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Optimal Mechanisms

In this chapter we discuss the objectives of surplus and profit. As we
will see, the economics of designing mechanisms to maximize surplus is
relatively simple. The optimal mechanism is a simple generalization of
the second-price auction that we have already discussed. Furthermore,
it is dominant strategy incentive compatible and prior-free, i.e., it is
not dependent on distributional assumptions. Surplus maximization is
unique among economic objectives in this regard.

The objective of profit maximization, on the other hand, adds sig-
nificant new challenge: for profit there is no single optimal mechanism.
For any mechanism, there is a distribution over agent preferences and
another mechanism where this new mechanism has strictly larger profit
than the first one.

This non-existence of an absolutely optimal mechanism requires a re-
laxation of what we consider a good mechanism. To address this chal-
lenge, this chapter follows the traditional economics approach of Bayesian
optimization. We will assume that the distribution of the agents’ pref-
erences is common knowledge, even to the mechanism designer. This
designer should then search for the mechanism that maximizes her ex-
pected profit when preferences are indeed drawn from the distribution.

As an example, consider two agents with values drawn independently
and identically from U [0, 1]. The second-price auction obtains revenue
equal to the expected second-highest value, E

[

v(2)
]

= 1/3. A natural
question is whether more revenue can be had. As a first step, it is sim-
ilarly easy to calculate that the second-price auction with reserve 1/2
obtains an expected revenue of 5/12 (which is higher than 1/3).1 Above,

1 There are three cases: (i) 1/2 > v(1) > v(2), (ii) v(1) > 1/2 > v(2), and (iii),
v(1) > v(2) > 1/2. Case (i) happens with probability 1/4 and has no revenue; case
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perhaps surprisingly, a seller makes more money by sometimes not sell-
ing the item even when there is a buyer willing to pay. In this chapter
we show that the second-price auction with reserve 1/2 is indeed optimal
for this two agent example and furthermore we give a concise character-
ization of the revenue-optimal auction for any single-dimensional agent
environment.

3.1 Single-dimensional Environments

In our previous discussion of Bayes-Nash equilibrium we focused on the
agents’ incentives. Single-dimensional linear agents each have a single
private value for receiving some abstract service and linear utility, i.e.,
the agent’s utility is her value for the service less her payment (Defini-
tion 2.4.1). Recall that the outcome of a single-dimensional game is an
allocation x = (x1, . . . , xn), where xi is an indicator for whether agent i
is served, and payments p = (p1, . . . , pn), where pi is the payment made
by agent i. Here we formalize the designer’s constraints and objectives.

Definition 3.1.1. A general cost environment is one where the designer
must pay a service cost c(x) for the allocation x produced. A general
feasibility environment is one where there is a feasibility constraint over
the set of agents that can be simultaneously served. A downward-closed
feasibility constraint is one where subsets of feasible sets are feasible.

Of course, downward-closed environments are a special case of general

(ii) happens with probability 1/2 and has revenue 1/2; and case (iii) happens with
probability 1/4 and has expected revenue E

[

v(2) | case (iii) occurs
]

= 2/3. The
calculation of the expected revenue in case (iii) follows from the conditional
values being U [1/2, 1] and the fact that, in expectation, uniform random variables
evenly divide the interval they are over. The total expected revenue can then be
calculated as 5/12.

Chapter 3: Topics Covered.
• single-dimensional environments;
• surplus maximization and externality pricing;
• profit maximization;
• virtual values and ironing;
• revenue curves and marginal revenue;
• welfare maximization with a balanced budget.
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feasibility environments which are a special case of general cost environ-
ments. We can express general feasibility environments as general costs
environments were c(·) ∈ {0,∞}. We can similarly express downward-
closed feasibility environments as the further restriction where x

† ≤ x

(i.e., for all i, x†i ≤ xi) and c(x) = 0 and implies that c(x†) = 0. We will
be aiming for general mechanism design results where the most general
results will be the ones that hold in the most general environments. We
will pay special attention to restrictions on the environment that enable
illuminating observations about optimal mechanisms.
The two most fundamental economics objectives are surplus, a.k.a.,

social welfare,2 and profit. Implicit in the definition of surplus is the
fact that the payments from the agents are transferred to the service
provider and therefore do not affect the objective.3

Definition 3.1.2. The surplus of an allocation is the cumulative value
of the agents served less the service cost:

Surplus(v, x) =
∑

i
vi xi − c(x).

The profit of allocation and payments is the cumulative payment of the
agents less the service cost:

Profit(p, x) =
∑

i
pi − c(x).

A key additional constraint that comes into play in mechanism design
problems for environments with non-trivial designer costs c(·) or non-
downward-closure and mixed-sign agent values, e.g., bilateral exchange,
is budget balance. Budget balance requires that the mechanism does not
sometimes subsidize the transaction.

Definition 3.1.3. An outcome (x, p) is budget balanced if its profit is
non-negative, i.e.,

Profit(p, x) =
∑

i
pi − c(x) ≥ 0.

The single-item and routing environments that were discussed in Chap-
ter 1 are special cases of downward-closed environments. Single-item

2 A mechanism that optimizes surplus is said to be economically efficient; though,
we will not use this terminology because of possible confusion with
computational efficiency. A mechanism is computationally efficient if it computes
its outcome quickly (see Chapter 10).

3
An alternative notion would be to consider only the total value derived by the
agents, i.e., the surplus less the total payments. This consumer surplus was
discussed in detail in Chapter 1; mechanisms for optimizing consumer surplus are
the subject of Exercise 3.1.
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environments have costs:

c(x) =

{

0 if
∑

i xi ≤ 1, and

∞ otherwise.

In routing environments, recall, each agent has a message to send be-
tween a source and destination in the network. Routing environments
have costs:

c(x) =

{

0 if messages with xi = 1 can be simultaneously routed, and

∞ otherwise.

The bilateral exchange (or double auction) environment is one where
the mechanism is mediating the exchange of an item between two agents,
a buyer and a seller. Agent 1 is a buyer and has a positive value for
trading; agent 2 is a seller and has a negative value, i.e., a cost, for trading
(but is willing to do so if paid). For example, surplus is maximized
by trading if the buyer’s value is greater than the seller’s cost. The
environment is not downward closed in the sense that either both agents
trade or neither trade. Bilateral exchanges have costs:

c(x) =

{

0 if x1 = x2, and

∞ otherwise.

The final environment we will discuss in this section is that of a non-
excludable public project. In this environment there is a fixed cost for
producing a public good, e.g., for building a bridge, and if the good is
produced then all agents can make use of the good. For example, once the
bridge is built, it is not possible to exclude some agents, i.e., feasibility
is all or none. In this sense, public project environments generalize the
bilateral exchange environment to more than two agents and to non-zero
costs. Excludable public projects have costs:

c(x) =










C if xi = 1 for all i,

0 if xi = 0 for all i, and

∞ otherwise.

Non-excludable public project environments are difficult ones for mech-
anism design as incentives tend to be weak. When the cost C and agent
values are positive (e.g., agents are buyers), there is a free-rider problem
where an agent can bid zero and hope that the other agents support the
project. In practice this free-rider problem is often solved by taxation
where agents are taxed proportionally to wealth.
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The non-excludable public project environment also has practical ap-
plication where the cost C and values are negative (e.g., agents are sell-
ers). For example, the government desires to construct a new highway
and must buy the properties in the path of the highway from their indi-
vidual owners. In this case, the weak incentives manifest in a hold-out
problem where each seller would like to hold out and be paid the full
benefit for the project |C| (a negative cost C is a benefit). In practice,
mechanisms like eminent domain, where a third-party assesses a fair
market value to be paid to each agent, are common.
We can see from the examples above that the single-dimensional en-

vironments admit a wide variety of practical applications. Much of the
text will focus on these environments. This chapter will further consider
surplus maximization (Section 3.2), profit maximization (Section 3.3 and
Section 3.4), and surplus maximization subject to budget balance (Sec-
tion 3.5).

3.2 Surplus

We now derive the optimal mechanism for surplus. To do this we walk
through a standard approach in mechanism design. We completely re-
lax the Bayes-Nash equilibrium incentive constraints and ask and solve
the remaining non-game-theoretic optimization question. We then verify
that this solution does not violate the incentive constraints. We conclude
that the resulting mechanism is optimal.
The non-game-theoretic optimization problem of maximizing surplus

for input v = (v1, . . . , vn) is that of finding x to maximize Surplus(v, x) =
∑

i vi xi − c(x). Let OPT be an optimal algorithm for solving this prob-
lem. We will care about both the allocation that OPT selects, i.e.,
argmaxx Surplus(v, x) and its surplus maxx Surplus(v, x). Where it is un-
ambiguous we will use notation OPT(v) to denote either of these quanti-
ties. Notice that the formulation of OPT has no mention of equilibrium
or incentive constraints.
We know from our characterization that the allocation rule of any

BNE is monotone, and that any monotone allocation rule can be im-
plemented in BNE with the appropriate payment rule. Thus, relative to
the non-game-theoretic optimization, the mechanism design problem of
finding a Bayesian incentive compatible mechanism to maximize surplus
has an added monotonicity constraint. As it turns out, even though we
did not impose a monotonicity constraint on OPT, it is satisfied anyway.
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Lemma 3.2.1. For each agent i and all values of other agents v−i, the
allocation rule of OPT for agent i is a step function.

Proof. Consider any agent i. There are two situations of interest. Either
i is served by OPT(v) or i is not served by OPT(v). We write out the
surplus of OPT in both of these cases. Below, notation (z, v−i) denotes
the vector v with the ith coordinate replaced with z.

Case 1 (i ∈ OPT):

OPT(v) = max
x

Surplus(v, x)

= vi +max
x−i

Surplus((0, v−i), (1, x−i)).

Define OPT−i(∞, v−i), the optimal surplus from agents other
than i assuming that i is served, as the second term on the right
hand side. Thus,

OPT(v) = vi +OPT−i(∞, v−i).

Notice that OPT−i(∞, v−i) is not a function of vi.

Case 2 (i &∈ OPT):

OPT(v) = max
x

Surplus(v, x)

= max
x−i

Surplus((0, v−i), (0, x−i)).

Define OPT(0, v−i), the optimal surplus from agents other than
i assuming that i is not served, as the term on the right hand
side. Thus,

OPT(v) = OPT(0, v−i).

Notice that OPT(0, v−i) is not a function of vi.

OPT chooses whether or not to allocate to agent i, and thus which
of these cases we are in, so as to optimize the surplus. Therefore, OPT
allocates to i whenever the surplus from Case 1 is greater than the
surplus from Case 2. I.e., when

vi +OPT−i(∞, v−i) ≥ OPT(0, v−i).

Solving for vi we conclude that OPT allocates to i whenever

vi ≥ OPT(0, v−i)−OPT−i(∞, v−i).

Notice that neither of the terms on the right hand side contain vi.



60 Optimal Mechanisms

Therefore, the allocation rule for i is a step function with critical value
v̂i = OPT(0, v−i)−OPT−i(∞, v−i).

Since the allocation rule induced by OPT is a step function, it satisfies
our strongest incentive constraint: with the appropriate payments (i.e.,
the “critical values”) truthtelling is a dominant strategy equilibrium
(Corollary 2.10.4). An intuitive description of the critical value v̂i =
OPT(0, v−i)−OPT−i(∞, v−i) is the externality that agent i imposes on
the other agents by being served. In other words, because i is served the
other agents obtain total surplus OPT−i(∞, v−i) instead of the surplus
OPT(0, v−i) that they would have received if i was not served. The price
pi that should be charged to agent i via Corollary 2.10.4 is v̂i if i is served
(with vi ≥ v̂i) and zero otherwise.
The calculation of payments can be simplified to pi = OPT(0, v−i)−

OPT−i(v) as the externality agent i imposes by being present in the
mechanism (regardless of whether she is served or not). Note that if
she is not served then the second term is equal to the first and the
externality she imposes is zero. Hence, we can interpret the resulting
mechanism as serving agents to maximize the surplus and charging each
agent the externality she imposes on the others. This mechanism is often
referred to as the Vickrey-Clarke-Groves (VCG) mechanism, named after
William Vickrey, Edward Clarke, and Theodore Groves.

Definition 3.2.1. The externality pricing (EP) mechanism for surplus
maximization with single-dimensional agents is:

(i) Solicit and accept sealed bids b with bi ∈ R+.

