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Author’s Note

This text is suitable for advanced undergraduate or graduate courses; it

has been developed at Northwestern U. as the primary text for such a

course since 2008.

This text provides a look at select topics in economic mechanism de-

sign through the lens of approximation. It reviews the classical economic

theory of mechanism design wherein a Bayesian designer looks to find

the mechanism with optimal performance in expectation over the distri-

bution from which the preferences of the participants are drawn. It then

adds to this theory practical constraints such as simplicity, tractability,

and robustness. The central question addressed is whether these prac-

tical mechanisms are good approximations of the optimal ones. The re-

sulting theory of approximation in mechanism design is based on results

that come mostly from the theoretical computer science literature. The

results presented are the ones that are most directly compatible with

the classical (Bayesian) economic theory and are not representative of

the entirety of the literature.

– Jason D. Hartline





1

Mechanism Design and Approximation

Our world is an interconnected collection of economic and computational

systems. Within such a system, individuals optimize their actions to

achieve their own, perhaps selfish, goals; and the system combines these

actions with its basic laws to produce an outcome. Some of these systems

perform well, e.g., the national residency matching program which as-

signs medical students to residency programs in hospitals, e.g., auctions

for online advertising on Internet search engines; and some of these sys-

tems perform poorly, e.g., financial markets during the 2008 meltdown,

e.g., gridlocked transportation networks. The success and failure of these

systems depends on the basic laws governing the system. Financial reg-

ulation can prevent disastrous market meltdowns, congestion protocols

can prevent gridlock in transportation networks, and market and auc-

tion design can lead to mechanisms for allocating and exchanging goods

or services that yield higher profits or increased value to society.

The two sources for economic considerations are the preferences of

individuals and the performance of the system. For instance, bidders in

an auction would like to maximize their gains from buying; whereas, the

performance of the system could (i.e., from the perspective of the seller)

be measured in terms of the revenue it generates. Likewise, the two

sources for computational considerations are the individuals who must

optimize their strategies, and the system which must enforce its govern-

ing rules. For instance, bidders in the auction must figure out how to

bid, and the auctioneer must calculate the winner and payments from the

bids received. While these calculations may seem easy when auctioning

a painting, they both become quite challenging when, e.g., the Federal

Communications Commission (FCC) auctions cell phone spectrum for

which individual lots have a high degree of complementarities.

These economic and computational systems are complex. The space
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2 Mechanism Design and Approximation

of individual strategies is complex and the space of possible rules for

the system is complex. Optimizing among strategies or system rules

in complex environments should lead to complex strategies and system

rules, yet the individuals’ strategies or system rules that are successful

in practice are often remarkably simple. This simplicity may be a conse-

quence of individuals and designers preference for ease of understanding

and optimization (i.e., tractability) or robustness to variations in the

scenario, especially when these desiderata do not significantly sacrifice

performance.

This text focuses on a combined computational and economic the-

ory for the study and design of mechanisms. A central theme will be

the tradeoff between optimality and other desirable properties such as

simplicity, robustness, computational tractability, and practicality. This

tradeoff will be quantified by a theory of approximation which measures

the loss of performance of a simple, robust, and practical approxima-

tion mechanism in comparison to the complicated and delicate optimal

mechanism. The theory provided does not necessarily suggest mecha-

nisms that should be deployed in practice, instead, it pinpoints salient

features of good mechanisms that should be a starting point for the

practitioner.

In this chapter we will explore mechanism design for routing and con-

gestion control in computer networks as an example. Our study of this

example will motivate a number of questions that will be addressed in

subsequent chapters of the text. We will conclude the chapter with a

formal discussion of approximation and the philosophy that underpins

its relevance to the theory of mechanism design.

1.1 An Example: Congestion Control and Routing

in Computer Networks

We will discuss novel mechanisms for congestion control and routing

in computer networks to give a preliminary illustration of the interplay

between strategic incentives, approximation, and computation in mech-

anism design. In this discussion, we will introduce basic questions that

will be answered in the subsequent chapters of this text.

Consider a hypothetical computer network where network users reside

at computers and these computers are connected together through a

network of routers. Any pair of routers in this network may be connected

by a network link and if such a network link exists then each router
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can route a message directly through the other router. We will assume

that the network is completely connected, i.e., there is a path of network

links between all pairs of users. The network links have limited capacity;

meaning, at most a fixed number of messages can be sent across the link

in any given interval of time. Given this limited capacity the network

links are a resource that may be over demanded. To enable the sending

of messages between users in the network we will need mechanisms for

congestion control, i.e., determining which messages to route when a

network link is over-demanded, and routing, i.e., determining which path

in the network each message should take.

There are many complex aspects of this congestion control problem:

dynamic demands, complex networks, and strategic user behavior. Let

us ignore the first two issues at first and focus on the latter: strategic

user behavior. Consider a static version of this routing problem over

a single network link with unit capacity: each user wishes to send a

message across the link, but the link only has capacity for one message.

How shall the routing protocol select which message to route?

That the resource that the users (henceforth: agents) are vying for

is a network link is not important; we will therefore cast the problem

as a more general single-item resource allocation problem. An implicit

assumption in this problem is that it is better to allocate the item to

some agents over others. For instance, we can model the agents as having

value that each gains for receiving the item and it would be better if the

item went to an agent that valued it highly.

Definition 1.1 The single-item allocation problem is given by

• a single indivisible item available,

• n strategic agents competing for the item, and

• each agent i has a value vi for receiving the item.

The objective is to maximize the social surplus, i.e., the value of the

agent who receives the item.

The social surplus is maximized if the item is allocated to the agent

with the highest value, denoted v(1). If the values of the agent are pub-

licly known, this would be a simple allocation protocol to implement. Of

course, e.g., in our routing application, it is rather unlikely that values

are publicly known. A more likely situation is that each agent’s value

is known privately to that agent and unknown to all other parties. A

mechanism that wants to make use of this private information must
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then solicit it. Consider the following mechanism as a first attempt at a

single-item allocation mechanism:

(i) Ask the agents to report their values (⇒ agent i reports bi),

(ii) select the agent i⋆ with highest report (⇒ i⋆ = argmaxi bi), and

(iii) Allocate the item to agent i⋆.

Suppose you were one of the agents and your value was $10 for the

item; how would you bid? What should we expect to happen if we ran

this mechanism? It should be pretty clear that there is no reason your

bid should be at all related to your value; in fact, you should always bid

the highest number you can think of. The winner is the agent who thinks

of and reports the highest number. The unpredictability of the outcome

of the mechanism will make it hard to reason about its performance.

There are two natural ways to try to address this unpredictability. First,

we can accept that the bids are meaningless, ignore them (or not even

solicit them), and pick the winner randomly. Second, we could attempt

to penalize the agents for bidding a high amount, for instance, with a

monetary payment.

Definition 1.2 The lottery mechanism is:

(i) select a uniformly random agent, and

(ii) allocate the item to this agent.

The social surplus of a mechanism is total value it generates. In this

routing example the social surplus is the value of the message routed.

It is easy to calculate the expected surplus of the lottery. It is 1/n
∑

i vi.

This surplus is a bit disappointing in contrast to the surplus available

in the case where the values of the messages were publicly known, i.e.,

v(1) = maxi vi. In fact, by setting v1 = 1; vi = ǫ (for i 6= 1); and letting

ǫ go to zero we can observe that the surplus of the lottery approaches
v(1)/n; therefore, its worst-case is at best an n approximation to the

optimal surplus v(1). Of course, the lottery always obtains at least an

nth of v(1); therefore, its worst-case approximation factor is exactly n.

It is fairly easy to observe, though we will not discuss the details here,

that this approximation factor is the best possible by any mechanism

without payments.

Theorem 1.1 The surplus of the lottery mechanism is an n approxi-

mation to the highest agent value.
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If instead it is possible to charge payments, such payments, if made

proportionally to the agents’ bids, could discourage low-valued agents

from making high bids. This sort of dynamic allocation and pricing

mechanism is referred to as an auction.

