulbs or com-
puter chips, is how long they will operate before failing. If we model
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the lifetime of such a device as a random variable then the failure rate,
a.k.a., hazard rate, for the distribution at a certain point in time is the
conditional probability (actually: density) that the device will fail in
the next instant given that it has survived thus far. Device failure is
naturally modeled by a distribution with a monotone (non-decreasing)
hazard rate, i.e., the longer the device has been running the more likely
it is to fail in the next instant. The uniform, normal, and exponential
distributions all have monotone hazard rate. The equal-revenue distri-
bution (Definition 4.1.2) does not.

Definition 4.7.1. The hazard rate of distribution F (with density f)
is h(z) = f(z)

1−F (z) . The distribution has monotone hazard rate (MHR) if
h(z) is monotone non-decreasing.

Intuitively distributions with monotone hazard rate are not heavy
tailed. In fact, the exponential distribution, with FEXP(z) = 1 − e−z,
fEXP(z) = e−z, and hEXP(z) = 1 is the boundary between monotone
hazard rate and non; its hazard rate is constant. Hazard rates are clearly
important for revenue-optimal auctions as the definition of virtual valu-
ations (for revenue), expressed in terms of the hazard rate, is

ϕ(v) = v − 1/h(v). (4.7.1)

It is immediately clear from equation (4.7.1) that monotone hazard rate
implies regularity (i.e., monotonicity of virtual value; Definition 3.3.1).

An important property of monotone hazard rate distributions that
will enable approximation by the externality pricing mechanism with
monopoly reserves is that the optimal revenue is always within a factor
of e ≈ 2.718 of the optimal surplus. We illustrate this bound with the
exponential distribution (Example 4.7.1), prove it for the case of a single-
agent environments, and defer the proof for general downward-closed
environments to Exercise 4.25. Contrast these results to Example 4.6.1,
above, which shows that for non-monotone-hazard-rate distributions, the
ratio of surplus to revenue can be unbounded.

Example 4.7.1. The expected value the exponential distribution (with
rate one) is one. This can be calculated from the formula E[v] =

∫∞
0 (1−

FEXP(z)) dz with FEXP(z) = 1− e−z. Since the exponential distribution
has hazard rate hEXP(z) = 1, the virtual valuation formula for the expo-
nential distribution is ϕEXP(v) = v− 1. The monopoly price is one. The
probability that the agent accepts the monopoly price is 1−FEXP(1) = 1/e
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Figure 4.4. The cumulative hazard rate function (solid, black) for the uni-
form distribution is H(v) = − ln(1 − v) and it is lower bounded by its
tangent (dashed, gray) at v̂

!
= 1/2.

so its expected revenue is 1/e. The ratio of the expected surplus to expected
revenue is e.

Theorem 4.7.1. For any downward-closed, monotone-hazard-rate en-
vironment, the optimal expected revenue is an e ≈ 2.718 approximation
to the optimal expected surplus.

Lemma 4.7.2. For any monotone-hazard-rate distribution its expected
value is at most e times more than the expected monopoly revenue.

Proof. Let REF = E[v] be the expected value and APX = v̂! (1−F (v̂!))
be the expected monopoly revenue. Let H(v) =

∫ v

0 h(z) dz be the cumu-
lative hazard rate of the distribution F . We can write

1− F (v) = e−H(v), (4.7.2)

an identity that can be easily verified by differentiating the natural loga-
rithm of both sides of the equation.8 Recall of course that the expectation
of v ∼ F is

∫∞
0 (1−F (z)) dz. To get an upper bound on this expectation

we need to upper bound e−H(v) or equivalently lower bound H(v).
The main difficulty is that the lower bound must be tight for the

exponential distribution where the expected value is exactly e times more
than the expected monopoly revenue. Notice that for the exponential

8
We have d

dv ln(1 − F (v)) = −f(v)
1−F (v) and d

dv ln(e
−H(v)

) = −h(v).
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distribution the hazard rate is constant; therefore, the cumulative hazard
rate is linear. This observation suggests that perhaps we can get a good
lower bound on the cumulative hazard rate with a linear function.
Let v̂! = ϕ−1(0) be the monopoly price. Since H(v) is a convex func-

tion (it is the integral of a monotone function), we can get a lower bound
H(v) by the line tangent to it at v̂!. See Figure 4.4. I.e.,

H(v) ≥ H(v̂!) + h(v̂!) (v − v̂
!)