(ii) Find the optimal outcome x← OPT(b).

(iii) Set prices p with pi ← OPT(0, b−i)−OPT−i(b) for each agent i.

By Corollary 2.10.4 and Lemma 3.2.1 we have the following theorem,
and by the optimality of OPT and the assumption that agents follow
the dominant truthtelling strategy we have the following corollary.

Theorem 3.2.2. The externality pricing mechanism is dominant strat-
egy incentive compatible.

Corollary 3.2.3. The externality pricing mechanism optimizes surplus
in dominant strategy equilibrium.

Example 3.2.1. The second-price routing auction from Chapter 1 is
an instantiation of the externality pricing mechanism where feasible out-
comes are subsets of agents whose messages can be simultaneously routed.
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It is useful to view the externality pricing mechanism as a reduction
from the mechanism design problem to the non-game-theoretic optimiza-
tion problem. Given an algorithm that solves the non-game-theoretic op-
timization problem, i.e., OPT, we can construct the externality pricing
mechanism from it.
Surplus maximization is singular among objectives in that there is a

single mechanism that is optimal regardless of distributional assump-
tions. Essentially: the agents’ incentives are already aligned with the de-
signer’s objective and one only needs to derive the appropriate payments,
i.e., the critical values. For general objectives, the optimal mechanism is
distribution dependent.
There are other mechanisms, besides the externality pricing mecha-

nism of Definition 3.2.1, that maximize surplus in equilibrium. By rev-
enue equivalence, the payment rule of the surplus maximization mecha-
nism is unique up to the payments each agent would make if her value
was zero, i.e., pi(0, v−i) for agent i. For instance pi(v) = OPT−i(v)
is an DSIC payment rule as well with pi(0, v−i) = OPT(0, v−i). This
payment rule does not satisfy the natural no-positive-transfers condition
which requires that agents not be paid to participate. It is also possi-
ble to design BNE mechanisms, e.g., in the common winner-pays-bid
format, that maximize surplus in equilibrium. We already saw that for
i.i.d. distributions, the first-price auction and the second-price auction
are equivalent (Section 2.7). In particular, for single-item environments,
both maximize surplus. Moreover, for asymmetric distributions and gen-
eral environments, it is possible to use distributional knowledge to care-
fully construct a winner-pays-bid surplus-maximizing mechanism (see
Exercise 3.2).

3.3 Profit

A non-game-theoretic optimization problem looks to maximize some ob-
jective subject to feasibility. Given the input, we can search over feasible
outcomes for the one with the highest objective value for this input.
The outcome produced on one input need not bear any relation to the
outcome produced on an (even slightly) different input. Mechanisms, on
the other hand, additionally must address agent incentives which im-
pose constraints over the outcomes that the mechanism produces across
all possible misreports of the agents. In other words, the mechanism’s
outcome on one input is constrained by its outcome on similar inputs.
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Therefore, a mechanism may need to tradeoff its objective performance
across inputs.

When the distribution of agent values is specified, e.g., by a common

Mathematical Note. At various points in the remainder of this chap-
ter it will be convenient to write the expectations of discontinuous dis-
tributions via the integral of their density function which is, at their
discontinuity, not well defined. We will then reinterpret the expectation
via integration by parts. This notational convenience can be made pre-
cise via the Dirac delta function which integrates to a step function;
however, we will not describe these details formally.
Consider, as an example, the following which is taken from the con-

struction of Proposition 3.3.6 on page 76. Draw a random variable
q̂ ∈ [0, 1] from a distribution G with distribution function G(q). If G
is continuous then its density g(q) = d

dqG(q) is well defined and we
can write the expectation of some function P (·) of q̂ as Eq̂∼G[P (q̂)] =
∫ 1
0 P (q) g(q) dq. If G is discontinuous (i.e., it possesses point masses)
the same formula is correct when the density g contains the appropriate
Dirac delta function.
A change of variables allows any integral over [0, 1] to be reinterpreted

as the expectation of a function of a uniform random variable. From the
above example,

Eq̂∼G[P (q̂)] = Eq∼U [0,1][P (q) g(q)] .

Finally, integration by parts gives, for example, the following formula
for rearranging an integral, with d

dqP (q) denoted by p(q),

∫ 1

0
P (q) g(q) dq =

[

P (q)G(q)
]1

0
−
∫ 1

0
p(q)G(q) dq.

When P (0) = P (1) = 0 the first term on the right-hand side is identi-
cally zero. If not, we can set P (0) = P (1) = 0 which will introduce a
discontinuity in to P (·) which we can express in p(·) via the Dirac delta
function as described above. Formulaically, this modification allows the
first term of the right-hand side to be accounted for by the integral.
We can, as above, write these integrals as expectations of functions of
a uniform random variable. Integration by parts can be thus expressed
for q ∼ U [0, 1] as:

E[P (q) g(q)] = E[−p(q)G(q)] .
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prior (Definition 2.3.2) and the designer has knowledge of this prior, such
a tradeoff can be optimized. In particular, the prior assigns a probability
to each input and the designer can then optimize expected objective
value over this probability distribution. The mechanism that results from
such an optimization is said to be Bayesian optimal. In this section
we derive the Bayesian optimal mechanism for the objective of profit.
Other objectives that are linear in surplus and payments can be similarly
considered (e.g., consumer surplus, see Exercise 3.1).
The following value distributions will serves as examples in the sub-

sequent exposition.

Example 3.3.1. A uniform agent has single-dimensional linear utility
with value v drawn uniformly from [0, 1], i.e., cumulative distribution
function F (z) = z and desnsity function f(z) = 1.

Example 3.3.2. A (exemplary) bimodal agent has single-dimensional
linear utility with value v drawn uniformly from [0, 3] with probability
3/4 and uniformly from (3, 8] with probability 1/4, i.e., the distribution
defined by density function f(v) = 1/4 for v ∈ [0, 3] and f(v) = 1/20 for
v ∈ (3, 8] (see Figure 3.4, page 73).

3.3.1 High-level Approach: Amortized Analysis

The profit of a mechanism is given by the sum of the agents’ payments
(minus the cost of serving them). Via the payment identity of Theo-
rem 2.5.1, namely

p(v) = v x(v)−
∫ v

0
x(v†) dv†, (3.3.1)

the payment of an agent depends on her allocation rule, in particular,
on x(v†) for v† ≤ v when the agent’s value is v). In other words, what
the mechanism chooses to do when the agent’s value is v† < v affects
the revenue the mechanism obtains when her value is v.
This dependence of the payment on the allocation that the agent

would receive if she had a lower value implies that there is no point-
wise optimal mechanism (as there was for surplus maximization, cf. Sec-
tion 3.2). Consider selling an item to a single agent with value v drawn
uniformly from [0, 1] (Example 3.3.1). If her value is 0.2, then it is point-
wise optimal to offer her the item at price v̂ = 0.2. This corresponds to
the allocation rule which steps from zero to one at 0.2. Similarly if her
value is 0.7, then it is pointwise optimal to offer her the item at price
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(b) Bimodal agent virtual value.

Figure 3.1. Depicted are virtual value functions ϕ(v) = v − 1−F (v)
f(v) for the

uniform and bimodal agent examples (Example 3.3.1 and Example 3.3.2).
Notice that the virtual value function in the uniform example is mono-
tone non-decreasing in value while in the bimodal example it is not. For
reference, the line v2 = v1 is depicted (grey dotted line).

v̂ = 0.7. Of course, offering a 0.7-valued agent a price of 0.2 or a 0.2-
valued agent a price of 0.7 is not optimal. There is no single mechanism
that is pointwise optimal on both of these inputs. On the other hand,
given a distribution over the agent’s value, we can easily optimize for the
price with maximum expected revenue: post the price v̂ that maximizes
v̂ (1 − F (v̂)). For the uniform agent where F (z) = z, this optimal price
is v̂! = 1/2.4

The payment identity (3.3.1) gives a formula for the expected pay-
ment that a v-valued agent makes in terms of her allocation rule. As is
evident from the integral form of the payment identity, an agent’s pay-
ment at a given value depends on the allocation probability she would
have obtained with a lower value. In fact, her payment is highest when
the allocation to lower values is the lowest. Our approach to optimizing
profit will be via an amortized analysis where we charge the loss in rev-
enue from high values due to high allocation probability at low values to
the low values themselves. Via such an approach, the amortized benefit
from serving an agent with a given value is her value less a deduction
that accounts for the lowered the payment for higher values. We will
refer to this amortized benefit as virtual value and we will show that
the problem of optimizing profit in expectation over the distribution of
values reduces to the problem of maximizing virtual surplus pointwise.

A straightforward approach to such an amortized analysis (given sub-

4
Set d

dv̂ [v̂ (1− v̂)] = 1− 2v̂ = 0 and solve for v̂ to get the optimal price to post of

v̂
!
= 1/2.



3.3 Profit 65

sequently in Section 3.3.4) will give virtual value function

ϕ(v) = v −
1− F (v)

f(v)
. (3.3.2)

In equation (3.3.2), v is the revenue from serving the agent with value v

(at a price of v) and 1−F (v)
f(v) represents the loss of revenue from serving

higher values. We will see that such a formulation satisfies

Ev∼F [p(v)] = Ev∼F [ϕ(v)x(v)] (3.3.3)

for any allocation and payment rules (x, p) that satisfy the Bayes-Nash
equilibrium characterization (Theorem 2.5.1; i.e., monotonicity of x and
the payment identity (3.3.1)). Equation (3.3.3) can be derived simply by
applying the definition of expectation (as an integral) to the payment
identity and simplifying (see Exercise 3.3); we will give a less direct but
more economically intuitive construction subsequently in Section 3.3.4.
From equation (3.3.2) the virtual value function for the uniform agent

example is ϕ(v) = 2v − 1; for the bimodal agent example it is depicted
in Figure 3.1. Notice that ϕ(0) < 0 as there is no value from serving an
agent with value zero but serving such an agent lowers the price that
she could be charged if her value were higher. Notice that the highest
virtual value is always equal to the highest value as there is no amortized
deduction necessary to account for lower prices obtained by higher values
as no higher values exist, e.g., the uniform agent with values on interval
[0, 1] has ϕ(1) = 1 and the bimodal agent with values on interval [0, 8]
has ϕ(8) = 8.
The importance of equation (3.3.3) is that it enables the non-pointwise

optimization of expected payments to be recast as a pointwise opti-
mization of virtual surplus. The non-game-theoretic optimization prob-
lem of maximizing virtual surplus is that of finding x to maximize
Surplus(ϕ(v), x) =

∑

i ϕi(vi) xi − c(x).5 Let OPT again be the sur-
plus maximizing algorithm. We will care about both the allocation that
OPT(ϕ(v)) selects, i.e., argmaxx Surplus(ϕ(v), x) and its virtual surplus
maxx Surplus(ϕ(v), x). Where it is unambiguous we will use notation
OPT(ϕ(v)) to denote either of these quantities. Note that this formula-
tion of OPT(ϕ(·)) has no mention of the incentive constraints.
We now give the first part of the derivation of the optimal mechanism

for virtual surplus (and, hence, for profit). To do this we again walk
through a standard approach in mechanism design. We completely re-
lax the incentive constraints and solve the remaining non-game-theoretic

5
Here, ϕ(v) denotes the profile of virtual values (ϕ1(v1), . . . ,ϕn(vn)).
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optimization problem. Since expected profit equals expected virtual sur-
plus, this non-game-theoretic optimization problem is to optimize virtual
surplus. We then verify that this solution does not violate the incentive
constraints (under some conditions). We conclude that (under the same
conditions) the resulting mechanism is optimal.
We know from the Bayesian incentive compatibility characterization

(Corollary 2.10.2) that incentive constraints require that the allocation
rule be monotone. Thus, the mechanism design problem of finding a
BIC mechanism to maximize virtual surplus has an added monotonicity
constraint. Notice that, even though we did not impose a monotonicity
constraint on OPT(ϕ(·)), if the virtual value functions ϕi(·) for each
agent i are monotone then OPT(ϕ(·)) is monotone.

Lemma 3.3.1. For any profile of virtual value functions ϕ, mono-
tonicity of ϕi(·) implies the monotonicity of the allocation to agent i
of OPT(ϕ(z, v−i)) with respect to z.