Definition 1.3 A Single-item auction is a solution to the single-item

allocation problem that solicits bids, picks a winner, and determines

payments.

A natural allocation and pricing rule that is used, e.g., in government

procurement auctions, is the first-price auction.

Definition 1.4 The first-price auction is:

(i) ask agents to report their values (⇒ agent i reports bi),

(ii) select the agent i⋆ with highest report (⇒ i⋆ = argmaxi bi),

(iii) allocate the item to agent i⋆, and

(iv) charge this winning agent her bid, bi⋆ .

To get some appreciation for the strategic elements of the first price

auction, note that an agent who wins wants to pay as little as possible,

thus bidding a low amount is desirable. Of course, if the agent bids too

low, then she probably will not win. Strategically, this agent must figure

out how to balance this tradeoff. Of course, since agents may not report

their true values, the agent with the highest bid may not be the agent

with the highest-valued message. See Figure 1.1.

We will be able to analyze the first-price auction and we will do so in

Chapter 2. However, for two reasons, there is little hope of generalizing

it beyond the single-network-link special case (i.e., to large asymmet-

ric computer networks) which is our eventual goal. First, calculating

equilibrium strategies in general asymmetric environments is not easy;

consequently, there would be little reason to believe that agents would

play by the equilibrium. Second, it would be a challenge to show that

the equilibrium is any good. Therefore, we turn to auctions that are

strategically simpler.

The ascending-price auction is a stylized version of the auction pop-

ularized by Hollywood movies; art, antiques, and estate-sale auction

houses such as Sotheby’s and Christie’s; and Internet auction houses

such as eBay.

Definition 1.5 The ascending-price auction is:1

1
The ascending-price auction is also referred to as the English auction and it
contrasts to the Dutch (descending-price) auction.
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Figure 1.1 An in-class experiment: 21 student were endowed with values

uniformly drawn from the interval [0, 4] (denoted as vi ∼ U [0, 4]), they were

told their own values and that the distribution of values was U [0, 4], they

were asked to submit bids for a two-agent one-item first-price auction. The

bids of the students were collected and randomly paired for each auction;

the winner was paid the difference between his value and his bid in dollars

(real money). Winning bids are shown as “•” and losing bids are shown as

“×”. The grey area denotes strategies that are not dominated. The black

line b = v/2 denotes the equilibrium strategy in theory. In economic ex-

periments, just like our in class experiment, bidders tend to overbid the

equilibrium strategy. A few students knew the equilibrium strategy in ad-

vance of the in-class experiment.

(i) gradually raise an offered price up from zero,

(ii) allow agents to drop out when they no longer wish to win at the

offered price,

(iii) stop at the price where the second-to-last agent drops out, and

(iv) allocate the item to the remaining agent and charges her the stopping

price.

Strategically this auction is much simpler than the first-price auction.

What should an agent with value v do? A good strategy would be “drop

when the price exceeds v.” Indeed, regardless of the actions of the other

agents, this is a good strategy for the agent to follow, i.e., it is a domi-

nant strategy. It is reasonable to assume that an agent with an obvious

dominant strategy will follow it.

Since we know how agents are behaving, we can now make conclusions

as to what happens in the auction. The second-highest-valued agent will

drop out when the ascending prices reaches her value, v(2). The highest-

valued agent will win the item at this price. We can conclude that this
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auction maximizes the social surplus, i.e., the sum of the utilities of all

parties. Notice that the utility of losers are zero, the utility of the winner

is v(1)−v(2), and the utility of the seller (e.g., the router in the congestion

control application) is v(2), the payment received from the winner. The

total is simply v(1), as the payment occurs once positively (for the seller)

and once negatively (for the winner) and these terms cancel. Of course

v(1) is the optimal surplus possible; we could not give the item to anyone

else and get more value out of it.

Theorem 1.2 The ascending-price auction maximizes the social sur-

plus in dominant strategy equilibrium.

What is striking about this result is that it shows that there is es-

sentially no loss in surplus imposed by the assumption that the agents’

values are privately known only to themselves. Of course, we also saw

that the same was not true of routing mechanisms that cannot require

the winner to make a payment in the form of a monetary transfer from

the winner to the seller. Recall, the lottery mechanism could be as bad

as an n approximation. A conclusion we should take from this exercise is

that transfers are very important for surplus maximization when agents

have private values.

Unfortunately, despite the good properties of the ascending-price auc-

tion there are two drawbacks that will prevent our using it for rout-

ing and congestion control in computer networks. First, mechanisms for

sending messages in computer networks must be very fast. Ascending

auctions are slow and, thus, impractical. Second, the ascending-price

auction does not generalize to give a routing mechanisms in networks

beyond the single-network-link special case. Challenges arise because

ascending prices would not generally find the social surplus maximiz-

ing set of messages to route. A solution to these problems comes from

Nobel laureate William Vickrey who observed that if we simulate the

ascending-price auction with sealed bids we arrive at the same outcome

in equilibrium without the need to bother with an ascending price.

Definition 1.6 The second-price auction is:2

(i) accept sealed bids,

(ii) allocate the item to the agent with the highest bid, and

(iii) charge this winning agent the second-highest bid.

2
The second-price auction is also referred to as the Vickrey auction.
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Figure 1.2 Utility as a function of bid in the second-price auction.

In order to predict agent behavior in the second-price auction, notice

that its outcome can be viewed as a simulation of the ascending-price

auction. Via this viewpoint, there is a one-to-one correspondence be-

tween bidding b in the second-price auction and dropping out at price

b is the ascending-price auction. Since the dominant strategy in the

ascending-price auction is for an agent to drop out at when the price

exceeds her value; it is similarly a dominant strategy for the agent to

bid her true value in the second-price auction. While this intuitive ar-

gument can be made formal, instead we will argue directly that truthful

bidding is a dominant strategy in the second-price auction.

Theorem 1.3 Truthful bidding is a dominant strategy in the second-

price auction.

Proof We show that truthful bidding is a dominant strategy for agent

i. Fix the bids of all other agents and let v̂i = maxj 6=i vj . Notice that

given this v̂i there are only two possible outcomes for agent i. If she bids

bi > v̂i then she wins, pays v̂i (which is the second-highest bid), and has

utility ui = vi− v̂i. On the other hand, if she bids bi < v̂i then she loses,

pays nothing, and has utility ui = 0. This analysis allows us to plot the

utility of agent i as a function of her bid in two relevant cases, the case

that vi < v̂i and the case that vi > v̂i. See Figure 1.2.

Agent i would like to maximize her utility. In Case 1, this is achieved

by any bid greater than v̂i. In Case 2, it is achieved by any bid less than

v̂i. Notice that in either case bidding bi = vi is a good choice. Since

the same bid is a good choice regardless of which case we are in, the

same bid is good for any v̂i. Thus, bidding truthfully, i.e., bi = vi, is a

dominant strategy.

Notice that, in the proof of the theorem, v̂i is the infimum of bids

that the bidder can make and still win, and the price charge to such a
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winning bidder is exactly v̂i. We henceforth refer to v̂i as agent i’s critical

value. It should be clear that the proof above can be easily generalized,

in particular, to any auction where each agent faces such a critical value

that is a function only of the other agents’ reports. This observation

will allow the second-price auction to be generalized beyond single-item

environments.

Corollary 1.4 The second-price auction maximizes the social surplus

in dominant strategy equilibrium.

Proof By the definition of the second-price auction, the agent with the

highest bid wins. By Theorem 1.3 is a dominant strategy equilibrium for

agents to bid their true values. Thus, in equilibrium the agent with the

highest bid is identically the agent with the highest value. The social

surplus is maximized.