= H(v̂!) + v−v̂
!

v̂
! . (4.7.3)

The second part follows because v̂! = 1/h(v̂!) by the choice of monopoly
price v̂! and equation (4.7.1). Now we use this bound to calculate a
bound on the expectation.

REF =

∫ ∞

0
(1− F (z)) dz =

∫ ∞

0
e−H(z) dz

≤
∫ ∞

0
e−H(v̂

!
)−z/̂v!+1 dz = e1−H(v̂

!
)
∫ ∞

0
e−

z/̂v! dz

= e1−H(v̂
!
)
v̂
! = e (1− F (v̂!)) v̂! = e APX .

The first and last lines follow from equation (4.7.2); the inequality follows
from equation (4.7.3).

Shortly we will show that the externality pricing mechanism with
monopoly reserve prices is a two approximation to the optimal mech-
anism for monotone-hazard-rate downward-closed environments. This
result is derived from the intuition that revenue and surplus are close.
For revenue and surplus to be close, it must be that virtual values and
values are close. Notice that the monotone-hazard-rate condition, via
equation (4.7.1), implies that for higher values (which are more impor-
tant for optimization) virtual value is even closer to value than for lower
values (see Figure 4.5). The following lemma reformulates this intuition.

Lemma 4.7.3. For any monotone-hazard-rate distribution F and v ≥
v̂!, ϕ(v) + v̂! ≥ v.

Proof. Since v̂! = ϕ−1(0) it solves v̂! = 1/h(v̂!). By MHR, v ≥ v̂! implies
h(v) ≥ h(v̂!). Therefore,

ϕ(v) + v̂! = v − 1/h(v) + 1/h(v̂!) ≥ v.

Theorem 4.7.4. For any monotone-hazard-rate downward-closed envi-
ronment, the revenue of the externality pricing mechanism with monopoly
reserves is a two approximation to the optimal mechanism revenue.
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Figure 4.5. The virtual value for the uniform distribution is depicted. For
v ≥ v̂

!
the virtual value ϕ(v) (solid, black) is sandwiched between the value

v (dashed, gray) and value less the monopoly price v − v̂
! (dashed, gray).

Proof. Let APX denote the externality pricing mechanism with monopoly
reserves (and its expected revenue) and let REF denote the revenue-
optimal mechanism (and its expected revenue).We start with two bounds
on APX and then add them.

APX = E[APX’s virtual surplus] , and

APX ≥ E[APX’s winners’ reserve prices] .

Sum these two equations and let x(v) denote the allocation rule of APX,

2 ·APX ≥ E[APX’s winners’ virtual values + reserve prices]

= E
[∑

i
(ϕi(vi) + v̂!i ) · xi(v)

]

≥ E
[∑

i
vi · xi(v)

]

= E[APX’s surplus]

≥ E[REF’s surplus] ≥ E[REF’s revenue] = REF .

The second inequality follows from Lemma 4.7.3. By downward closure,
neither REF nor APX sells to agents with negative virtual values. Of
course, APX maximizes the surplus subject to not selling to agents with
negative virtual values. Hence, the third inequality. The final inequality
follows because the revenue of any mechanism is never more than its
surplus.

We have seen in this section that, for monotone-hazard-rate distribu-
tions in downward closed environments, the optimal social surplus and
optimal revenue are close. We then used this fact to show that a the
monopoly-reserves auction is a good approximation to the optimal auc-
tion. Because surplus and revenue are close, the optimal surplus can be
used as an upper bound on the optimal revenue. Finally, we showed that
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the monopoly-reserves auction has a revenue that approximates the opti-
mal surplus. This approach of comparing revenue to surplus is somewhat
brute-force, and there is thus a sense that these approximation bounds
could be considered trivial.