Proof. Letx(·) be the allocation rule of OPT, i.e.,x(v) = argmaxx Surplus(v, x).
Recall from Lemma 3.2.1 that maximizing surplus is monotone in that
xi(z, v−i) is monotone in z. Thereforexi(ϕi(z),ϕ−i(v−i)) is monotone in
ϕi(z), i.e., increasing ϕi(z) does not decrease xi. By assumption ϕi(z)
is monotone in z; therefore, increasing z cannot decrease ϕi(z) which
cannot decrease xi(ϕi(z),ϕ−i(v−i)).

For many distributions the virtual value function v − 1−F (v)
f(v) of equa-

tion (3.3.2) is monotone, e.g., uniform (Example 3.3.1), normal, and
exponential distributions. We refer to these as regular distributions. For
regular distributions the approach suggested above is sufficient for de-
scribing the optimal mechanism.

Definition 3.3.1. A distribution F is regular if v− 1−F (v)
f(v) is monotone

non-decreasing.

On the other hand, many relevant distributions are irregular, e.g., bi-
modal (Example 3.3.2; Figure 3.1(b)). For irregular distributions a more
sophisticated amortized analysis is needed to derive the appropriate vir-
tual values. To obtain a mechanism that optimizes non-monotone virtual
value functions we cannot initially relax the monotonicity constraint;
instead we must optimize virtual surplus subject to monotonicity. In
Section 3.3.5 we will describe a generic procedure for ironing a non-
monotone virtual value function to obtain a monotone (ironed) virtual
value function. For ironed virtual values from this procedure, pointwise
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optimization of the ironed virtual surplus is equivalent to optimization
of the original virtual surplus subject to monotonicity. We conclude that,
even for irregular distributions, the design of optimal mechanisms in ex-
pectation for a known distribution on values is equivalent to the point-
wise optimization of a virtual surplus that is given by monotone virtual
value functions.

3.3.2 The Virtual Surplus Maximization Mechanism

As revenue-optimal mechanism are virtual surplus maximizers, we now
give a generic and formal description of this sort of mechanism. For
monotone virtual value functions, Lemma 3.3.1 implies that virtual sur-
plus maximization gives a monotone allocation rule for each agent and
any fixed values of the other agents; therefore, it satisfies our strongest
incentive constraint. With the appropriate payments (i.e., the “critical
values”) truthtelling is a dominant strategy equilibrium (recall Corol-
lary 2.10.4). One way to view the suggested virtual surplus maximization
mechanism is as a reduction to surplus maximization, which is solved by
the externality pricing mechanism (EP, see Definition 3.2.1).

Definition 3.3.2. The virtual surplus maximization (VSM) mechanism
for single-dimensional linear agents and monotone virtual value func-
tions ϕ is:

(i) Solicit and accept sealed bids b,

(ii) simulate the surplus maximization mechanism on virtual bids

(x, p†)← EP(ϕ(b)),

(iii) set prices p from critical values as

pi ←
{

ϕ−1
i (p†i ) if i is served,

0 otherwise, and

(iv) output outcome (x, p).

Notice that the payments p calculated by VSM can be viewed as fol-
lows. EP on virtual values outputs virtual prices p†. For winners these
correspond to the minimum virtual value that the agent must have to
win. The price an agent pays is the minimum value that she must have
to win, this can be calculated from these virtual prices via the inverse
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virtual valuation function. (For virtual value functions ϕ(·) that are dis-
continuous or not strictly increasing this inverse virtual value function
is defined as ϕ−1(z) = inf{v† : ϕ(v†) ≥ z}.)

Theorem 3.3.2. For monotone virtual value functions ϕ = (ϕ1, . . . ,ϕn),
the virtual surplus maximization mechanism VSM is dominant strategy
incentive compatible.

Proof. The theorem follows from Lemma 3.3.1 applied to each agent,
the definition of VSM, and Corollary 2.10.4.

Corollary 3.3.3. For monotone virtual value functions ϕ, the virtual
surplus maximization mechanism optimizes virtual surplus in dominant
strategy equilibrium.

Notice that the approach above was for optimization of an objective
in expectation in Bayes-Nash equilibrium. The mechanism we obtained,
in fact, satisfies the stronger dominant strategy incentive compatibility
condition. Moreover, even though possibly randomized mechanisms were
optimized over, the optimal mechanism is deterministic. When there are
ties in virtual surplus, i.e., by multiple distinct outcomes each of which
gives the same virtual surplus, these ties can be broken arbitrarily; we
may, however, prefer the symmetry of random tie breaking.
To employ Corollary 3.3.3 for optimizing a given objective, it remains

to find a virtual value function for which pointwise optimization of vir-
tual surplus corresponds to optimization of the expected objective value.

Definition 3.3.3. A virtual value function ϕ(·) for a given objective
is a weakly monotone function that maps a value to a virtual value for
which expected optimal virtual surplus is equal to the optimal expected
objective value.

3.3.3 Single-item Environments

The above description of the virtual surplus maximization mechanisms
does not offer much in the way of intuition. To get a clearer picture,
we consider optimal mechanisms the special case of single-item environ-
ments, i.e., where the feasible outcomes serve at most one agent. We will
consider here four special cases: a single agent, multiple (generally asym-
metric) agents, multiple agents with a symmetric strictly-increasing vir-
tual value function, and multiple agents with a symmetric (not strictly)
increasing virtual value function.
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For a single agent with a monotone virtual value function ϕ(·), there is
some value v̂! = ϕ−1(0) where the function crosses zero. For example, for
the uniform agent this value is v̂

! = 1/2, see Figure 3.1(a). Maximizing
virtual surplus is simple: if v ≥ v̂

! then serve the agent; otherwise, do
not serve the agent. In other words, the agent has a critical value of v̂!

and the outcome is identical to that from posting a take-it-or-leave-it
price of v̂!.

Definition 3.3.4. For an agent with value v drawn from distribution
F and virtual value function ϕ, the monopoly price v̂! = ϕ−1(0) is the
posted price that obtains the highest expected virtual surplus.

Now consider a single-item auction environment and the virtual sur-
plus maximization mechanism for the profile of virtual value functions
ϕ. The mechanism will serve the agent with the highest positive virtual
value, or nobody if all virtual values are negative. To see what the critical
value of an agent i in this auction is we can write out the condition that
must hold for the agent to win. In particular, ϕi(vi) ≥ max(ϕj(vj), 0)
for all j &= i, so i’s critical value is

v̂i = max(ϕ−1
i (ϕj(vj)),ϕ

−1
i (0)) (3.3.4)

for j with the highest virtual value of the other agents. Notice that the
auction depends on the precise details of the virtual value functions (see
Example 3.3.3 below). Notice that the second term in the maximization
is the monopoly price v̂!i = ϕ−1

i (0). If the other agents are not compet-
itive, i.e., all agents j have ϕj(vj) < 0, then the optimization problem
reduces to the single-agent case and agent i should see a reserve price of
v̂!i .

Corollary 3.3.4. For single-item environments and monotone virtual
value functions, the auction that allocates to the agent with the highest
non-negative virtual value maximizes virtual surplus in dominant strat-
egy equilibrium.

Example 3.3.3. Consider a two-agent single-item environment with
agent 1’s (Alice) value from U [0, 1] (as in Example 3.3.1) and agent 2’s
(Bob) value from U [0, 2] (with distribution function F 2(z) = z/2). The
virtual values for revenue from equation (3.3.2) are ϕ1(v1) = 2v1−1 and
ϕ2(v2) = 2v2−2. The virtual surplus maximization mechanism serves Al-
ice whenever ϕ1(v1) > max(ϕ2(v2), 0), i.e., when v1 > max(v2−1/2, 1/2).
Note that in this revenue-optimal auction Alice may have a lower value
than Bob and still win.
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Now suppose the virtual value functions are monotone, strictly in-
creasing, identical, and denoted by ϕ. In such a scenario, ϕ−1

i (ϕj(vj)) =
ϕ−1(ϕ(vj)) = vj , and equation (3.3.4) for agent i’s critical value simpli-
fies to v̂i = max(vj , v̂

!) where j is the highest valued of the other agents.
The virtual surplus maximizing auction thus serves the agent with the
highest value that is at least the monopoly price v̂! = ϕ−1(0). What
auction has this equilibrium outcome? The second-price auction with
monopoly reserve v̂!.

Definition 3.3.5. The second-price auction with reservation price v̂,
sells the item to the highest bidder if any agent bids above v̂. The price
the winning agent pays the maximum of the second highest bid and v̂.
The monopoly-reserve auction sets v̂ = v̂!.

Corollary 3.3.5. In single-item environments with identical strictly-
increasing virtual value function ϕ, the virtual surplus maximizing mech-
anism is the second-price auction with monopoly reserve v̂

! = ϕ−1(0).

Example 3.3.4. Consider a two-agent single-item environment with
i.i.d. uniform agents (as in Example 3.3.1). As we have calculated,
ϕ(v) = 2v − 1 is monotone and strictly increasing, the monopoly price
is v̂! = ϕ−1(0) = 1/2, and the revenue-optimal auction is the second-
price auction with reserve price 1/2. Our calculation at the introduction
of this chapter showed its expected revenue to be 5/12. Now we see that
this revenue is optimal among all mechanisms for this environment‘.

Notice that the optimal reserve price depends on the distribution but
is not a function of the number of agents. For more intuition for why the
reserve price is invariant to the number of agents, notice the following.
Either the other agents are competitive and the reserve is irrelevant or
the other agents are irrelevant and the designer faces the same revenue
tradeoffs as in the single-agent example. As we have seen, this single-
agent tradeoff is optimized by setting a reserve equal to the monopoly
price. The invariance of the optimal reserve price to details of the market
besides the agents’ distribution holds more broadly as well, see Propo-
sition 4.6.1 in Chapter 4).
We conclude this section by considering the case of symmetric vir-

tual value functions that are increasing but not strictly so. Notice that,
with strictly increasing virtual value functions and values drawn from a
continuous distribution, ties in virtual value are a measure zero event,
i.e., for any two agents i and j, Pr[ϕi(vi) = ϕj(vj)] = 0. On the other
hand, when virtual value functions are constant on an interval [a, b]
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(b) Non-unique highest virtual value.

Figure 3.2. The weakly monotone virtual valuation function ϕ(v) under two
realizations of four agent values depicting both the case where the highest
virtual value is unique and the case where it is not unique.

and the distribution assigns some non-zero probability to values in this
interval, there is a measurable, i.e., non-zero, probability of ties. The vir-
tual surplus maximization mechanism can break these ties arbitrarily or
randomly. Especially in symmetric environments we will prefer the sym-
metric tie-breaking rule by, e.g., for single-unit environments, choosing
the winner of the tie uniformly at random.
It is instructive to see exactly what the virtual surplus maximization

mechanism does when there are ties in virtual values. Figure 3.2 depicts
such a virtual valuation function (which corresponds to the ironed virtual
value for revenue for the bimodal agent that will be derived subsequently
in Section 3.3.5). Instantiating the agents’ values corresponds to picking
points on the horizontal axis. The agents’ virtual valuations can then be
read off the plot. The optimal auction assigns the item to the agent with
the highest virtual value. If there is a tie, it picks a random tied agent
to win.
Figure 3.2(a) depicts a realization of values for n = 4 agents where

the highest virtual value is unique. What does the virtual surplus maxi-
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(b) a ≤ v1 ≤ b

Figure 3.3. The allocation (black line) and payment rule (gray region) for
agent 1 given fixed v−1 with k − 1 of the other agents tied for having the
highest virtual value, i.e., with values in [a, b] (e.g., from virtual valuation
function of Figure 3.2). For v1 ∈ [a, b], agent 1 would be in a k-agent tie
for the highest virtual value; for v1 > b agent 1 would win outright.

mization do here? It allocates the item to the highest-valued agent, i.e.,
agent 1 in the figure. Figure 3.2(b) depicts a second realization of val-
ues where the highest virtual value is not unique. With uniform random
tie breaking, a random tied agent is selected as the winner, i.e., one of
agents 1, 2, and 3 in the figure. In general if the highest virtual value
has a k-agent tie then each of these tied agents wins with probability
1/k.