In the remainder of this section we explore a number of orthogonal

issues related to practical implementations of routing and congestion

control. Each of these vignettes will conclude with motivating questions

that will be addressed in the subsequent chapters. First, we address the

issue of payments. The routing protocol in today’s Internet, for instance,

does not allow the possibility of monetary payments. How does the rout-

ing problem change if we also disallow monetary payments? The second

issue we address is speed. While the second-price auction is faster than

the ascending-price auction, still the process of soliciting bids, tallying

results, and assigning payments may be too cumbersome for a routing

mechanism. A simpler posted-pricing mechanism would be faster, but

how can we guarantee good performance with a posted pricing? Finally,

the single-link case is far from providing a solution to the question of

routing and congestion control in general networks. How can we extend

the second-price auction to more general environments?

1.1.1 Non-monetary payments

Most Internet mechanisms, including its congestion control mechanisms,

do not currently permit monetary transfers. There are historical, social,

and infrastructural reasons for this. The Internet was initially developed

as a research platform and its users were largely altruistic. Since its

development, the social norm is for Internet resources and services to

be free and unbiased. Indeed, the “net neutrality” debates of the early

2000’s were largely on whether to allow differentiated service in routers
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based on the identity of the source or destination of messages (and based

on contracts that presumably would involve payments). Finally, micro-

payments in the Internet would require financial infrastructure which is

currently unavailable at reasonable monetary and computational over-

head.

One solution that has been considered, and implemented (but not

widely adopted) for similar resource allocation tasks (e.g., filtering un-

solicited electronic mail, a.k.a., spam) is computational payments such

as “proofs of work.” With such a system an agent could “prove” that

her message was high-valued by having her computer perform a large,

verifiable, but otherwise, worthless computational task. Importantly, un-

like monetary payments, computational payments would not represent

utility transferred from the winner to the router. Instead, computational

payments are utility lost to society.

The residual surplus of a mechanism with computational payments is

the total value generated less any payments made. The residual surplus

for a single-item auction is thus the value of the winner less her payment.

For the second-price auction, the residual surplus is v(1) − v(2). For the

lottery, the residual surplus is 1
n

∑

i vi, which is the same as the surplus

as there are no payments.

While the second-price auction maximizes surplus (among all mecha-

nisms) regardless of the values of the agents, for the objective of residual

surplus it is clear that neither the second-price auction nor the lottery

mechanism is best regardless of agent values. Consider the bad input

for the lottery, where v1 = 1 and vi = ǫ (for i 6= 1). If we let ǫ go to

zero, the second-price auction has residual surplus v(1) = 1 (which is

certainly optimal) and the lottery has expected surplus 1/n (which is far

from optimal). On the other hand, if we consider the all-ones input, i.e.,

vi = 1 for all i, then the residual surplus of the second-price auction

is v(1) − v(2) = 0 (which is far from optimal), whereas the lottery sur-

plus is v(1) = 1 (which is clearly optimal). Of course, on the input with

v1 = v2 = 1 and vi = ǫ (for i ≥ 3) both the lottery and the second-

price auction have residual surplus far from what we could achieve if the

values were publicly known or monetary transfers were allowed.

The underlying fact in the above discussion that separates the ob-

jectives of surplus and residual surplus is that for surplus maximization

there is a single mechanism that is optimal for any profile of agent values,

namely the second-price auction; whereas there is no such mechanism for

residual surplus. Since there is no absolute optimal mechanism we must

trade-off performance across possible profiles of agent values. There are



1.1 An Example: Congestion Control and Routing 11

two ways to do this. The first approach is to assume a distribution over

value profiles and then optimize residual surplus in expectation over this

distribution. Thus, we might trade off low residual surplus on a rare in-

put for high residual surplus on a likely input. This approach results in

a different “optimal mechanism” for different distributions. The second

approach begins with the solution to the first approach and asks for

a single mechanism that bests approximates the optimal mechanism in

worst-case over distributions. This second approach may be especially

useful for applications of mechanism design to computer networks be-

cause it is not possible to change the routing protocol to accommodate

changing traffic workloads.

Question 1.1 In what settings does the second-price auction maximize

residual surplus? In what settings does the lottery maximize residual

surplus?

Question 1.2 For any given distribution over agent values, what mech-

anism optimizes residual surplus for the distribution?

Question 1.3 If the optimal mechanism for a distribution is compli-

cated or unnatural, is there a simple or natural mechanism that approx-

imates it?

Question 1.4 In worst-case over distributions of agent values, what

single mechanism best approximates the optimal mechanism for the dis-

tribution?

1.1.2 Posted Pricing

Consider again the original single-item allocation problem to maximize

surplus (with monetary payments). Unfortunately, even a single-round,

sealed-bid auction such as the second-price auction may be too com-

plicated and slow for congestion control and routing applications. An

even simpler approach would be to just post a take-it-or-leave-it price.

Consider the following mechanism.

Definition 1.7 For a given price v̂, the uniform-pricing mechanism

serves the first agent willing to pay v̂ (breaking ties in arrival order

randomly).

For instance, if we assumed all agents arrive at once and v̂ = 0 this

uniform pricing mechanism is identical to the aforementioned lottery.
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Recall that the lottery mechanism is very bad when there are many low-

valued agents and a few high-valued agents. The bad example had one

agent with value one, and the remaining n− 1 agents with value ǫ. This

uniform-pricing mechanism, however, is more flexible. For instance, for

this example we could set v̂ = 2ǫ, only the high-valued agent will want to

buy, and the surplus would be one. Such a posted-pricing mechanism is

very practical and, therefore, especially appropriate for our application

to Internet routing.

Of course, the price v̂ needs to be chosen well. Fortunately in the

routing example where billions of messages are sent every day, it is rea-

sonable to assume that there is some distributional knowledge of the de-

mand. Imagine that the value of each agent i is drawn independently and

identically from distribution F . The cumulative distribution function for

random variable v drawn from distribution F specifies the probability

that it is at most z, denoted F (z) = Prv∼F [v < z]. For example the uni-

form distribution on interval [0, 1] is denoted U [0, 1] and its cumulative

distribution function is F (z) = z.

There is a very natural way to choose v̂: mimic the outcome of the

second-price auction as much as possible. Notice that with n identically

distributed agents, the ex ante (meaning: before the values are drawn)

probability that any particular agent wins is 1/n. To mimic the outcome

of the second-price auction on any particular agent we could set a price

v̂ so that the probability that the agent’s value is above v̂ is exactly 1/n,

this price can be found by inverting the cumulative distribution function

as v̂ = F−1(1 − 1/n). For the uniform distribution, the solution to this

inverse is v̂ = 1− 1/n. Unlike the second-price auction, posting a uniform

price of v̂ may result in no winners (if all agent values are below v̂) or

an agent other than that with the highest value may win (if there are

more than one agents with value above v̂).

Theorem 1.5 For values drawn independently and identically from

any distribution F , the uniform pricing of v̂ = F−1(1−1/n) is an e/e−1 ≈

1.58 approximation to the optimal social surplus.

Proof The main idea of this proof is to compare three mechanisms.

Let REF denote the second-price auction and its surplus (our reference

mechanism). Let APX denote the uniform pricing and its surplus (our

approximation mechanism). The second-price auction, REF, optimizes

surplus, subject to the ex post (meaning: after the mechanism is run)

supply constraint that at most one agent wins, and chooses to sell to

each agent with ex ante probability 1/n. Consider for comparison a third
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mechanism UB that maximizes surplus subject to the constraint that

each agent is served with ex ante probability at most 1/n, but has no

supply constraint, i.e., UB can serve multiple agents if it so chooses.