Exercises

4.1 In Chapter 1 we saw that a lottery (Definition 1.1.2) was an n ap-
proximation to the optimal social surplus. At the time we claimed
that this approximation guarantee was the best possible by a mech-
anism without transfers. Prove this claim.

4.2 Consider a two-agent single-item auction where agent 1 and agent 2
have values distributed uniformly on [0, 2] and [0, 3], respectively.
Calculate and compare the expected revenue of the (asymmetric)
revenue-optimal auction and the second-price auction with (asym-
metric) monopoly reserves. In other words, calculate the expected
revenues for the allocation rules of Example 3.3.3 which are de-
picted in Figure 4.1.

4.3 Finish the proof of Lemma 4.1.3 by showing that for any irregular
distribution, the value of an agent is at least her virtual value for
revenue. Hint: start by observing that with respect to the price-
posting revenue curve P (q) = q · v(q), v(q) is the slope of the line
from the origin to the point (q, P (q)) on the curve, and that the
lemma for the regular case implies that lines from the origin cross
the curve only once.

4.4 Define a distribution to be prepeak monotone if its revenue curve
is monotone non-decreasing on [0, q̂!], i.e., at values above the
monopoly price. Notice that prepeak monotonicity is a weaker con-
dition than regularity. First, it requires nothing of the distribution
below the monopoly price. Second, above the monopoly price the
price-posting revenue curve does not need to be concave. Reprove
Theorem 4.1.1 with a weaker assumption that the agents’ distri-
butions are prepeak monotone.

4.5 Calculate the expected revenue of the optimal auction in an n-agent
k-unit environment with values drawn i.i.d. from the equal revenue
distribution (Definition 4.1.2; distribution function FEQR(z) = 1−
1/z). Express your answer in terms of n and k.

4.6 Show that the revenue from the single-item monopoly-reserves auc-
tion smoothly degrades as the distribution becomes more irregular.
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To show this you will need to formally define near regularity. One
reasonable definition is as follows. A distribution F is α-nearly reg-
ular if there is a regular distribution F † such that price-posting rev-
enue curves of these distributions satisfy P (q) ≥ P †(q) ≥ 1/αP (q)
for all q.

(a) Explain why the definition above is a good definition for near
regularity.

(b) Prove an approximation bound the second-price auction with
monopoly reserves in α-nearly regular environments.

4.7 Generalize the prophet inequality theorem to the case where both
the prophet and the gambler face an ex ante constraint q̂ on the
probability that they accept any prize.

4.8 Show that another method for choosing the threshold in the prophet
inequality is to set v̂ = 1/2E[maxi vi]. Hint: for this choice of v̂,
prove that v̂ ≤

∑

iE[(vi − v̂)+].
4.9 Show that the prophet inequality is tight in two senses.

(a) Show that there is a distribution over prizes such that the ex-
pected prize of the optimal backwards induction strategy is half
of the prophet’s.

(b) Show that there is a distribution over prizes such that the ex-
pected prize of any uniform threshold strategy is at most half
of the optimal backwards induction strategy.

4.10 Adapt the statement and proof of Theorem 4.3.4 to the objective of
social surplus. Be explicit about the prices and ordering of agents
in the sequential posted pricing of your construction.

4.11 For two agents with values drawn from the uniform distribution,
calculate and compare the price postings from:

(a) the prophet inequality based oblivious posted pricing,
(b) the correlation gap based sequential posted pricing, and
(c) the optimal anonymous price posting.

4.12 For i.i.d. regular single-item environments, give a lower bound
lower bound for the approximation ratio of anonymous pricing that
that nearly matches the upper bound. Hint: consider the regular
distribution with revenue curve R(q) = (1− 1/n) q+ 1/n.