The payment an agent must make in expectation over the random
tie-breaking rule can be calculated as follows. Consider the case where
there is a unique highest virtual value. The agent with this virtual value
wins, assume it is agent 1 (Alice). To calculate her payment we need to
consider her allocation rule for fixed values v−1 of the other agents. This
allocation rule is

x1(z, v−1) =











1 if z > b

1/k if z ∈ [a, b]

0 if z < a.
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Figure 3.4. Depicted are the cumulative distribution function F (v) and
inverse demand curve v(q) corresponding to the bimodal agent of Exam-
ple 3.3.2. The inverse demand curve is obtained from the cumulative dis-
tribution function by rotating it 90 degrees counterclockwise.

when v−1 has a k − 1 agents in interval [a, b]. The 1/k probability of
winning for z ∈ [a, b] arises from our analysis of what happens in a k-
agent tie. When Alice has the unique highest virtual value, i.e., v1 > b,
then p1 = b − b−a/k, see Figure 3.3(a). On the other hand, when Alice
is tied for the highest virtual value with k − 1 other agents with values
in interval [a, b], as depicted in Figure 3.3(b), her expected payment
is p1 = a/k. Of course, x1 = 1/k so such an expected payment can be
implemented by charging a to the tied agent that wins and zero to the
losers.

3.3.4 Quantile Space, Price-posting Revenue, and
Derivation of Virtual Values

In this section we give an economically intuitive derivation of virtual
value functions for revenue maximization.
Consider an agent Alice with a single-dimensional linear preference

(Definition 2.4.1). Alice’s preference is described by her value v which
is drawn from distribution F . There is a one-to-one mapping between
Alice’s value and her strength relative to the distribution. For instance,
Alice with value v = 0.9 drawn from U [0, 1] is stronger than 90% and
weaker than 10% of values drawn from the same distribution. Denote
by quantile quantile q the relative strength of a value where q = 0 is the
strongest and q = 1 is the weakest, and by v(·) the inverse demand curve
that maps quantiles to values. Importantly, the distribution of an agent’s
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quantile is always U [0, 1] as the probability that an agents quantile q is
below a given q̂ is exactly q̂.

Definition 3.3.6. The quantile of a single-dimensional agent with value
v ∼ F is the measure with respect to F of stronger values, i.e., q =
1 − F (v); the inverse demand curve maps an agent’s quantile to her
value, i.e., v(q) = F−1(1− q).

Example 3.3.5. For the example of a uniform agent (Example 3.3.1)
where F (z) = z, the inverse demand curve is v(q) = 1 − q; for the
example of a bimodal agent (Example 3.3.2), the inverse demand curve
is depicted in Figure 3.4.

In Section 2.4 we defined the allocation rule for an agent as a func-
tion of her value as x(·) and characterized the allocation rules that can
arise in Bayes-Nash equilibrium as the class of monotone non-decreasing
functions (of value). The allocation rule in quantile space is denoted by
y and defined as y(q) = x(v(q)). Since quantile and value are indexed in
the opposite direction, y(·) will be monotone non-increasing in quantile.
Consider posting a take-it-or-leave-it price of v(q̂) for some quantile

q̂. By the definition of the inverse demand curve v(·), such a price is
accepted with probability q̂. In other words, the ex ante sale probability
of posting price v(q̂) is q̂. Notice that the allocation rule of this price-
posting mechanism is simply the reverse step function that starts at one,
steps from one to zero at q̂, and is zero thereafter. We can define a rev-
enue curve by considering the revenue from this price-posting approach
as a function of the ex ante service probability q̂. For the uniform exam-
ple, the price-posting revenue curve is P (q̂) = q̂ − q̂2; for the bimodal
example, it is depicted in Figure 3.5(b).

Definition 3.3.7. The price-posting revenue curve of a single-dimensional
linear agent specified by inverse demand curve v(·) is P (q̂) = q̂ v(q̂) for
any q̂ ∈ [0, 1].

Notice that with this definition of price-posting revenue, P (0) = 0
for finite support distributions and P (1) = 0 for value distributions
supported with lower endpoint 0. Simply, the revenues from never selling
and always selling are zero.
We can use revenue equivalence (via the payment identity) to express

the revenue of any allocation rule in terms of the price-posting revenue
curve. The main idea is the following. By revenue equivalence, any two
mechanisms with the same allocation rule have the same revenue. Given
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Figure 3.5. Depicted are the inverse demand curve v(q) and price-posting
revenue curve P (q) corresponding to the bimodal agent of Example 3.3.2.
The price-posting revenue curve is given by P (q̂) = q̂ v(q̂), i.e., the area of
the rectangle of width q̂ and height v(q̂) that fits under the inverse demand
curve.

an allocation rule y we can construct a mechanism with that alloca-
tion rule by taking the appropriate convex combination of price-posting
mechanisms. Below we walk through this approach in detail.
An allocation rule y is a monotone non-increasing function from [0, 1]

to [0, 1]. The allocation rules for price postings are reverse step functions.
The class of reverse step functions are a basis for the class of monotone
non-increasing functions from [0, 1] to [0, 1]: any such monotone non-
increasing function can be expressed as a convex combination of (a.k.a.,
distribution over) reverse step functions. Consider the distribution with
cumulative distribution function Gy(z) = 1 − y(z) and the mechanism
that draws q̂ ∼ Gy and posts price v(q̂). Notice, that the probability that
Alice with fixed quantile q and value v(q) is allocated by this mechanism
is:

Prq̂∼G
y [v(q̂) < v(q)] = Prq̂∼G

y [q̂ > q] = 1−Gy(q) = y(q).

The mechanism resulting from the above convex combination of price
postings has allocation rule exactly y(·) and Alice’s expected payment
(i.e., the expected revenue) is equal to the same convex combination of
revenues P (q̂) from posting price v(q̂) with q̂ ∼ Gy. This revenue can
be expressed as follows.

Eq̂∼G
y [P (q̂)] = Eq∼U [0,1]

[

−y′(q)P (q)
]

+ y(1)P (1)

= Eq∼U [0,1]

[

P ′(q) y(q)
]

+ P (0) y(0).
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The first line follows from a change of variables from q̂ ∼ Gy to q ∼
U [0, 1] according to Gy’s density function gy(z) = d

dzG
y(z) = d

dz(1 −
y(z)) = −y′(z) and the pointmass of y(1) at q̂ = 1. The second line
follows from integration by parts where P ′(q) = d

dqP (q) is the marginal
increase in price-posting revenue for an increase in ex ante allocation
probability, a.k.a., the marginal price-posting revenue at q. Notice that
the calculation of Alice’s expected payment for allocation rule y above
is implicitly taking the expectation over Alice’s quantile q ∼ U [0, 1] via
the definition of the price-posting revenue curve P (·).
Finally, we apply revenue equivalence (Theorem 2.5.1) to observe that

any mechanism with the same allocation rule y generates the same rev-
enue as calculated above. In the resulting proposition the additive term
P (0) y(0) is often zero as P (0) = 0 for distributions with finite support.

Proposition 3.3.6. A single-agent mechanism with allocation rule y
has expected revenue equal to the surplus of marginal price-posting rev-
enue Eq

[

P ′(q) y(q)
]

+ P (0) y(0).

The above rephrasing of the expected revenue in terms of marginal
revenue is an amortized analysis. Notice that if we serve Alice with
quantile q with some probability then, were her quantile lower (i.e.,
stronger), she would be served with no lower a probability. Therefore,
the contribution to the revenue from all quantiles above quantile q can
be credited to the change in service probability at q. The marginal price-
posting revenue is precisely this reamortization of revenues across the
different agent quantiles.
The marginal price-posting revenues are exactly the virtual values

described previously by equation (3.3.2).

P ′(q) = d
dq(q v(q)) = v(q) + q v′(q) = v − 1−F (v)

f(v) , (3.3.5)

where the first equality follows from the definition of price-posting rev-
enue (Definition 3.3.7) and the last equality follows from the definition
of the inverse demand curve v(·) whereby v = v(q) satisfies F (v) = 1−q

and 1
f(v) = − d

dqv(q) = −v′(q). Recall that a distribution is regular if

v − 1−F (v)
f(v) is monotone non-decreasing or, equivalently, the marginal

price-posting revenue is monotone non-increasing, or equivalently the
price-posting revenue curve P is concave.

Proposition 3.3.7. A distribution F is regular if and only if its corre-
sponding price-posting revenue curve is concave.

Proposition 3.3.6 shows the expected revenue of a mechanism is equal



3.3 Profit 77

to its surplus of marginal price-posting revenue. For regular distribu-
tions, the marginal price posting revenue derived above is monotone;
therefore, we can conclude that the virtual surplus maximization mech-
anism with virtual value function defined by the marginal price-posting
revenue curve (Definition 3.3.2) is dominant strategy incentive compat-
ible and profit optimal (Corollary 3.3.3).

Theorem 3.3.8. For agents with values drawn from regular distribu-
tions the marginal price-posting revenue curves are virtual value func-
tions for revenue and the virtual surplus maximization mechanism opti-
mizes expected profit in dominant strategy equilibrium.

The price-posting revenue curve P (q̂) is defined by the revenue ob-
tained be posting a price that is accepted with probability q̂. Consider
instead the single-agent optimization of optimizing revenue subject to
an ex ante constraint q̂, which by Proposition 3.3.6, can be expressed as

max
y

E
[

P ′(q) y(q)
]

+ y(0)P (0)

s.t. E[y(q)] = q̂.

This optimization problem is not generally solved by a price posting;
however, for regular distributions it is. Subsequently in Section 3.4 we
will consider this more general problem and define from it (optimal)
revenue curves. For regular distributions price-posting revenue curves
and (optimal) revenue curves are equal.

3.3.5 Virtual Surplus Maximization Subject to
Monotonicity

We now turn our attention to the case where the non-game-theoretic
problem of optimization of marginal price-posting revenue is not it-
self inherently monotone. An irregular distribution is one for which the
price-posting revenue curve is non-concave (in quantile). The marginal
price-posting revenue curves (and virtual value functions defined from
them) are non-monotone; therefore, a higher value might result in a
lower virtual value. As OPT(ϕ(·)) is non-monotone for such a virtual
value function, there is no payment rule with which its outcome is incen-
tive compatible (by the only-if direction of Corollary 2.10.2). We must
instead optimize this virtual surplus subject to monotonicity.
Recall that virtual values, e.g., v − 1−F (v)

f(v) , correspond to an amor-
tized analysis where we “charge” the value v if it is served for the lower
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price its service implies for higher values. When the direct approach to
an amortized analysis, e.g., of Proposition 3.3.6, gives a non-monotone
virtual value function, the following generic ironing procedure gives an
ironed virtual value function which is monotone and for which point-
wise optimization is equivalent to the optimization of expected virtual
surplus subject to monotonicity of the allocation rule.

There are three key ideas to this ironing procedure. First, when max-
imizing a non-monotone virtual value function subject to monotonic-
ity, the monotonicity constraint will bind on intervals of non-monotone
virtual value and the resulting allocation rule on the interval will be
constant, i.e., quantiles on that interval will be allocated with the same
probability. Second, if there is some interval [a, b] of quantiles that all
receive the same allocation probability, then the virtual values of these
quantiles can be reamortized arbitrarily and the expected virtual value
of the allocation rule is unchanged. Second, if we reamortize by simple
averaging then we get “ironed” virtual values that are constant on the
[a, b] interval and optimization of the ironed virtual surplus will give the
same allocation probability to quantiles within the interval. Therefore,
the approach of the third part implies the assumption of the second part.
Moreover, in terms of fixing non-monotonicities, after ironing the virtual
value are constant (and therefore weakly monotone) on the interval [a, b].

As in previous sections, the geometry of this reamortization is more
transparent in quantile space rather than value space. This is because
quantiles are drawn from a uniform distribution so reamortizing by mov-
ing virtual value from one quantile to another is balanced with respect
to the distribution. (If we were to do such a shift of virtual value in value
space then we would need to normalize by the density function of the dis-
tribution.) We therefore proceed by considering a virtual value function
ϕ(·) in quantile space. We denote the cumulative virtual value for quan-

tiles at most q̂ as Φ(q̂) =
∫ q̂

0 ϕ(q) dq. For profit maximization, the virtual
value functions correspond to marginal price-posting revenue curves and
cumulative virtual value functions correspond to price-posting revenue
curves, i.e., ϕ(q) = P ′(q) and Φ(q) = P (q). The ironing procedure we
will describe, however, can be applied to non-monotone virtual value
functions corresponding to any objective.