The first step in the proof is the simple observation that UB upper

bounds REF, i.e., UB ≥ REF. This is clear as both mechanisms serve

each agent with ex ante probability 1/n, but REF has an ex post supply

constraint whereas UB does not. UB could simulate REF and get the

exact same surplus, or it could do something even better. Conclude,

UB ≥ REF . (1.1)

In fact, UB will do something better than REF. First, observe that

UB’s optimization is independent between agents. Second, observe that

the socially optimal way to serve an agent with ex ante probability 1/n

is to offer her price v̂ = F−1(1 − 1/n). We now wish to calculate UB’s

expected surplus. Let E[v | v ≥ v̂] denote the expected value of an agent

given that her value v is above the price v̂. If we sell to an agent and

all we know is that her value is above the price, this quantity is the

expected surplus generated. By the choice of price v̂, the probability

than an agent has a value v that exceeds the price v̂ is Pr[v ≥ v̂] = 1/n,

and when an agent’s value is below the price her surplus is zero. Thus,

her (total) expected surplus in UB is exactly E[v | v ≥ v̂] ·Pr[v ≥ v̂]. By

linearity of expectation, UB’s (total) expected surplus is just the sum

over the n agents of the surplus of each agent’s surplus. Therefore,

UB = n · E[v | v ≥ v̂] ·Pr[v ≥ v̂]

= E[v | v ≥ v̂] . (1.2)

Finally, we get a lower bound on APX’s surplus that we can relate

to REF via its upper bound UB. Recall that the price in the uniform-

pricing mechanism is selected so that the probability that any given

agent has value exceeding the price is exactly 1/n. The probability that

there are no agents who are above the price is equal to the probability

that all agents are below the price, which is equal to the product of the

probabilities that each agent is below the threshold, i.e., (1−1/n)n ≤ 1/e.3

Therefore, the probability that the item is sold by uniform pricing is at

least 1−1/e. If the item is sold, it is sold to an arbitrary agent with value

conditioned to be at least v̂, and the expected value of any such agent

3
The natural number is e ≈ 2.178. That limn→∞(1− 1/n)

n
= 1/e can be verified

by taking the natural logarithm and applying L’Hopital’s rule; the
non-negativity of the derivative of (1 − 1/n)

n
implies it is is monotone

non-decreasing; therefore, 1/e is an upper bound on (1 − 1/n)
n
for any finite n.
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is E[v | v ≥ v̂]. Therefore, the expected surplus of uniform pricing is,

APX ≥ (1− 1/e)E[v | v ≥ v̂] . (1.3)

Combining equations (1.1), (1.2), and (1.3) it is apparent that APX ≥

(1− 1/e)REF.

Question 1.5 When are simple, practical mechanisms like posted pric-

ing a good approximation to the optimal mechanism?

1.1.3 General Routing Mechanisms

Finally we are ready to propose a mechanism for congestion control and

routing in general networks. The main idea in the construction is the

notion of critical values that was central to showing that the second-

price auction has truthtelling as a dominant strategy (Theorem 1.3). In

fact, that proof generalizes to any auction wherein each agent faces a

critical value (that is not a function of her bid), the agent wins and pays

the critical value if her bid exceeds it, and otherwise she loses.

Definition 1.8 The second-price routing mechanism is:

(i) solicit sealed bids,

(ii) find the set of messages that can be routed simultaneously with the

largest total value, and

(iii) charge the agents of each routed message their critical values.

Theorem 1.6 The second-price routing mechanism has truthful bid-

ding as a dominant strategy.

Corollary 1.7 The second-price routing mechanism maximizes the so-

cial surplus.

The proof of the theorem is similar to the analogous result for the

second-price single-item auction, but we will defer its proof to Chapter 3.

The corollary follows because the bids are equal to the agents’ values,

the mechanism is defined to be optimal for the reported bids, and the

payments cancel.

Unfortunately, this is far from the end of the story. Step (ii) of the

mechanism is known as winner determination. To understand exactly

what is happening in this step we must be more clear about our model for

routing in general networks. For instance, in the Internet, the route that

messages take in the network is predetermined by the Border Gateway

Protocol (BGP), which enforces that all messages routed to the same
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destination through any given router follow the same path. There are no

opportunities for load-balancing, i.e., for sending messages to the same

destination across different paths so as to keep the loads on any given

path at a minimum. Alternatively, we could be in a novel network where

the routing can determine which messages to route and which path to

route them on.

Once we fix a model, we need to figure out how to solve the opti-

mization problem implied by winner determination. Namely, how do we

find the subset of messages with the highest total value that can be si-

multaneously routed? In principle, we are searching over subsets that

meet some complicated feasibility condition. Purely from the point of

optimization, this is a challenging task. The problem is related to the

infamous disjoint paths problems: given a set of pairs of vertices in a

graph, find a subset of pairs that can be connected via disjoint paths.

This problem is NP hard to solve. Meaning: it is at least as hard as

any problem in the equivalence class of NP-complete problems for which

it is widely believed that finding optimal solutions is computationally

intractable.

Theorem 1.8 The disjoint-paths problem is NP hard.

If we believe it is impossible for a designer to implement a mecha-

nism for which winner determination is computationally intractable, we

cannot accept the second-price routing mechanism as a solution to the

general network routing problem.

Algorithmic theory has an answer to intractability: if computing the

optimal solution is intractable, try instead to compute an approximately

optimal solution.

Question 1.6 Can we replace Step (ii) in the mechanism with an

approximation algorithm and still retain the dominant-strategy incentive

property?

Question 1.7 If not, can we (by some other method) design a com-

putationally tractable approximation mechanism for routing?

Question 1.8 Is there a general theory for designing approximation

mechanisms from approximation algorithms?

1.2 Mechanism Design

Mechanism design gives a theory for the design of protocols, services,
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laws, or other “rules of interaction” in which selfish behavior leads to

good outcomes. “Selfish behavior” means that each participant, hereafter

agent, individually tries to maximize her own utility. Such behavior we

define as rational. “Leads” means in equilibrium. A set of agent strategies

is in equilibrium if no agent prefers to unilaterally change her strategy.

Finally, the “good”-ness of an outcome is assessed with respect to the

criteria or goals of the designer. Natural economic criteria are social sur-

plus, the sum of the utilities of all parties; and profit, the total payments

made to the mechanism less any cost for providing the outcome.

A theory for mechanism design should satisfy the following four desider-

ata:

Informative: It pinpoints salient features of the environment and char-

acteristics of good mechanisms therein.

Prescriptive: It gives concrete suggestions for how a good mechanism

should be designed.

Predictive: The mechanisms that the theory predicts should be the

same as the ones observed in practice.

Tractable: The theory should not assume super-natural ability for the

agents or designer to optimize.

Notice that optimality is not one of the desiderata, nor is suggesting a

specific mechanism to a practitioner. Instead, intuition from the theory

of mechanism design should help guide the design of good mechanisms

in practice. Such guidance is possible through informative observations

about what good mechanisms do. Observations that are robust to vari-

ations in modeling details are especially important.

Sometimes the theory of optimal mechanism design meets the above

desiderata. The question of designing an optimal mechanism can be

viewed as a standard optimization problem: given incentive constraints,

imposed by game theoretic strategizing; feasibility constraints, imposed

by the environment; and the distribution of agent preferences, opti-

mize the designer’s given objective. In ideal environments the given

constraints may simplify and, for instance, allow the mechanism de-

sign problem to be reduced to a natural optimization problem without

incentive constraints or distribution. We saw an example of this for rout-

ing in general networks: in order to invoke the second-price mechanism

we only needed to find the optimal set of messages to route. Unfortu-

nately, there are many environments and objectives where the optimal

mechanism design problem not simplify as nicely.
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1.3 Approximation

In environments where optimal mechanisms do not meet the desiderata

above, approximation can provide a remedy. In the formal definition of

an approximation, below, a good mechanism is one with a small approx-

imation factor.

Definition 1.9 For an environment given implicitly, denote an ap-

proximation mechanism and its performance by APX, and a reference

mechanism and its performance by REF.

(i) For any environment, APX is a β approximation to REF if APX ≥
1
β REF.

(ii) For any class of environments, a class of mechanisms is a β approxima-

tion to REF if for any environment in the class there is a mechanism

APX in the class that is a β approximation to REF.

(iii) For any class of environments, a mechanism APX is a β approxima-

tion to REF if for any environment in the class APX is a β approxi-

mation to REF.

In the preceding section we saw each of these types of approximation.

For i.i.d. U [0, 1], n-agent, single-item environments, posting a uniform

price of v̂ = 1− 1/n is a e/e−1 approximation to the second-price auction.