4.13 Prove Lemma 4.4.6 by adapting the analysis of the prophet in-
equality (Theorem 4.2.1) to show, for any (non-identical) regular
single-item environment, that there exists an anonymous price (i.e.,
the same for each agent) such that price-posting obtains four ap-
proximation to the optimal ex ante mechanism revenue.
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4.14 Show that there exists an i.i.d. distribution and a matroid for which
the externality pricing mechanism with an anonymous reserve is
no better than an Ω(logn/ log logn) approximation to the optimal
mechanism revenue.

4.15 Show that for (non-identical, irregular) n-agent single-item envi-
ronments the second-price auction with anonymous reserve and
anonymous posted pricing are at best n approximations to the
optimal auction revenue (i.e., prove the lower bound of Theo-
rem 4.4.7). To do so, analyze the revenue of the optimal auction
and the second-price auction with any anonymous reserve when
the agents values distributed as:

vi =

{

hi w.p. h−i, and

0 otherwise.

and parameter h approaches infinity. Hint: the analysis of Propo-
sition 4.1.5 is similar.

(a) Show that the optimal auction has an expected revenue of n in
the limit of h.

(b) Show that posting anonymous price hi (for i ∈ {1, . . . , n}) has
an expected revenue of one in the limit of h.

(c) Show that for the second-price auction and anonymous reserve
price hi (for i ∈ {1, . . . , n}) has an expected revenue of one in the
limit of h. Hint: notice that conditioned on their being exactly
one agent with a positive value, anonymous reserve pricing and
anonymous posted pricing give the same revenue.

(d) Combine the above three steps to prove the theorem.

4.16 Generalize Proposition 4.1.6 and Proposition 4.1.5 to show that for
n-agent k-unit irregular environments the (k + 1)st-price auction
with monopoly reserves is a n/k approximation and give a matching
lower bound, respectively.

4.17 Prove Proposition 4.5.2, i.e., for k-unit environments that there is
a sequential posted pricing that is a (1− 1/

√
2πk)−1 approximation

to the optimal auction, by completing the following steps.

(a) Reduce the correlation gap of the k-maximum-weight-elements
set function, i.e., for weights v̂ = (v̂1, . . . , v̂n) the value of g

kMWE(S)
for subset S is the sum of the k largest weight elements of S,
and arbitrary correlated distributions to correlated distributions
over sets of cardinality exactly k.
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(b) Reduce the correlation gap of the k-maximum-weight-elements
set function on correlated distributions over sets of cardinality
k to the correlation gap of the k-capped-cardinality set function
gkCC(S) = min(k, |S|) (over the same class of distributions).

(c) Show that the correlation gap of the k-capped-cardinality set
function on correlated distributions over sets of cardinality k is
(

1− (k/e)k 1/k!
)−1

.

(d) Apply the correlation gap to obtain a bound on the approx-
imation ratio of the revenue of a uniform virtual pricing for
(non-identical, irregular) k-unit environments with respect to
the optimal auction revenue. Explain exactly how to find an
appropriate pricing.

4.18 Recall that a feasible set of a matroid is maximal if there is no
element that can be added to it such that the union is feasible. It
is easy to see that the augmentation property implies that all max-
imal feasible sets of a matroid have the same cardinality. Rederive
this result directly from the fact that greedy-by-value is optimal.

4.19 Show that in regular, matroid environments the externality pricing
mechanism with monopoly reserves gives a two approximation to
the optimal mechanism revenue, i.e., prove Theorem 4.6.6. Hint:
This result can be proved using Lemma 4.6.8 and Theorem 4.6.7
and a similar argument to the proof of Theorem 4.1.1.

4.20 A mechanism M is revenue monotone if for all pairs of valuation
profiles v and v† such that for all i, vi ≥ v†i , the revenue of M on v

is at least its revenue on v†. It is easy to see that the second-price
auction is revenue monotone.

(a) For single-dimensional linear agents, give a downward-closed en-
vironment for which the externality pricing mechanism (Mech-
anism 3.2.1) is not revenue monotone.