The goal of ironing is arrive at a monotone (ironed) virtual value func-
tion, equivalently, a concave cumulative virtual value function, for which
virtual surplus maximization has no loss when constrained to monotone
allocation rules. We now investigate the consequences of the ironing pro-
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Figure 3.6. Consider the bimodal agent of Example 3.3.2 and virtual value
function equal to the marginal price-posting revenue curve. The cumulative
virtual value and virtual value functions in quantile space are are depicted
(thick, gray, dashed lines) in the left and right diagram, respectively. After
ironing on interval [a, b], the resulting cumulative virtual value and virtual
value functions are depicted (thin, black, solid lines). Subsequent discussion
will justify this choice of interval [a, b].

cedure proposed above on the virtual value and cumulative virtual value
functions. The averaging of virtual value over an interval [a, b] in quan-
tile space replaces the function on that interval with a constant equal to
the original function’s average. We can then integrate to see what the
effect on the cumulative virtual value is. Notice that on q ∈ [0, a] and
q ∈ [b, 1] this integral is identically Φ(q); while for q ∈ [a, b] it is the
integral of a constant function and therefore linearly connects (a,Φ(a))
to (b,Φ(b)) with a line segment. For the bimodal agent of Example 3.3.2
these quantities are depicted in Figure 3.6, with a choice of interval [a, b]
that will be justified subsequently.

If we iron the virtual value functions and then optimize with ironed
virtual values as virtual values, then the revenue is again the virtual
surplus (by the correctness of ironing construction, e.g., as proven by
Theorem 3.3.9, below). It remains to choose the appropriate intervals
on which to iron so that the ironed virtual value functions are monotone
(equivalently, the ironed revenue curve is concave) and the optimization
of ironed virtual surplus also optimizes the virtual surplus. Intuitively,
higher revenue curves produce higher revenues. As the ironing proce-
dure operates on the cumulative virtual value functions by replacing an
interval with a line segment, we can construct the concave hull, i.e., the
smallest concave upper-bound, of the cumulative virtual value function
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by ironing. Notice that this ironed cumulative virtual value function has
two advantages over the original cumulative virtual value function: it is
pointwise higher and it is concave.

Definition 3.3.8. The ironing procedure for (non-monotone) virtual
value function ϕ (in quantile space)6 is:

(i) Define the cumulative virtual value function as Φ(q̂) =
∫ q̂

0 ϕ(q) dq.
(ii) Define ironed cumulative virtual value function as Φ̄(·) as the concave

hull of Φ(·).
(iii) Define the ironed virtual value function as ϕ̄(q) = d

dq Φ̄(q) = Φ̄
′
(q).

Theorem 3.3.9. For any monotone allocation rule y(·) and any virtual
value function ϕ(·), the expected virtual surplus of an agent is upper-
bounded by her expected ironed virtual surplus, i.e.,

E[ϕ(q) y(q)] ≤ E[ϕ̄(q) y(q)] .

Furthermore, this inequality holds with equality if the allocation rule y
satisfies y′(q) = 0 for all q where Φ̄(q) > Φ(q).

Proof. By integration by parts for any virtual value function ϕ†(·) and
monotone allocation rule y(·) (Mathematical Note on page 62),

E[ϕ†(q) y(q)] = E[−y′(q)Φ†(q)] . (3.3.6)

Notice that the (non-increasing) monotonicity of the allocation rule y(·)
implies the non-negativity of −y′(q). With the left-hand side of equa-
tion (3.3.6) as the expected virtual surplus, it is clear that a higher
cumulative virtual value implies no lower expected virtual surplus. By
definition of Φ̄(·) as the concave hull of Φ(·), Φ̄(q) ≥ Φ(q) and, therefore,
for any monotone allocation rule, in expectation, the ironed virtual sur-
plus is at least the virtual surplus. I.e., E

[

−y(q) Φ̄(q)
]

≥ E[−y(q)Φ(q)].
To see the equality under the assumption that y′(q) = 0 for all q where

Φ̄(q) > Φ(q), rewrite the difference between the ironed virtual surplus
and the virtual surplus via equation (3.3.6) as,

E[ϕ̄(q) y(q)]−E[ϕ(q) y(q)] = E[−y′(q)(Φ̄(q)− Φ(q))].

The assumption on y′ implies the term inside the expectation on the
right-hand side is zero for all q.

6
The ironing procedure can also be expressed in value space by first mapping
values to quantiles via the cumulative distribution function or inverse demand
curve, executing the ironing procedure in quantile space, and then mapping
ironed virtual value functions back into value space.
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Corollary 3.3.10. For any virtual value function ϕ(·) with ironed vir-
tual value ϕ̄(·) from the ironing procedure (Definition 3.3.8), the opti-
mization of virtual surplus subject to monotonicity of the allocation rule
is equivalent to optimization of ironed virtual surplus pointwise.

We now conclude this section by summarizing the consequences of
ironing for virtual surplus maximization. First, we can define the ironed
virtual surplus maximization mechanism for virtual value functions ϕ

as the virtual surplus maximization mechanism applied to the ironed
virtual value functions ϕ̄. This profile ϕ̄ of ironed virtual value functions
is constructed from the profile ϕ of virtual value functions by applying
the ironing procedure individually to each virtual value function.

Theorem 3.3.11. For any (non-monotone) virtual value functions ϕ,
the ironed virtual surplus maximization mechanism maximizes expected
virtual surplus in dominant strategy equilibrium.

Corollary 3.3.12. For (irregular) single-dimensional linear agents, the
ironed marginal price-posting revenue curves are virtual value functions
for revenue and the virtual surplus maximization mechanism optimizes
expected profit in dominant strategy equilibrium.

The ironing procedure above results in virtual value functions that
are not strictly monotone. See Section 3.3.3 for a discussion of the vir-
tual surplus maximization mechanism with non-strictly monotone vir-
tual value functions in single-item environments.

3.4 Multi- to Single-agent Reduction

While the previous sections gave a complete approach to profit maxi-
mization for single-dimensional linear agents, here we give an alternative
derivation that comes to the same conclusion but provides more concep-
tual understanding, especially for irregular distributions. The approach
will be to reduce the problem of solving a multi-agent mechanism de-
sign problem to that of solving a collection of simple single-agent pricing
problems. It observes and makes use of a revenue-linearity property that
is satisfied by single-dimensional agents with linear utility. In Chapter 8
this reduction is extended to multi-dimensional non-linear agents.
A mechanism for a single agent is simply a menu of outcomes where,

after the agent realizes her value from the distribution, she chooses the
outcome she most prefers. This observation is known as the taxation



82 Optimal Mechanisms

principle and is a simple consequence of the revelation principle (Theo-
rem 2.10.1). It can be seen as follows: The agent’s actions in the mecha-
nism induce a set of (possibly randomized) outcomes; for a fully rational
agent, these probabilistic outcomes may as well be listed on a menu from
which the agent just chooses her favorite. Each of these probabilistic
outcomes can be summarized by its allocation probability and expected
payment (as far as the preferences of a single-dimensional linear agent
are concerned). We call such a probabilistic allocation a lottery, and the
menu of lotteries and their accompanying prices a lottery pricing. The
allocation and payment rules (x, p) described in Section 3.1 precisely
define such a menu where the outcomes are indexed so that the agent
with value v prefers outcome (x(v), p(v)) over all other outcomes.
Below we will look at two optimization problems. The first will be an

ex ante pricing problem where we look for the lottery pricing with the
optimal revenue subject to a constraint on the ex ante service probability
Ev[x(v)]. The revenue of the optimal ex ante pricings induce a concave
revenue curve. We will then look at an interim pricing problem where
we have a constraint on the allocation rule x(·) and we again wish to
optimize revenue subject to that constraint. The main conclusion will be
that we can express the optimal interim pricing as a convex combination
of optimal ex ante pricings. The decomposition will enable the expected
payments to be expressed in terms of a monotonemarginal revenue curve
(cf. Section 3.3.4). Pointwise optimization of the surplus of marginal
revenue then gives the optimal revenue.

3.4.1 Revenue Curves

It will be more economically intuitive to study lottery pricings in quan-
tile space. Alice has her quantile q drawn from the uniform distribution
U [0, 1] and value according to the inverse demand curve v as v(q). Upon
realizing her quantile, she will choose her preferred outcome from a lot-
tery pricing. This two step process induces an allocation rule y(q) =
x(v(q)) and an ex ante probability Eq[y(q)] that Alice is served. Re-
call that the allocation rule is taken in expectation with respect to the
randomization in the outcome of the lottery that Alice buys, and the ex
ante service probability is taken additionally in expectation with respect
to the randomization of Alice’s quantile.

Definition 3.4.1. With equality constraint q̂ on the ex ante alloca-
tion probability, the single-agent ex ante pricing problem is to find the



3.4 Multi- to Single-agent Reduction 83

revenue-optimal lottery pricing. The optimal ex ante revenue, as a func-
tion of q̂, is denoted by the revenue curve R(q̂).

For the single-dimensional linear agents discussed in this chapter,
where revenue equivalence holds, the revenue curve is calculated by the
following mathematical program.

R(q̂) = max
y

E
[

P ′(q) y(q)
]

+ y(0)P (0)

s.t. E[y(q)] = q̂.

It will be important to contrast the revenue-optimal lottery pricing
for an ex ante constraint q̂ with the price posting that satisfies the same
constraint. The revenues of these two pricings are given by the revenue
curve R(q̂) and price-posting revenue curve P (q̂) (from Section 3.3.4).
First, recall that the difficulty with deriving optimal mechanisms directly
from the price-posting revenue curve P (·) is that it may not be concave.
On the other hand the revenue curve R(·) is always concave.7 Second,
notice that the allocation rule for price posting, which serves all values
that are at least v(q̂), is the strongest allocation rule with ex ante ser-
vice probability q̂ in the following sense. Any other allocation rule can
shift allocation probability from stronger (lower) quantiles to weaker
(higher) quantiles but cannot allocate with any greater probability to
the strongest q̂ measure of quantiles. Therefore, for the ex ante proba-
bility q̂, the allocation rule of the optimal ex ante pricing is no stronger
than that of price posting. Third, the optimal ex ante pricing for con-
straint q̂ obtains at least the revenue of price posting. This observation
is immediate from the fact that it is optimizing over lottery pricings that
include the posting price v(q̂). We summarize these observations as the
following proposition which, with Proposition 3.3.6 (essentially, revenue
equivalence), will be sufficient for proving the optimality of marginal
revenue maximization; we defer precise characterization of the optimal
ex ante lottery pricing to later in this section.

Proposition 3.4.1. The optimal ex ante pricing problems induce a con-
cave revenue curve and, for any ex ante service probability, the optimal

7
This observation follows from the fact that the space of lottery pricings is convex:
randomizing between two lottery pricings gives a lottery pricing that corresponds
to the lotteries’ convex combination and gives ex ante allocation probability and
expected revenue according to the same convex combination. In contrast, the
space of price postings is not convex: the convex combination of two price
postings cannot be expressed as a price posting. Consequently and as we have
already observed, the price-posting revenue curve is not generally concave.



84 Optimal Mechanisms

lottery has no stronger an allocation rule and no lower a revenue than
price posting.

3.4.2 Optimal and Marginal Revenue

We now formulate an interim lottery pricing problem that takes an allo-
cation rule as a constraint and asks for the optimal lottery pricing with
an allocation rule that is no stronger than the one given. To do so we
must first generalize the definition of strength (as discussed previously
when comparing price posting with optimal lotteries). Recall that with
the same ex ante allocation probability the difference between the price
posting and an optimal lottery is that the optimal lottery may have
service probability shifted from strong (low) quantiles to weak (high)
quantiles. This condition generalizes naturally.
The ex ante probability that allocation rule y(·) allocates to the strongest

q̂ measure of quantiles is Y (q̂) =
∫ q̂

0 y(q) dq; we refer to Y (·) as the cu-
mulative allocation rule for y(·). The (non-increasing) monotonicity of
allocation rules implies that cumulative allocation rules are concave. As
follows, we can view an allocation rule ŷ(·) as a constraint via its cumu-
lative allocation rule Ŷ .

Definition 3.4.2. Given an allocation constraint ŷ with cumulative
constraint Ŷ , the allocation rule y with cumulative allocation rule Y
is weaker (resp. ŷ is stronger) if and only if it satisfies Y (q̂) ≤ Ŷ (q̂) for
all q̂; denote this relationship by y ) ŷ.