More generally, for any i.i.d. single-item environment, uniform pricing

is a e/e−1 approximation to the second-price auction. Finally, for any

single-item environment the lottery gives an n approximation to the

social surplus of the second-price auction.

Usually we will employ the approximation framework with REF rep-

resenting the optimal mechanism. For instance, in the preceding section

we compared a posted-pricing mechanism to the surplus-optimal second-

price auction for i.i.d., single-item environments. For such a comparison,

clearly REF ≥ APX, and therefore the approximation factor is at least

one. It is often instructive to compare the approximation ability of one

class of mechanisms to another. For instance, in the preceding section

we compared the surplus of a lottery, as the optimal mechanism with-

out payments, to the surplus of the second-price auction, the optimal

mechanism (in general). This kind of apples-to-oranges comparison is

useful for understanding the relative importance of various features of a

mechanism or environment.
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1.3.1 Philosophy of Approximation

While it is, no doubt, a compelling success of the theory of mechanism

design that its mechanisms are so prevalent in practice, optimal mecha-

nism design cannot claim the entirety of the credit. These mechanisms

are employed by practitioners well beyond the environments for which

they are optimal. Approximation can explain why: the mechanisms that

are optimal in ideal environments may continue to be approximately

optimal much more broadly. It is important for the theory to describe

how broadly these mechanisms are approximately optimal and how close

to optimal they are. Thus, the theory of approximation can complement

the theory of optimality and justify the wide prevalence of certain mech-

anisms. For instance, in Chapter 4 and Chapter 7 we describe how the

widely prevalent reserve-price-based mechanisms and posted pricings are

corroborated by their approximate optimality.

There are natural environments for mechanism design wherein ev-

ery “undominated” mechanism is optimal. If we consider only optimal

mechanisms we are stuck with the full class from which we can make no

observations about what makes a mechanism good; on the other hand, if

we relax optimality, we may be able to identify a small subclass of mech-

anisms that are approximately optimal, i.e., for any environment there

is a mechanism in the subclass that approximates the optimal mecha-

nism. This subclass is important in theory as we can potentially observe

salient characteristics of it. It is important in practice because, while it

is unlikely for a real mechanism designer to be able to optimize over all

mechanisms, optimizing over a small class of, hopefully, natural mech-

anisms may be possible. For instance, a conclusion that we will make

precise in Chapter 4 and Chapter 7 is that reserve-price-based mecha-

nisms and posted pricings are approximately optimal in a wide range of

environments including those with multi-dimensional agent preferences.

Approximation provides a lens with which to explore the salient fea-

tures of an environment or mechanism. Suppose we wish to determine

whether a particular feature of a mechanism is important. If there exists

a subclass of mechanisms without that feature that gives a good approx-

imation to the optimal mechanism, then the feature is perhaps not that

important. If, on the other hand, there is no such subclass then the fea-

ture is quite important. For instance, previously in this chapter we saw

that mechanisms without transfers cannot obtain better than a linear ap-

proximation to the optimal social surplus in single-item environments.

This result suggests that transfers are very important for mechanism
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Figure 1.3 Picasso’s December, 1945 to January, 1946 abstractionist study

of a bull highlights one of the main points of approximation: identifying

the salient features of the object of study. Picasso drew these in order from

left to right, top to bottom.

design. On the other hand, we also saw that posted-pricing mechanism

could obtain an e/e−1 approximation to the surplus-optimal mechanism.

Posted pricings do not make use of competition between agents, there-

fore, we can conclude that competition between agents is not that impor-

tant. Essentially, approximation provides a means to determine which

aspect of an environment are details and which are not details. The ap-

proximation factor quantifies the relative importance on the spectrum

between unimportant details to salient characteristics. Approximation,

then allows for design of mechanisms that are not so dependent on de-

tails of the setting and therefore more robust. See Figure 1.3 for an

illustration of this principle. In particular, in Chapter 4 we will formally

observe that revenue-optimal auctions when agent values are drawn from

a distribution can be approximated by a mechanism in which the only

distributional dependence is a single number; moreover, in Chapter 5 we
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will observe that some environments permit a single (prior-independent)

mechanism to approximate the revenue-optimal mechanism under any

distributional assumption.

Suppose the seller of an item is worried about collusion, risk attitudes,

after-market effects, or other economic phenomena that are usually not

included in standard ideal models for mechanism design. One option

would be to explicitly model these effects and study optimal mechanisms

in the augmented model. These complicated models are difficult to ana-

lyze and optimal mechanisms may be overly influenced by insignificant-

seeming modeling choices. Optimal mechanisms are precisely tuned to

details in the model and these details may drive the form of the optimal

mechanism. On the other hand, we can consider approximations that

are robust to various out-of-model phenomena. In such an environment

the comparison between the approximation and the optimal mechanism

is unfair because the optimal mechanism may suffer from out-of-model

phenomena that the approximation is robust to. In fact, this “optimal

mechanism” may perform much worse than our approximation when the

phenomena are explicitly modeled. For example, Chapter 4 and Chap-

ter 7 describe posted pricing mechanisms that are approximately optimal

and robust to timing effects; for this reason an online auction house, such

as eBay, may prefer its sellers to use “buy it now” posted pricings instead

of auctions.

Finally, there is an issue of non-robustness that is inherent in any op-

timization over a complex set of objects, such as mechanisms. Suppose

the designer does not know the distribution of agent preferences exactly

but can learn about it through, e.g., market analysis. Such a market

analysis is certainly going to be noisy; exactly optimizing a mechanism

to the market analysis may “over fit” to this noise. Both statistics and

machine learning theory have techniques for addressing this sort of over-

fitting. Approximation mechanisms also provide such a robustness. Since

the class of approximation mechanisms is restricted from the full set, for

these mechanisms to be good, they must pay less attention to details and

therefore are robust to sampling noise. Importantly, approximation al-

lows for design and analysis mechanisms for small (a.k.a., thin) markets

where statistical and machine learning methods are less applicable.

1.3.2 Approximation Factors

Depending on the problem and the approximation mechanism, approx-

imation factors can range from (1 + ǫ), i.e., arbitrarily close approxima-
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tions, to linear factor approximations (or sometimes even worse). Notice

a linear factor approximation is one where, as some parameter in the

environment grows, i.e., more agents or more resources, the approxima-

tion factor gets worse. As examples, we saw earlier an environment in

which uniform pricing is a constant approximation and the lottery is a

linear approximation.4

In this text we take constant versus super-constant approximation

as the separation between good and bad. We will view a proof that a

mechanism is a constant approximation as a positive result and a proof

that no mechanism (in a certain class) is a constant approximation as

a negative result. Constant approximations tend to represent a tradeoff

between simplicity and optimality. Properties of constant approximation

mechanisms can, thus, be quite informative. Of course, there are many

non-mechanism-design environments where super-constant approxima-

tions are both useful and informative; however, for mechanism design

super-constant approximations tend to be indicative of (a) a bad mech-

anism, (b) failure to appropriately characterize optimal mechanisms, or

(c) an imposition of incompatible modeling assumptions or constraints.

If you were approached by a seller (henceforth: principal) to design a

mechanism and you returned to triumphantly reveal an elegant mech-

anism that gives her a two approximation to the optimal profit, you

would probably find her a bit discouraged. After all, your mechanism

leaves half of her profit on the table. In the context of this critique we

outline the main points of constant, e.g., two, approximations for the

practitioner. First, a two approximation provides informative conclu-

sions that can guide the design of even better mechanisms for specific

environments. Second, the approximation factor of two is a theoretical

result that holds in a large range of environments, in specific environ-

ments the mechanism may perform better. It is easy, via simulation,

to evaluate the mechanism performance on specific settings to see how

close to optimal it actually is. Third, in many environments the optimal

mechanism is not understood at all, meaning the principal’s alternative

to your two approximation is an ad hoc mechanism with no performance

guarantee. This principal is of course free to simulate your mechanism

and her mechanism in her given environment and decide to use the bet-

4
Recall that the approximation factor for uniform pricing bounded by e/e−1, an
absolute constant that does not increase with various parameters of the auction
such as the number of agents. In contrast the approximation factor of the lottery
could be as bad as n, the number of agents. As the number of agents increases,
so does the approximation bound guaranteed by the lottery.
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ter of the two. In this fashion the principal’s ad hoc mechanism, if used,

is provably a two approximation as well. Fourth, mechanisms that are

two approximations in theory arise in practice. In fact, that it is a two

approximation explains why the mechanism arises. Even though it is

not optimal, it is close enough. If it was far from being optimal the prin-

cipal (hopefully) would have figured this out and adopted a different

approach.