(b) Prove that the externality pricing mechanism is revenue mono-
tone in matroid environments.

4.21 Prove, directly from the fact that greedy-by-value is optimal for
matroid set systems, that the matroid-weighted-rank set function
is submodular. I.e., complete the proof of Theorem 4.6.11.

4.22 Consider sequential posted pricings for irregular matroid environ-
ments.

(a) Using Theorem 4.6.13, show that there is a sequential posted
pricing that is an e/e−1 approximation to the revenue optimal
auction.
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(b) Give an algorithm for finding such a sequential posted pricing.
Assume you are given the ex ante service probabilities q̂ that
optimizes program (4.6.4). Assume you are given oracle access
to the single-agent optimal ex ante pricing problems for each
agent, i.e., for any agent i and service probability q̂i the ora-
cle will tell you the revenue-optimal lottery pricing that serves
this agent with ex ante probability q̂i. Finally, assume you have
blackbox access to a procedure that for any sequential posted
pricing v̂ will tell you the sequential posted pricing’s expected
revenue (assuming prices are offered to agents in decreasing or-
der). Your algorithm should run in linear time in the number n
of agents, i.e., it should have at most a linear number of basic
computational steps and calls to any of the above oracles.

4.23 Show the following inapproximability results for anonymous re-
serve and posted pricing in i.i.d. matroid environments.

(a) For i.i.d. regular matroid environments, anonymous posted pric-
ing does not give a constant approximation.

(b) For (irregular) i.i.d. matroid environments, neither anonymous
reserve nor posted pricing gives a constant approximation.

4.24 Complete the proof of Lemma 4.6.15 by showing that there is a
family of regular downward-closed environments that demonstrates
that the externality pricing mechanism with monopoly reserves is
an Ω(log n) approximation to the optimal revenue. Hint: to set the
value of Alice such that with high probability the social surplus
of the Bobs exceeds Alice’s value you can truncate the equal rev-
enue distribution to a finite value h and then employ a standard
Chernoff-Hoeffding concentration bound that shows that the sum
of i.i.d. random variables on [0, h] is concentrated around its ex-
pectation. For a sum S of i.i.d. random variables on [0, h]:

Pr[|S −E[S]| ≥ δ] ≤ 2e
−2δ

2
/nh

2

.

4.25 Consider the following externality pricing mechanism with lazy
monopoly reserves where, intuitively, we run the externality pricing
mechanism EP and then reject any winner i whose value is below
her monopoly price v̂!i :

(a) (x†, p†)← EP(v),

(b) xi =

{

x†i if vi ≥ v̂!i

0 otherwise, and
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(c) pi = max(v̂!i , p
†
i ).

Prove that the revenue of this mechanism is an e approximation
to the optimal social surplus in any downward-closed, monotone-
hazard-rate environment. Conclude Theorem 4.7.1 as a corollary.

Chapter Notes

For non-identical, regular, single-item environments, the proof that the
second-price auction with monopoly reserves is a two approximation is
from Chawla et al. (2007). The generalization of monopoly reserve pric-
ing to general environments is from Hartline and Roughgarden (2009).
They showed that it is a two approximation for regular matroid envi-
ronments and for monotone-hazard-rate downward-closed environments.
For single-item environments, the second-price auction with an anony-
mous reserve was shown to be between and two and four approximation
by Hartline and Roughgarden (2009).

The prophet inequality theorem was proven by Samuel-Cahn (1984)
and the connection between prophet inequalities and mechanism design
was first made by Taghi-Hajiaghayi et al. (2007). Chawla et al. (2010b)
studied approximation of the optimal mechanism via oblivious and se-
quential posted pricings. They showed, via the prophet inequality, that
a uniform virtual pricing is a two approximation for single-item environ-
ments. For k-unit environments, Taghi-Hajiaghayi et al. (2007) give a
generalized prophet inequality with an upper bound of (1+