A strong allocation rule as a constraint corresponds to a weak con-
straint as it permits the most flexibility in allocation rules that satisfy
it. The ex ante pricing problem for constraint q̂ is a special case of the
interim pricing problem. The strongest allocation rule that serves with
probability q̂ is the reverse step function that steps from one to zero at
q̂; therefore, the allocation constraint ŷq̂ is the weakest constraint that
allows service probability at most q̂. In comparison, a general allocation
constraint ŷ (e.g., with total allocation probability E[ŷ(q)] = q̂) allows
more fine-grained control by giving a constraint, for all q̂†, on the cu-
mulative service probability of any [0, q̂†] measure of quantiles by Ŷ (q̂†).
Of course, given an allocation constraint ŷ, the strongest allocation rule
that satisfies the constraint is the constraint itself, i.e., y = ŷ. From this
notion of strength we can take an allocation rule as a constraint and
consider the optimization question of finding an allocation rule that is
no stronger and with the highest possible revenue.
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Definition 3.4.3. The optimal revenue subject to an allocation con-
straint ŷ(·) is Rev[ŷ] and it is attained by the optimal interim pricing
for ŷ.

For the single-dimensional linear agents discussed in this chapter,
where revenue equivalence holds, the optimal revenue for an allocation
constraint ŷ is calculated by the following mathematical program.

Rev[ŷ] = max
y

E
[

P ′(q) y(q)
]

+ y(0)P (0)

s.t. Y (q) ≤ Ŷ (q), ∀q ∈ [0, 1].

An important property of this definition of the strength of an alloca-
tion rule is that it closed under convex combination, i.e., if ŷ = ŷ† + ŷ‡,
y† ) ŷ†, and y‡ ) ŷ‡ then y ) ŷ for y = y† + y‡. This means that
one approach to construct an allocation rule y that satisfies the allo-
cation constraint ŷ is to express y as a convex combination of ex ante
constraints, and to implement each with the optimal ex ante pricing.
Relative to the construction of Proposition 3.3.6, using optimal lottery
pricings improves on price postings in that for each q̂ the optimal ex
ante revenue R(q̂) may exceed the price-posting revenue P (q̂). Consider
the mechanism that draws q̂ from the distribution Gŷ(z) = 1− ŷ(z) and
offers Alice the optimal ex ante pricing for q̂. The optimal revenue for
allocation constraint ŷ must be at least the revenue of this mechanism.
By the Mathematical Note on page 62, we have:

Rev[ŷ] ≥ E
q̂∼G

ŷ [R(q̂)]

= Eq

[

−ŷ′(q)R(q)
]

+ ŷ(1)R(1) (3.4.1)

= Eq

[

R′(q) ŷ(q)
]

+R(0) ŷ(0), (3.4.2)

where R′(q) = d
dqR(q) is the marginal revenue at q. Notice that for val-

uation distributions supported on [0, h], the lower bound of the support
of 0 gives R(1) = 0, the upper bound of the support of h gives R(0) = 0,
and the additive terms in equations (3.4.1) and (3.4.2) are both zero.

Definition 3.4.4. The surplus of marginal revenue of an allocation
constraint ŷ is MargRev[ŷ] = Eq

[

R′(q) ŷ(q)
]

+R(0) ŷ(0).

3.4.3 Downward Closure and Pricing

We now make a brief aside to discuss downward closure of the environ-
ment and its relationship to the previously defined single-agent lottery
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pricing problems. Recall that a downward closure environment is one
where from any feasible outcome it is always feasible to additionally re-
ject and agent who was previously being served. Our definition of the
optimal ex ante pricing problem is not downward closed as we required
that the ex ante constraint be met with equality. On the other hand, our
definition of the optimal interim pricing problem was downward closed
as it was allowed that Y (1) < Ŷ (1). These definitions were given above
as they are the most informative.
It is possible to consider a downward-closed variant of the ex ante

pricing problem where a lottery pricing is sought with ex ante probability
at most q̂. Obviously, adding downward closure results in a revenue
curve that is monotone non-decreasing. From the non-downward-closed
revenue curve, the downward-closed revenue curve is given as a function
of q̂ by maxq≤q̂ R(q). Thus, the downward-closed revenue curve after
the monopoly quantile is constant. Importantly, the downward-closed
marginal revenue curve is always non-negative. It is similarly possible to
consider a non-downward-closed variant of the interim pricing problem
where it is additionally required that Y (1) = Ŷ (1).

Lemma 3.4.2. Consider the alternative ex ante and interim pricing
definitions.

(i) For downward-closed ex ante pricing the marginal revenue satisfies
R′(q) ≥ 0 for all quantiles q.

(ii) For non-downward-closed interim pricings y for ŷ the cumulative al-
location rules satisfy Y (1) = Ŷ (1).

In our discussion of revenue linearity in the subsequent section, it will
be important not to mix-and-match with respect to downward closure.

3.4.4 Revenue Linearity

The derivation of Section 3.4.2 shows that the surplus of marginal rev-
enue of an allocation constraint is a lower bound on its optimal revenue.
A central dichotomy in optimal mechanism design is given by the par-
titioning of single-agent problems into those for which this inequality
is tight and those when it is not. Notice that linearity of the revenue
operator Rev[·] implies that for any allocation constraint the optimal
revenue and surplus of marginal revenue are equal.

Definition 3.4.5. A agent (with implicit utility function, type space,



3.4 Multi- to Single-agent Reduction 87

and distribution over types) is revenue linear if Rev[·] is linear, i.e., if
when ŷ = ŷ† + ŷ‡ then Rev[ŷ] = Rev[ŷ†] +Rev[ŷ‡].8

Proposition 3.4.3. For a revenue-linear agent and any allocation con-
straint ŷ, the optimal revenue is equal to the surplus of marginal revenue,
i.e., Rev[ŷ] = MargRev[ŷ].

We now show that single-dimensional linear agents are revenue lin-
ear. This result is a consequence of three main ingredients: the con-
cavity of the revenue curve R(·); that the optimal ex ante pricings,
which define the revenue curve, obtain more revenue with a weaker al-
location rule than the price postings, which define price-posting rev-
enue curves (Proposition 3.4.1); and that revenue equivalence allows
revenue to be expressed in terms of price-posting revenue curves (Propo-
sition 3.3.6). Optimal revenue equaling surplus of marginal revenue for
single-dimensional linear agents, then, is an immediate corollary of this
revenue linearity and Proposition 3.4.3.

Theorem 3.4.4. A single-dimensional linear agent is revenue linear.

Proof. In this proof we will assume that the distribution is bounded with
finite upper endpoint v(0) and lower endpoint v(1) = 0; consequently,
the revenue curves are zero at their endpoints, i.e., R(0) = R(1) =
P (0) = P (1) = 0; thus the additive terms in the expression of surplus of
marginal revenue are zero. Recall as well that the cumulative allocation
rules always satisfy Ŷ (0) = Y (0) = 0. The theorem statement under this
assumption implies the general statement via a limit argument.
Before we begin, notice that for any revenue curve R(·) and allocation

rule y(·) the surplus of marginal revenue MargRev[y] can be equiva-
lently expressed as

Eq

[

−y′(q)R(q)
]

= Eq

[

R′(q) y(q)
]

= Eq

[

−R′′(q)Y (q)
]

+R′(1)Y (1)

via integration by parts (with R(1) = R(0) = Y (0) = 0; Mathemat-
ical Note on page 62). The same equations also govern the surplus of
marginal price-posting revenue in terms of revenue curve P (·). Two ob-
servations:

(i) The left-hand side shows that a pointwise higher revenue curve gives

8 It is assumed that the ex ante and interim problem are consistent with respect to
downward closure, see Section 3.4.3.
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no lower a revenue (as −y′(·) is non-negative). In particular, the allo-
cated marginal revenue exceeds the surplus of marginal price-posting
revenue as R(q) ≥ P (q) for all q (by Proposition 3.4.1).

(ii) The right-hand side shows that for concave revenue curves, i.e., where
−R′′(·) is non-negative, e.g., R(·) not P (·); a stronger allocation rule
gives higher revenue. In particular, the allocation rule y obtained by
optimizing for ŷ has no higher surplus of marginal revenue than does
ŷ.9

We have already concluded that the surplus of marginal revenue lower
bounds the optimal revenue; so to prove the theorem it suffices to upper
bound the optimal revenue by the surplus of marginal revenue. Suppose
we optimize for ŷ and get some weaker allocation rule y, then y is a fixed
point of Rev[·] (optimizing with y as an allocation constraint gives back
allocation rule y); therefore,

Rev[ŷ] = Rev[y].

By revenue equivalence (Proposition 3.3.6), the revenue of any allocation
rule is equal to its surplus of marginal price-posting revenue, so

Rev[y] = E
[

P ′(q) y(q)
]

.

By observation (i), for allocation rule y, the surplus of marginal revenue
is at least the surplus of marginal price-posting revenue,

E
[

−y′(q)P (q)
]

≤ E
[

−y′(q)R(q)
]

.

By observation (ii), the surplus of marginal revenue for ŷ is at least that
of y,

E
[

−R′′(q)Y (q)
]

≤ E[−R′′(q) Ŷ (q)] = MargRev[ŷ].

The above sequence of inequalities implies that the surplus of marginal
revenue is at least the optimal revenue for ŷ,

Rev[ŷ] ≤MargRev[ŷ].

Corollary 3.4.5. For an agent with single-dimensional, linear utility,
the optimal revenue equals the marginal revenue, i.e.,

Rev[ŷ] = MargRev[ŷ] = E
[

R′(q) ŷ(q)
]

+R(0) ŷ(0).
9

Consistency with respect to downward-closure (Lemma 3.4.2) implies the

inequality on the R
′
(1) Y (1) term. For the downward-closed case: the marginal

revenue R
′
(1) is non-negative and thus R

′
(1) Ŷ (1) ≥ R

′
(1) Y (1). For the

non-downward-closed case: it is required that Ŷ (1) = Y (1) and thus
R

′
(1) Ŷ (1) = R

′
(1) Y (1).
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Figure 3.7. Depicted are the revenue curveR(q), price-posting revenue curve
P (q), and the allocation rules corresponding to ex ante allocation constraint
q̂ for the bimodal agent of Example 3.3.2. For this agent the revenue curve
R(·) (thin, black, solid line) is obtained from the price-posting revenue curve
P (·) (thick, grey, striped line) by replacing the curve on interval [a, b] with
a line segment. The allocation rule ŷ(·) for posting price v(q̂) is the reverse
step function at q̂ (thick, grey, striped line). For q̂ ∈ [a, b] as depicted, the
allocation rule y(·) for the q̂ optimal ex ante pricing (thin, black, solid line)
is the appropriate convex combination of the reverse step functions at a
and b. Notice that the area under both allocation rules is equal to the ex
ante service probability q̂.

Observe that Corollary 3.4.5 implies that the marginal revenue curve
is a virtual value function for revenue. The virtual surplus maximization
mechanism for these virtual values maximizes expected profit.

Theorem 3.4.6. For linear single-dimensional agents, the marginal rev-
enue curves are a virtual value functions for revenue and the virtual
surplus maximization mechanism optimizes expected profit in dominant
strategy equilibrium.

3.4.5 Optimal Ex Ante Pricings, Revisited

We now return to the question of characterizing the optimal ex ante
pricings that define the revenue curve (Definition 3.4.1). Given an ex
ante constraint q̂, what is the optimal lottery pricing? We saw previously
that price posting v(q̂) is a simple way to serve an agent with ex ante
probability q̂. When the distribution is regular, it is easy to see that
price posting is optimal. By monotonicity of the marginal price-posting
revenue curve, the q̂measure of types with the highest marginal revenues
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is precisely those with quantile in [0, q̂]. The mechanism that serves only
these types is the v(q̂) price posting. Therefore, for regular distributions
R(·) = P (·). The following is a restatement of Proposition 3.3.6 in terms
of the revenue curve for the regular case.

Corollary 3.4.7. For regular single-agent environments, allocation rule
y has expected revenue equal to the surplus of marginal revenue Eq

[

R′(q) y(q)
]

.