Sometimes it is possible do obtain schemas for approximating the op-

timal mechanism to within a (1+ǫ) factor for any ǫ. These schemas tend

to be computational approaches that are useful for addressing potential

computational intractability of the optimal mechanism design problem.

While they do not tend to yield simple mechanisms, they are relevant in

complex environments. Often these approximation schemes are based on

(a) identifying a restricted class of mechanisms wherein a near-optimal

mechanism can be found and (b) conducting a brute-force search over

this restricted class. While very little is learned from such a brute-force

search, properties of the restricted class of mechanisms can be informa-

tive. Many of the optimal mechanisms we describe can in practice only

be implemented as approximation schemes.

Chapter Notes

Routing and congestion control are a central problems in computer sys-

tems such as the Internet; see Leiner et al. (1997) for a discussion of

design criteria. Demers et al. (1989) analyze “fair queuing” which is a

lottery-based mechanism for congestion control. Griffin et al. (2002) dis-

cuss the Border Gateway Protocol (BGP) which determines the routes

messages take in the Internet. The NP-completeness of the disjoint paths

problem (and the related problem of integral multi-commodity flow) was

established by Even et al. (1976).

William Vickrey’s 1961 analysis of the second-price auction is one of

the pillars of mechanism design theory. The second-price routing mecha-

nism is a special case of the more general Vickrey-Clarke-Groves (VCG)

mechanism which is attributed additionally to Edward Clarke (1971)

and Theodore Groves (1973).

Computational payments were proposed as means for fighting unso-

licited electronic mail by Dwork and Naor (1992). Hartline and Rough-

garden (2008) consider mechanism design with the objective of residual

surplus and describe distributional assumptions under which the lottery
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is optimal, the second-price auction is optimal, and when neither are op-

timal. They also give a single mechanism that approximates the optimal

mechanism for any distribution of agent values.

Vincent and Manelli (2007) showed that there are environments for

mechanism design wherein every “undominated” mechanism is optimal

for some distribution of agent preferences. This result implies that opti-

mality cannot be used to identify properties of good mechanisms. Robert

Wilson (1987) suggested that mechanisms that are less dependent on the

details of the environment are likely to be more relevant. This suggestion

is known as the “Wilson doctrine.”

The e/e−1 approximation via a uniform pricing (Theorem 1.5) is a

consequence of Chawla et al. (2010). Wang et al. (2008) and Reynolds

and Wooders (2009) discuss why the “buy it now” (i.e., posted-pricing)

mechanism is replacing the second-price auction format in eBay.
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Equilibrium

The theory of equilibrium attempts to predict what happens in a game

when players behave strategically. This is a central concept to this text

as, in mechanism design, we are optimizing over games to find games

with good equilibria. Here, we review the most fundamental notions of

equilibrium. They will all be static notions in that players are assumed

to understand the game and will play once in the game. While such

foreknowledge is certainly questionable, some justification can be derived

from imagining the game in a dynamic setting where players can learn

from past play.

This chapter reviews equilibrium in both complete and incomplete

information games. As games of incomplete information are the most

central to mechanism design, special attention will be paid to them. In

particular, we will characterize equilibrium when the private information

of each agent is single-dimensional and corresponds, for instance, to a

value for receiving a good or service. We will show that auctions with

the same equilibrium outcome have the same expected revenue. Using

this so-called revenue equivalence we will describe how to solve for the

equilibrium strategies of standard auctions in symmetric environments.

Our emphasis will be on demonstrating the central theories of equi-

librium and not on providing the most comprehensive or general results.

For that readers are recommended to consult a game theory textbook.

2.1 Complete Information Games

In games of compete information all players are assumed to know pre-

cisely the payoff structure of all other players for all possible outcomes

Copyright c© 2011–2014 by Jason D. Hartline.
Source: http://jasonhartline.com/MDnA/
Manuscript Date: September 2, 2014.
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of the game. A classic example of such a game is the prisoner’s dilemma,

the story for which is as follows.

Two prisoners, Bonnie and Clyde, have jointly committed a crime and are
being interrogated in separate quarters. Unfortunately, the interrogators are
unable to prosecute either prisoner without a confession. Bonnie is offered the
following deal: If she confesses and Clyde does not, she will be released and
Clyde will serve the full sentence of ten years in prison. If they both confess,
she will share the sentence and serve five years. If neither confesses, she will be
prosecuted for a minimal offense and receive a year of prison. Clyde is offered
the same deal.

This story can be expressed as the following bimatrix game where entry

(a, b) represents row player’s payoff a and column player’s payoff b.

silent confess

silent (-1,-1) (-10,0)

confess (0,-10) (-5,-5)

A simple thought experiment enables prediction of what will happen

in the prisoners’ dilemma. Suppose the Clyde is silent. What should

Bonnie do? Remaining silent as well results in one year of prison while

confessing results in immediate release. Clearly confessing is better. Now

suppose that Clyde confesses. Now what should Bonnie do? Remaining

silent results in ten years of prison while confessing as well results in only

five. Clearly confessing is better. In other words, no matter what Clyde

does, Bonnie is better of by confessing. The prisoners dilemma is hardly

a dilemma at all: the strategy profile (confess, confess) is a dominant

strategy equilibrium.

Definition 2.1 A dominant strategy equilibrium (DSE) in a complete

information game is a strategy profile in which each player’s strategy is

as least as good as all other strategies regardless of the strategies of all

other players.

Dominant strategy equilibrium is a strong notion of equilibrium and is

therefore unsurprisingly rare. For an equilibrium notion to be complete

it should identify equilibrium in every game. Another well studied game

is chicken.

James Dean and Buzz (in the movie Rebel without a Cause) face off at opposite
ends of the street. On the signal they race their cars on a collision course
towards each other. The options each have are to swerve or to stay their
course. Clearly if they both stay their course they crash. If they both swerve
(opposite directions) they escape with their lives but the match is a draw.
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Finally, if one swerves and the other stays, the one that stays is the victor and
the other the loses.

1

A reasonable bimatrix game depicting this story is the following.

stay swerve

stay (-10,-10) (1,-1)

swerve (-1,1) (0,0)

Again, a simple thought experiment enables us to predict how the

players might play. Suppose James Dean is going to stay, what should

Buzz do? If Buzz stays they crash and Buzz’s payoff is −10, but if

Buzz swerves his payoff is only −1. Clearly, of these two options Buzz

prefers to swerve. Suppose now that Buzz is going to swerve, what should

James Dean do? If James Dean stays he wins and his payoff is one, but

if he swerves it is a draw and his payoff is zero. Clearly, of these two

options James Dean prefers to stay. What we have shown is that the

strategy profile (stay, swerve) is a mutual best response, a.k.a., a Nash

equilibrium. Of course, the game is symmetric so the opposite strategy

profile (swerve, stay) is also an equilibrium.

Definition 2.2 A Nash equilibrium in a game of complete information

is a strategy profile where each players strategy is a best response to the

strategies of the other players as given by the strategy profile.

In the examples above, the strategies of the players correspond di-

rectly to actions in the game, a.k.a., pure strategies. In general, Nash

equilibrium strategies can be randomizations over actions in the game,

a.k.a., mixed strategies (see Exercise 2.1).