√
8/k ln k) for

sufficiently large k; an analogous approximation bound for uniform vir-
tual pricing holds. Beyond single- and multi-unit environments, Chawla
et al. (2010b) showed that oblivious posted pricings give a three approx-
imation for graphical matroid environments and upper bounded the ap-
proximation factor for general matroids of rank k as logarithmic in k.
As of this writing, it is unknown whether there is an oblivious posted
pricing give constant approximations for general matroids. On the other
hand, Kleinberg and Weinberg (2012) show that there is an adaptive
posted pricing that obtains a two approximation for any arrival order of
the agents. This adaptive posted pricing determines the price to offer an
agent when it arrives and this price can be based on the set of agents who



160 Bayesian Approximation

have previously arrived and potentially been served.9 See Alaei (2011)
for a general framework for adaptive posted pricing.
The usage of the optimal ex ante mechanism as an upper bound on

the optimal mechanism is from Chawla et al. (2007) and Alaei (2011).
The approximation factor of sequential posted pricings were first studied
by Chawla et al. (2010b) they proved the e/e−1 approximation for single-
item environments, a two approximation for matroid environments, and
constant approximations for several other environments. The connection
to correlation gap and the e/e−1 approximation for matroid environments
was observed by Yan (2011) by way of the correlation gap theorem of
Agrawal et al. (2010) for submodular set functions. Yan also gave the im-
proved analysis for multi-unit auctions which shows that as the number
k of available units increases the approximation factor from sequential
posted pricing converges to one.
The approximation bounds for anonymous pricing and reserves that

are summarized in Figure 4.3 are from the following original sources.
Hartline and Roughgarden (2009) showed that the second-price auction
with an anonymous reserve guarantees a 4-approximation for agents with
non-identical regularly distributed values. Alaei et al. (2019) extended
the constant approximation to anonymous pricings versus the ex ante
relaxation where they proved a tight worst-case approximation bound
of e ≈ 2.718. Jin et al. (2019) reconsidered anonymous pricing versus
the optimal auction and proved a tight bound of approximately 2.62.
For anonymous reserves, this gives an improved upper bound; they also
improved the lower bound to 2.15. The tight n-approximation bound
for non-identical irregular distributions is from Alaei et al. (2019). For
identical regular distibutions, the optimality of the second-price auc-
tion with an anonymous reserve is from Myerson (1981) and the e/e−1-
approximation of anonymous pricing follows from the upper bound of
Chawla et al. (2010b) and the lower bound of Dütting et al. (2016).
For identical irregular distributions, the bound follows from the prophet
inequality given by Chawla et al. (2010b).
The non-game-theoretic analysis of the optimality of the greedy-by-

value algorithm under matroid feasibility was initiated by Joseph Kruskal
(1956) and there are books written solely on the structural proper-
ties of matroids, see e.g., Oxley (2006) or Welsh (2010). Mechanisms
based on the greedy-by-value algorithm were first studied by Lehmann

9
Note that both the sequential posted pricings and oblivious posted pricings
considered in this chapter fix the prices that each agent will receive before the
mechanism is run.
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et al. (2002) who showed that even when these algorithms are not opti-
mal, mechanisms derived from them are incentive compatible (cf. Chap-
ter 10). The first comprehensive study of the revenue of the surplus
maximizing mechanism in matroid environments was given by Talwar
(2003); for instance, he proved critical values for matroid environments
are given by the best replacement. The revenue monotonicity for ma-
troid environments and non-monotonicity for non-matroids is discussed
by Ausubel and Milgrom (2006), Day and Milgrom (2007), and Dughmi
et al. (2009).
The amenability to approximation of environments with value distri-

butions satisfying the monotone hazard rate as been observed several
times, e.g., by Hartline et al. (2008), Hartline and Roughgarden (2009),
and Bhattacharya et al. (2010). The structural comparison that shows
that the optimal revenue is an e ≈ 2.718 approximation to the optimal
social surplus for for downward-closed, monotone-hazard-rate environ-
ments was given by Dhangwatnotai et al. (2010).