To solving the ex ante pricing problem for irregular distributions we
will define a very natural class of lottery pricings which directly re-
solve the problematic non-convexity of the price-posting revenue curves.
Suppose the price-posting revenue is non-concave at some q̂, instead of
posting price v(q̂) another method for serving with ex ante probability
q̂ would be to pick any interval [a, b] that contains q̂ and take the ap-
propriate convex combination of posting prices v(a), which serves with
probability a < q̂, and v(b), which serves with probability b > q̂, so that
the combined service probability is exactly q̂. The revenue from this
convex combination is the same convex combination of the revenues;
the allocation rule is given by the same convex combination of the two
reverse step functions. Figure 3.7(b) depicts these allocation rules. For-
mulaically,

yq̂(q) =










1 if q < a,
q̂−a
b−a if q ∈ [a, b], and

0 if q > b.

It is easy to see that via two-price lotteries of this form we can obtain
an ex ante revenue for every q̂ that corresponds to the convex hull of
P (·). See Figure 3.7(a).
This class of two-price lotteries satisfies all the conditions that the

optimal pricings satisfies with respect to Proposition 3.4.1. Optimal two-
price lotteries (a) induce a concave revenue curve, (b) have at least the
revenue of price posting, and (c) have allocation rules is no stronger
than those of price posting. Consequently, via the exact same proof as
Theorem 3.4.4 (and Corollary 3.4.5) the optimal revenue is given by
convex combination of ex ante pricings from this class. Applying this
revenue-optimality result to the allocation constraint ŷq̂(·), for which
the aforementioned convex combination places probability one on q̂, we
see that the optimal two-price lottery for ex ante constraint q̂ is in fact
optimal among all lottery pricings.
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(d) Allocation rules ŷ, y.

Figure 3.8. The optimal single-item auction is depicted for three bimodal
agents (Example 3.3.2). The price-posting revenue curve P (·) is depicted by
a thick, grey, dashed line in Figure 3.8(a). The revenue curve (thin, black,
solid line) is its concave hull. The ironed interval (a, b) where R(q) > P (q)
is depicted. The allocation constraint ŷ(q) = (1− q)

2
(Figure 3.8(d), thick,

grey, dashed line) corresponds to lowest-quantile-wins for three agents; the
allocation rule y(q) (thin, black, solid line) results from optimizing Rev[ŷ].
Simply, ironing corresponds to a line-segment for revenue curves and cumu-
lative allocation rules and to averaging for marginal revenues and allocation
rules.

Theorem 3.4.8. For a single-dimensional linear agent and ex ante con-
straint q̂, the optimal ex ante pricing is a two-priced lottery and the opti-
mal ex ante revenue R(q̂) is given by the concave hull of the price-posting
revenue curve P (·) at q̂.
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3.4.6 Optimal Interim Pricings, Revisited

We now reconsider the problem of finding the optimal interim pricing
(with allocation rule y) for allocation constraint ŷ, i.e., solving Rev[ŷ].
Recall that ŷ is a constraint, but the allocation rule y of the optimal
mechanism subject to ŷ may be generally weaker than ŷ, i.e., y ) ŷ.
Just as we can view the ironing of the price-posting revenue curve on
interval I as averaging marginal price-posting revenue on this interval,
we can so view the optimization of y subject to ŷ. To optimize a weakly
monotone function R′(·) subject to ŷ we should greedily assign low quan-
tiles to high probabilities of service except on ironed intervals, i.e., [a, b]
where q ∈ [a, b] satisfies R′′(q) = 0. Quantiles on ironed intervals are as-
signed to the average probability of service for the ironed interval. One
way to obtain such an allocation rule is via a resampling transforma-
tion σ that, for quantile q in some ironed interval [a, b], resamples the
quantile from this interval, i.e., as y(q) = Eσ[ŷ(σ(q))]. The cumulative
allocation rule Y is exactly equal to the cumulative allocation constraint
Ŷ except every ironed interval is replaced with a line segment. In other
words, the revenue optimization of Rev[·] can be effectively solved by
superimposing the revenue curve and the allocation constraint on the
same quantile axis and then ironing the allocation constraint where the
revenue curve is ironed. Figure 3.8 illustrates this construction.

We will typically be in environments that are downward-closed where
optimizing revenue allows the exclusion of any agent with negative vir-
tual value. Thus, the optimal allocation rule y drops to zero after the
quantile q̂

! of the monopoly price; equivalently Y is flat after q̂
!. For

non-downward-closed environments the definition of Rev[·] can be mod-
ified so that the total ex ante allocation probability of the constraint is
met with equality, i.e., Ŷ (1) = Y (1) as discussed in Section 3.4.3.

3.5 Surplus with a Balanced Budget

In this section we explore the role that a designer’s budget constraint
plays on mechanism design for the objective of surplus. Assume that the
mechanism designer would like to maximize surplus, but cannot subsi-
dize the transaction, i.e., she is constrained to mechanisms with non-
negative profit. Notice that such a constraint introduces a non-linearity
into the designer’s objective; however, this particular non-linearity in-
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stead can be instead represented as a constraint on total payments which,
because revenue is linear (Theorem 3.4.4), is a linear constraint.

Recall that with outcome (x, p) the surplus of a mechanism is
∑

i vi xi−
c(x) and its profit is

∑

i pi− c(x). There are two standard environments
where budget balance is a crucial issue. First, in an exchange the mecha-
nism designer is the mediator between a buyer and seller. The feasibility
constraint is all or none in that either the trade occurs, in which case
both agents are “served,” or the trade does not occur, in which case
neither agent is served. Second, in a non-excludable public project there
is a fixed cost for producing a public good, e.g., for building a bridge,
and if the good is produced then all agents can make use of the good.
Again, the feasibility constraint is all or none.

The surplus maximization mechanism (Definition 3.2.1) has a deficit,
i.e., negative profit, in non-trivial all-or-none environments. For instance,
to maximize surplus in an exchange, the good should be traded when the
buyer’s value exceeds the seller’s value for the good. The critical value
for the buyer is the seller’s value; the critical value for the seller is the
buyer’s value. When the good is sold the buyer pays the seller’s value,
the seller is paid the buyer’s value, and the mechanism has a deficit
of the difference between the two values. This difference is positive as
otherwise the trade would not have occurred.

Here we address the question of maximizing surplus subject to budget
balance (taking both quantities in expectation). As with profit maxi-
mization, there is no mechanism that optimizes surplus subject to bud-
get balance pointwise. E.g., in an exchange, if the values were known
then the buyer and seller would be happy to trade at any price between
their values; this is budget balanced. This approach, however, requires
knowledge of a price that is between the buyer and seller’s values, and
this knowledge is not generally available in Bayesian mechanism design.

Our objective is surplus:

Surplus(v, x) =
∑

i
vi xi − c(x);

in addition to the feasibility constraint (which is given by c(·)), incen-
tive constraints (i.e., monotonicity of each agent’s allocation rule), and
individual rationality constraints we have a budget-balance constraint

Profit(p, x) =
∑

i
pi − c(x) ≥ 0.
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To optimize this objective in expectation subject to budget balanced in
expectation we obtain the mathematical program

max
x,p

Ev

[∑

i
vixi(v)− c(x(v))

]

(3.5.1)

s.t. mechanism (x,p) is IC and IR

Ev

[∑

i
pi(v)− c(x(v))

]

≥ 0

where expectations are simply integrals with respect to the density func-
tion of the valuation profile.

3.5.1 Lagrangian Relaxation

We will make two transformations of mathematical program (3.5.1) so
as to be able to describe its solution. First, we will employ Proposi-
tion 3.3.6 to write expected payments in terms of the allocation rule
(and the marginal price-posting revenue curve). Second, we will employ
the method of Lagrangian relaxation on the budget-balance constraint
to move it into the objective. Intuitively, Lagrangian relaxation allows
the constraint to be violated but places a linear cost on violating the
constraint. This cost is parameterized by the Lagrangian parameter λ,
for high values of λ there is a high cost for violating the constraint (and
a high benefit for slack in the constraint, i.e., the margin by which the
constraint is satisfied), for low values of λ there is a low cost for violat-
ing the constraint. E.g., λ = 0 the optimization is the original problem
without the budget-balance constraint; with λ =∞ the optimization is
entirely one of maximizing the slack in the constraint. In our case the
slack in the constraint is the profit of the mechanism. Therefore, the
λ = ∞ case is to maximize profit and the λ = 0 case is to maximize
social surplus (without budget balance). Adjusting the Lagrangian pa-
rameter λ traces out the Pareto frontier between the two objectives of
surplus and profit (see Figure 3.9(a)). From this Pareto frontier we can
see how to optimize surplus subject to a constraint on profit (such as
budget balance) or optimize profit subject to a constraint on surplus.
Notice that when the constraint that is Lagrangian relaxed is met with
equality then it drops from the objective entirely and the objective value
obtained is the optimal value of the original program.

In quantile space with payments expressed in terms of the allocation
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rule, the Lagrangian relaxation of our program is as follows.

max
y

Eq

[∑

i
vi(qi)yi(q)− c(y(q))

]

(3.5.2)

+ λEq

[∑

i
P ′(qi)yi(q)− c(y(q))

]

s.t. y(·) is monotone.

Simplifying the objective with the identity (3.3.5) of P ′(q) = d
dq(q v(q)) =

v(q)− q v′(q), we have

Eq

[∑

i

[

(1 + λ) vi(qi) + λq v′i(qi)
]

yi(q)− (1 + λ) c(y(q))
]

.

This is simply a (Lagrangian) virtual surplus optimization where agent
i’s virtual value is

ϕλ
i (q) = (1 + λ) vi(qi) + λ q v′i(qi). (3.5.3)

and with (Lagrangian) cost (1 + λ) c(·), subject to monotonicity of each
agent’s the allocation rule.
If our original non-game-theoretic problem (without incentive and

budget-balance constraints) is solvable, the same solution can be ap-
plied to solve this Lagrangian optimization. First, we can normalize the
objective by dividing by (1+λ), the result is a virtual surplus optimiza-
tion with the same cost function as the original problem. Second, the
budget-balance constrained optimization problem be effectively solved
to an arbitrary degree of precision, e.g., by binary searching for the La-
grangian parameter λ for which solutions to the Lagrangian optimization
are just barely budget balanced. The details of this search are described
below.

3.5.2 Monotone Lagrangian Virtual Values

For any Lagrangian parameter λ, the optimal mechanism for the La-
grangian objective is the one that maximizes Lagrangian virtual surplus
subject to monotonicity of each agent’s the allocation rule. When the
Lagrangian virtual value ϕλ

i (·) is monotone non-increasing in qi for each
i the virtual surplus maximization mechanism for these Lagrangian vir-
tual values and Lagrangian cost optimizes the Lagrangian objective in
dominant strategy equilibrium (Corollary 3.3.3).

Lemma 3.5.1. For a regular distribution (Definition 3.3.1 on page 66)
given by inverse demand function v(·) and any non-negative Lagrangian
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parameter λ, the Lagrangian virtual value function ϕλ(q) = (1+λ) v(q)+
λ q v′(q) is monotonically decreasing.

Proof. The Lagrangian virtual value function of equation (3.5.3) is a
convex combination of the inverse demand curve v(·) and the marginal
price-posting revenue curve P ′(q) = v(q)−q v′(q), i.e., virtual values for
revenue. The inverse demand curve is strictly decreasing by definition
(Definition 3.3.6) and the marginal price-posting revenue curve is non-
increasing by the regularity assumption (Proposition 3.3.7). The convex
combination of two monotone functions is monotone; if one of the func-
tions is strictly monotone then so is any non-trivial convex combination
of them. The lemma follows.

To optimize expected surplus subject to budget balance we need to
tune the Lagrangian parameter so that the budget-balance constraint
is met with equality. So tuned, the mechanism’s expected profit will be
zero and the expected Lagrangian objective will be equal to the true
objective (expected surplus). Expected profit is, as described above, a
monotone function of the Lagrangian parameter. When expected profit
is continuous in the Lagrangian parameter λ, this tuning of λ is straight-
forward. Recall that for surplus maximization subject to budget balance,
the slack in the Lagrangian constraint is equal to the expected profit.

Lemma 3.5.2. For Lagrangian virtual value functions that are con-
tinuous in the Lagrangian parameter, the slack in the Lagrangian con-
straint for expected Lagrangian virtual surplus maximization is continu-
ously non-decreasing in the Lagrangian parameter.