2.2 Incomplete Information Games

Now we turn to the case where the payoff structure of the game is not

completely known. We will assume that each agent has some private

information and this information affects the payoff of this agent in the

game. We will refer to this information as the agent’s type and denote

it by ti for agent i. The profile of types for the n agents in the game is

t = (t1, . . . , tn).

A strategy in a game of incomplete information is a function that maps

1
The actual chicken game depicted in Rebel without a Cause is slightly different
from the one described here.
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an agent’s type to any of the agent’s possible actions in the game (or a

distribution over actions for mixed strategies). We will denote by si(·)

the strategy of agent i and s = (s1, . . . , sn) a strategy profile.

The auctions described in Chapter 1 were games of incomplete infor-

mation where an agent’s private type was her value for receiving the

item, i.e., ti = vi. As we described, strategies in the ascending-price auc-

tion were si(vi) = “drop out when the price exceeds vi” and strategies

in the second-price auction were si(vi) = “bid bi = vi.” We refer to

this latter strategy as truthtelling. Both of these strategy profiles are in

dominant strategy equilibrium for their respective games.

Definition 2.3 A dominant strategy equilibrium (DSE) is a strategy

profile s such that for all i, ti, and b−i (where b−i generically refers

to the actions of all players but i), agent i’s utility is maximized by

following strategy si(ti).

Notice that aside from strategies being defined as a map from types

to actions, this definition of DSE is identical to the definition of DSE

for games of complete information.

2.3 Bayes-Nash Equilibrium

Naturally, many games of incomplete information do not have dominant

strategy equilibria. Therefore, we will also need to generalize Nash equi-

librium to this setting. Recall that equilibrium is a property of a strategy

profile. It is in equilibrium if each agent does not want to change her

strategy given the other agents’ strategies. For an agent i, we want to the

fix other agent strategies and let i optimize her strategy (meaning: calcu-

late her best response for all possible types ti she may have). This is an

ill specified optimization as just knowing the other agents’ strategies is

not enough to calculate a best response. Additionally, i’s best response

depends on i’s beliefs on the types of the other agents. The standard

economic treatment addresses this by assuming a common prior.

Definition 2.4 Under the common prior assumption, the agent types

t are drawn at random from a prior distribution F (a joint probability

distribution over type profiles) and this prior distribution is common

knowledge.

The distribution F over t may generally be correlated. Which means

that an agent with knowledge of her own type must do Bayesian updating



28 Equilibrium

to determine the distribution over the types of the remaining bidders.

We denote this conditional distribution as F−i

∣
∣
ti
. Of course, when the

distribution of types is independent, i.e., F is the product distribution

F1 × · · · × Fn, then F−i

∣
∣
ti
= F−i.

Notice that a prior F and strategies s induces a distribution over the

actions of each of the agents. With such a distribution over actions, the

problem each agent faces of optimizing her own action is fully specified.

Definition 2.5 A Bayes-Nash equilibrium (BNE) for a game G and

common prior F is a strategy profile s such that for all i and ti, si(ti)

is a best response when other agents play s−i(t−i) when t−i ∼ F−i

∣
∣
ti
.

To illustrate Bayes-Nash equilibrium, consider using the first-price

auction to sell a single item to one of two agents, each with valuation

drawn independently and identically from the uniform distribution on

[0, 1], i.e., the common prior distribution is F = F × F with F (z) =

Prv∼F [v < z] = z. Here each agent’s type is her valuation. We will

calculate the BNE of this game by the “guess and verify” technique.

First, we guess that there is a symmetric BNE with si(z) = z/2 for

i ∈ {1, 2}. Second, we calculate agent 1’s expected utility with value v1
and bid b1 under the standard assumption that the agent’s utility ui is

her value less her payment (when she wins). In this calculation v1 and

b1 are fixed and b2 = v2/2 is random. By the definition of the first-price

auction:

E[u1] = (v1 − b1)×Pr[1 wins with bid b1] .

Calculate Pr[1 wins with b1] as

Pr[b2 ≤ b1] = Pr[v2/2 ≤ b1] = Pr[v2 ≤ 2b1] = F (2b1)

= 2b1.

Thus,

E[u1] = (v1 − b1)× 2b1

= 2v1b1 − 2b21.

Third, we optimize agent 1’s bid. Agent 1 with value v1 should maximize

2v1b1−2b
2
1 as a function of b1, and to do so, can differentiate the function

and set its derivative equal to zero. The result is d
db1

(2v1b1 − 2b21) =

2v1 − 4b1 = 0 and we can conclude that the optimal bid is b1 = v1/2.

This proves that agent 1 should bid as prescribed if agent 2 does; and

vice versa. Thus, we conclude that the guessed strategy profile is in BNE.
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In Bayesian games it is useful to distinguish between stages of the

game in terms of the knowledge sets of the agents. The three stages of

a Bayesian game are ex ante, interim, and ex post. The ex ante stage

is before values are drawn from the distribution. Ex ante, the agents

know this distribution but not their own types. The interim stage is

immediately after each agent learns her own type, but before playing

in the game. In the interim, an agent assumes the other agent types

are drawn from the prior distribution conditioned on her own type, i.e.,

via Bayesian updating. In the ex post stage, the game is played and the

actions of all agents are known.

2.4 Single-dimensional Games

We will focus on a conceptually simple class of single-dimensional games

that is relevant to the auction problems we have already discussed. In

a single-dimensional game, each agent’s private type is her value for

receiving an abstract service, i.e., ti = vi. The distribution over types

is independent (i.e., a product distribution). A game has an outcome

x = (x1, . . . , xn) and payments p = (p1, . . . , pn) where xi is an indicator

for whether agent i indeed received their desired service, i.e., xi = 1 if

i is served and 0 otherwise. Price pi will denote the payment i makes

to the mechanism. An agent’s value can be positive or negative and an

agent’s payment can be positive or negative. An agent’s utility is linear

in her value and payment and specified by ui = vixi − pi. Agents are

risk-neutral expected utility maximizers.

Definition 2.6 A single-dimensional linear utility is defined as having

utility u = vx− p for service-payment outcomes (x, p) and private value

v; a single-dimensional linear agent possesses such a utility function.

A game G maps actions b of agents to an outcome and payment.

Formally we will specify these outcomes and payments as:

• xG
i (b) = outcome to i when actions are b, and

• pGi (b) = payment from i when actions are b.

Given a game G and a strategy profile s we can express the outcome

and payments of the game as a function of the valuation profile. From

the point of view of analysis this description of the the game outcome is

much more relevant. Define
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• xi(v) = xG
i (s(v)), and

• pi(v) = pGi (s(v)).

We refer to the former as the allocation rule and the latter as the payment

rule for G and s (implicit). Consider an agent i’s interim perspective.

She knows her own value vi and believes the other agents values to be

drawn from the distribution F (conditioned on her value). For G, s,

and F taken implicitly we can specify agent i’s interim allocation and

payment rules as functions of vi.

• xi(vi) = Pr[xi(vi) = 1 | vi] = E[xi(v) | vi], and

• pi(vi) = E[pi(v) | vi].

With linearity of expectation we can combine these with the agent’s

utility function to write

• ui(vi) = vixi(vi)− pi(vi).

Finally, we say that a strategy si(·) is onto if every action bi agent

i could play in the game is prescribed by si for some value vi, i.e.,

∀bi∃vi si(vi) = bi. We say that a strategy profile is onto if the strat-

egy of every agent is onto. For instance, the truthtelling strategy in the

second-price auction is onto. When the strategies of the agents are onto,

the interim allocation and payment rules defined above completely spec-

ify whether the strategies are in equilibrium or not. In particular, BNE

requires that each agent (weakly) prefers playing the action correspond-

ing (via their strategy) to her value than the action corresponding to

any other value.

Proposition 2.1 When values are drawn from a product distribution

F ; single-dimensional game G and strategy profile s is in BNE only if

for all i, vi, and z,

vixi(vi)− pi(vi) ≥ vixi(z)− pi(z).