Proof. The distribution of quantiles and a fixed Lagrangian parameter
induce a distribution on profiles of Lagrangian virtual values. Continuity
of Lagrangian virtual values with respect to the Lagrangian parameter
implies that the joint density function on profiles of Lagrangian virtual
values is continuous in the Lagrangian parameter. For any fixed profile
of Lagrangian virtual values, Lagrangian virtual surplus maximization
finds a (deterministic) pointwise optimal solution, the slack of this solu-
tion is also fixed and deterministic. As the distribution over these profiles
is continuous in the Lagrangian parameter so is the expected slack.

Theorem 3.5.3. For regular general-costs environments, an Lagrangian
virtual values from equation (3.5.3), there exists a Lagrangian parameter
for which the virtual surplus maximization mechanism has zero expected
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Figure 3.9. Depiction of the Pareto frontier for surplus (vertical axis) and
profit (horizontal axis). On the Pareto frontier, the surplus maximizing
point is profit minimizing (with negative profit) and the profit maximizing
point is surplus minimizing. The surplus optimal point subject to budget
balance is denoted by “◦”. The surplus and profit versus the Lagrangian
parameter λ are depicted along with their asymptote (grey, dotted line) as
λ → ∞. The profit versus λ plot has been rotated 90

◦
clockwise so as to line

up with the profit axis of the Pareto frontier plot. The optimal mechanism
is depicted by plotting v2 versus v1 where the region of valuation profiles
for which the project is provided is shaded.

profit and with this parameter the mechanism maximizes expected surplus
subject to budget balance in dominant strategy equilibrium.

Example 3.5.1. Consider two agents with uniformly distributed values
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and a non-excludable public project with cost one, i.e.,

c(x) =











1 if x = (1, 1),

0 if x = (0, 0), and

∞ otherwise.

The Lagrangian virtual values in value space are ϕ(v) = (2λ + 1) v −
λ. The Lagrangian virtual surplus mechanism serves both agents when
(2λ+1)(v1+v2)−2λ > 1+λ (for allocation x = (1, 1), the left-hand side
is the Lagrangian virtual surplus, the right-hand side is the Lagrangian
cost), i.e., when

v1 + v2 ≥ 3λ+1
2λ+1 . (3.5.4)

For λ = 0 we serve if v1 + v2 ≥ 1 (clearly this maximizes surplus) and
for λ =∞ we serve if v1 + v2 ≥ 3/2 (this maximizes profit). In equation
(3.5.4) we see that (for the uniform distribution), for any Lagrangian
parameter λ, the form of the optimal mechanism is a threshold rule on
the sum of the agent values. It is easy then to solve for the threshold sat-
isfies the budget-balance constraint with equality. The optimal threshold
is 5/4, the optimal Lagrangian parameter is λ! = 1/2, and the surplus is
9/64 ≈ 0.14. This example is depicted in Figure 3.9.

3.5.3 Non-monotone Lagrangian Virtual Values and
Partial Ironing

When the Lagrangian virtual value functions are non-monotone then
the ironing procedure (Definition 3.3.8) can be applied and the virtual
surplus maximization mechanism with the resulting ironed Lagrangian
ironed virtual values is optimal for the Lagrangian objective. After iron-
ing, however, the slack in the Lagrangian constraint, e.g., expected profit,
is generally discontinuous in the Lagrangian parameter. In such case
there is a point λ! such that for λ < λ! the expected profit of any so-
lution is negative and for λ > λ! the expected profit of any solution
is positive. At λ = λ! there are multiple solutions to the Lagrangian
objective. These solutions vary in the contribution to the relaxed objec-
tive from the original objective and from the slack in the Lagrangian
constraint (which is part of the relaxed objective); the expected profits
of these solution span the gap between the negative profit solutions and
the positive profit solutions. In particular, a convex combination of the
supremum (with respect to expected profit) of solutions with negative
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profit with infimum of solutions with positive profit will optimize ironed
Lagrangian virtual surplus and meet the budget-balance constraint with
equality.

This convex combination of mechanisms can be interpreted as an
ironed virtual surplus optimizer with a non-standard tie-breaking rule.
Consider virtual value function ϕ(·) and ironed virtual value function
ϕ̄(·) constructed for ϕ(·) for distribution F via the ironing procedure
(Definition 3.3.8). By the definition of the ironing procedure, the cumu-
lative ironed virtual value function Φ̄(·) is the smallest concave upper
bound on the cumulative virtual value function Φ(·). Define [a, b] to
be an ironed interval if Φ̄(q) > Φ(q) for q ∈ (a, b) and Φ̄(q) = Φ(q)
for q ∈ {a, b}. The ironing procedure gives ironed virtual values that
are equal to virtual values in expectation under the assumption that
all quantiles within the same ironed interval have the same allocation
probability (Theorem 3.3.9). Such an outcome is always obtained for
outcomes selected solely based on ironed virtual values (ignoring actual
values).

For Lagrangian ironed virtual value functions, it may be that two ad-
jacent ironed intervals have the same ironed virtual value. In such a case
outcomes selected solely based on ironed virtual values will produce the
same allocation probability for quantiles in the union of the adjacent
ironed intervals. Notice that the equality of ironed virtual values across
adjacent ironed intervals is sensitive to small changes in the Lagrangian
parameter. With a slightly higher Lagrangian parameter these ironed
intervals will be strictly merged; with a slightly lower Lagrangian pa-
rameter these ironed intervals will be strictly distinct. Thus, infimum
mechanism is the one that tie-breaks to merge adjacent ironed intervals
with the same ironed virtual value and the supremum mechanism is the
one that tie-breaks to keep adjacent ironed intervals distinct. We refer
to the mixing over two tie-breaking rule for maximizing ironed virtual
surplus as partial ironing.

Theorem 3.5.4. For general-cost environments, and Lagrangian vir-
tual values from equation (3.5.3), there exists a Lagrangian parameter
and partial-ironing parameter for which the partially-ironed Lagrangian
virtual surplus maximization mechanism optimizes social surplus subject
to budget balance in dominant strategy equilibrium.
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Exercises

3.1 In computer networks such as the Internet it is often not possible
to use monetary payments to ensure the allocation of resources to
those who value them the most. Computational payments, e.g., in
the form of “proofs of work”, however, are often possible. One im-
portant difference between monetary payments and computational
payments is that computational payments can be used to align in-
centives but do not transfer utility from the agents to the seller.
I.e., the seller has no direct value from an agent performing a proof-
of-work computation. Define the consumer surplus as the surplus
less the payments, i.e.,

∑

i (vi xi − pi)− c(x). (For more details, see
the discussion of non-monetary payments in Chapter 1.)

Describe the mechanism that maximizes consumer surplus when
the distribution on agents’ values satisfy the monotone hazard rate
assumption, i.e., f(v)/1−F (v) is monotone non-decreasing. Your de-
scription should first include a description in terms of virtual val-
ues and then you should interpret the implication of the monotone
hazard rate assumption to give a simple description of the optimal
mechanism. In particular, consider monotone hazard rate distribu-
tions in the following environments:

(a) a single-item auction with i.i.d. values,

(b) a single-item auction with non-identical values, and

(c) an environment with general costs specified by c(·) and non-
identical values.

3.2 Give a mechanism with first-price payment semantics that im-
plements the surplus maximizing outcome in equilibrium for any
single-dimensional agent environment. Hint: Your mechanism may
be parameterized by the distribution.

3.3 Derive equation (3.3.3),

Ev∼F [p(v)] = Ev∼F [ϕ(v)x(v)] (3.3.3)

by taking expectation of the payment identity (3.3.1),

p(v) = v x(v)−
∫ v

0
x(z) dz, (3.3.1)

for v ∼ F and simplifying.

3.4 Consider the non-downward closed environment of public projects:
either every agent can be served or none of them. I.e., the cost
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structure satisfies:

c(x) =











0 if
∑

i xi = 0,

0 if
∑

i xi = n, and

∞ otherwise.

(a) Describe the revenue-optimal mechanism for general distribu-
tions.

(b) Describe the revenue-optimal mechanism when agents’ values
are i.i.d. from U [0, 1].

(c) Give an asymptotic, in terms of the number n of agents, analysis
of the expected revenue of the revenue-optimal public project
mechanism when agents’ values are i.i.d. from U [0, 1].

3.5 Consider a two unit auction to four agents and a virtual value func-
tion that is strictly monotone except for an interval [a, b] where it
is a positive constant (e.g., Figure 3.2 on 71). Suppose the valua-
tion profile v satisfies v1 > b, v2, v3 ∈ [a, b], and v4 < a. Calculate
the probability of winning and expected payments of all agents (in
terms of a and b).

3.6 Consider profit maximization with values drawn from a discrete
distribution. Derive virtual values for revenue for discrete single-
dimensional type spaces for agents with linear utility. Assume that
T = {v0, . . . , vN} with the probability that an agent’s value is v ∈
T given by probability mass function f(v). Assume v

0 = 0. Note:
You must first solve Exercise 2.2 to characterize BNE equilibrium.

(a) Derive virtual values for the special case where the values are
uniform, i.e., vj = j for all j.

(b) Derive virtual values for the special case where the probabilities
are uniform, i.e., f(vj) = 1/N for all j.

(c) Give virtual values for the general case.

(Hint: You should end up with a very similar formulation to that
for continuous type spaces.)

3.7 The text has focused on forward auctions where the auctioneer is a
seller and the agents are buyers. The same theory can be applied to
reverse auctions (or procurement) where the auctioneer is a buyer
and the agents are sellers. It is possible to consider reverse auctions
within the framework described in this chapter where an agents
value for service is negative, i.e., in order to provide the service
they must pay a cost. It is more intuitive, however, to think in
terms of positive costs instead of negative values.
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(a) Derive a notion analogous to revenue curves for an agent (as a
seller) with private cost drawn from a distribution F .

(b) Derive a notion of virtual cost functions analogous to virtual
value functions.

(c) Suppose the auctioneer has a value of v for procuring a service
from one of several sellers with costs distributed i.i.d. and uni-
formly on [0, 1]. Describe the auction that optimizes the seller’s
profit (value for procurement less payments made to agents).

3.8 Consider a profit-maximizing broker mediating the exchange be-
tween a buyer and a seller. The broker’s profit is the difference
between payment made by the buyer and payment made to the
seller. Use the derivation of virtual values for revenue (from Sec-
tion 3.3.4) and virtual costs (from Exercise 3.7).

(a) Derive the optimal exchange mechanism for regular distribu-
tions for the buyer and seller.

(b) Solve for the optimal exchange mechanism in the special case
where the buyer’s and seller’s values are both distributed uni-
formly on [0, 1].

3.9 In Example 3.5.1 it was shown that for to agents with uniform val-
ues on interval [0, 1] and a cost of one for serving both of them to-
gether, the surplus maximizing mechanism with a balanced budget
in expectation serves the agents when the sum of their values is at
least 4/3. There is a natural dominant strategy “second-price” im-
plementation of this mechanism; instead give a “first-price” (a.k.a.,
pay-your-bid) implementation. Your mechanism should solicit bids,
decide based on the bids whether to serve the agents, and charge
each agent her bid if they are served.

Chapter Notes

The surplus-optimal Vickrey-Clarke-Groves (VCG) mechanism is cred-
ited to Vickrey (1961), Clarke (1971), and Groves (1973).
The characterization of revenue-optimal single-item auctions as vir-

tual value maximizers (for regular distributions) and ironed virtual value
maximizers (for irregular distributions) was derived by Roger Myerson
(1981). Its generalization to single-dimensional agent environments is
an obvious extension. The relationship between revenue-optimal auc-
tions, price-posting revenue curves, and marginal price-posting revenue
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(equivalent to virtual values) is due to Bulow and Roberts (1989). The
revenue-linearity-based approach is from Alaei et al. (2013).
Myerson and Satterthwaite (1983) characterizedmechanisms that max-

imize surplus subject to budget balance via Lagrangian relaxation of
the budget-balance constraint. The discussion of partial ironing for La-
grangian virtual surplus maximizers given here is from Devanur et al.
(2013). This partial ironing suggests that the optimal mechanism is not
deterministic, the problem of finding a deterministic mechanism to max-
imize surplus subject to budget balance is much more complex as the
space of deterministic mechanisms is not convex (Diakonikolas et al.,
2012).