If the strategy profile is onto then the converse also holds.

Notice that in Proposition 2.1 the distribution F is required to be

a product distribution. If F is not a product distribution, then when

agent i’s value is vi then xi(z) is not generally the probability that

she will win when she follows her designated strategy for value z. This

distinction arises because the conditional distribution of the other agents

values need not be the same when i’s value is vi or z.
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2.5 Characterization of Bayes-Nash Equilibrium

We now discuss what Bayes-Nash equilibria look like. For instance, when

given G, s, and F we can calculate the interim allocation and payment

rules xi(vi) and pi(vi) of each agent. We want to succinctly describe

properties of these allocation and payment rules that can arise as BNE.

Theorem 2.2 When values are drawn from a continuous product dis-

tribution F ; single dimensional G and strategy profile s are in BNE only

if for all i,

(i) (monotonicity) xi(vi) is monotone non-decreasing, and

(ii) (payment identity) pi(vi) = vixi(vi)−
∫ vi
0

xi(z) dz + pi(0),

where often pi(0) = 0. If the strategy profile is onto then the converse

also holds.

Proof We will prove the theorem in the special case where the support

of each agent i’s distribution is [0,∞]. Focusing on a single agent i, who

we will refer to as Alice, we drop subscripts i from all notations.

We break this proof into three pieces. First, we show, by picture,

that the game is in BNE if the characterization holds and the strategy

profile is onto. Next, we will prove that a game is in BNE only if the

monotonicity condition holds. Finally, we will prove that a game is in

BNE only if the payment identity holds.

Note that if Alice with value v deviates from the equilibrium and takes

action s(v†) instead of s(v) then she will receive outcome and payment

x(v†) and p(v†). This motivates the definition,

u(v, v†) = vx(v†)− p(v†),

which corresponds to Alice utility when she makes this deviation. For

Alice’s strategy to be in equilibrium it must be that for all v, and v†,
u(v, v) ≥ u(v, v†), i.e., Alice derives no increased utility by deviating.

The strategy profile s is in equilibrium if and only if the same condition

holds for all agents. (The “if” direction here follows from the assumption

that strategies map values onto actions. Meaning: for any action in the

game there exists a value v† such that s(v†) is that action.)

(i) G, s, and F are in BNE if s is onto and monotonicity and the payment

identity hold.

We prove this by picture. Though the formulaic proof is simple,

the pictures provide useful intuition. We consider two possible values
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Figure 2.1 The left column shows (shaded) the surplus, payment, and util-

ity of Alice playing action s(v = z2). The right column shows (shaded) the

same for Alice playing action s(v
†
= z1). The final diagram shows (shaded)

the difference between Alice’s utility for these strategies. Monotonicity im-

plies this difference is non-negative.
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z1 and z2 with z1 < z2. Supposing Alice has the high value, v = z2,

we argue that Alice does not benefit by simulating her strategy for

the lower value, v† = z1, i.e., by playing s(v†) to obtain outcome

x(v†) and payment p(v†). We leave the proof of the opposite, that

when v = z1 and Alice is considering simulating the higher strategy

v† = z2, as an exercise for the reader.

To start with this proof, we assume that x(v) is monotone and that

p(v) = vx(v) −
∫ v

0
x(z) dz.

Consider the diagrams in Figure 2.1. The first diagram (top, cen-

ter) shows x(·) which is indeed monotone as per our assumption. The

column on the left shows Alice’s surplus, vx(v); payment, p(v), and

utility, u(v) = vx(v)− p(v), assuming that she follow the BNE strat-

egy s(v = z2). The column on the right shows the analogous quantities

when Alice follows strategy s(v† = z1) but has value v = z2. The final

diagram (bottom, center) shows the difference in the Alice’s utility

for the outcome and payments of these two strategies. Note that as

the picture shows, the monotonicity of the allocation function im-

plies that this difference is always non-negative. Therefore, there is

no incentive for Alice to simulate the strategy of a lower value.

As mentioned, a similar proof shows that Alice has no incentive

to simulate her strategy for a higher value. We conclude that she

(weakly) prefers to play the action given by the BNE s(·) over any

other action in the range of her strategy function; since s(·) is onto

this range includes all actions.

(ii) G, s, and F are in BNE only if the allocation rule is monotone.

If we are in BNE then for all valuations, v and v†, u(v, v) ≥ u(v, v†).
Expanding we require

vx(v) − p(v) ≥ vx(v†)− p(v†).

We now consider z1 and z2 with z1 < z2 and take turns setting

v = z1, v
† = z2, and v† = z1, v = z2. This yields the following two

inequalities:

v = z2, v
† = z1 =⇒ z2x(z2)− p(z2) ≥ z2x(z1)− p(z1), and (2.1)

v = z1, v
† = z2 =⇒ z1x(z1)− p(z1) ≥ z1x(z2)− p(z2). (2.2)

Adding these inequalities and canceling the payment terms we have,

z2x(z2) + z1x(z1) ≥ z2x(z1) + z1x(z2).
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Rearranging,

(z2 − z1)(x(z2)− x(z1)) ≥ 0.

For z2−z1 > 0 it must be that x(z2)−x(z1) ≥ 0, i.e., x(·) is monotone

non-decreasing.

(iii) G, s, and F are in BNE only if the payment rule satisfies the payment

identity.

We will give two proofs that payment rule must satisfy p(v) =

vx(v)−
∫ v

0 x(z) dz+p(0); the first is a calculus-based proof under the

assumption that and each of x(·) and p(·) are differentiable and the

second is a picture-based proof that requires no assumption.

Calculus-based proof: Fix v and recall that u(v, z) = vx(z)− p(z).

Let u′(v, z) be the partial derivative of u(v, z) with respect to z. Thus,

u′(v, z) = vx′(z)−p′(z), where x′(·) and p′(·) are the derivatives of p(·)
and x(·), respectively. Since BNE implies that u(v, z) is maximized

at z = v. It must be that

u′(v, v) = vx′(v)− p′(v) = 0.

This formula must hold true for all values of v. For remainder of

the proof, we treat this identity formulaically. To emphasize this,

substitute z = v:

zx′(z)− p′(z) = 0.

Solving for p′(z) and then integrating both sides of the equality from

0 to v we have,

p′(z) = zx′(z), so
∫ v

0

p′(z)dz =

∫ v

0

zx′(z) dz.

Simplifying the left-hand side and adding p(0) to both sides,

p(v) =

∫ v

0

zx′(z) dz + p(0).

Finally, we obtained the desired formula by integrating the right-hand

side by parts,

p(v) =
[

zx(z)
]v

0
−

∫ v

0

x(z) dz + p(0)

= vx(v) −

∫ v

0

x(z) dz + p(0).
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Figure 2.2 Upper (top, left) and lower bounds (top, right) for the differ-

ence in payments for two strategies z1 and z2 imply that the difference in

payments (bottom) must satisfy the payment identity.

Picture-based proof: Consider equations (2.1) and (2.2) and solve

for p(z2)− p(z1) in each:

z2(x(z2)− x(z1)) ≥ p(z2)− p(z1) ≥ z1(x(z2)− x(z1)).

The first inequality gives an upper bound on the difference in pay-

ments for two types z2 and z1 and the second inequality gives a lower

bound. It is easy to see that the only payment rule that satisfies these

upper and lower bounds for all pairs of types z2 and z1 has payment

difference exactly equal to the area to the left of the allocation rule

between x(z1) and x(z2). See Figure 2.2. The payment identity follows

by taking z1 = 0 and z2 = v.

As we conclude the proof of the BNE characterization theorem, it is

important to note how little we have assumed of the underlying game.

We did not assume it was a single-round, sealed-bid auction. We did not

assume that only a winner will make payments. Therefore, we conclude
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for any potentially wacky, multi-round game the outcomes of all Bayes-

Nash equilibria have a nice form.

2.6 Characterization of Dominant Strategy

Equilibrium

Dominant strategy equilibrium is a stronger equilibrium concept than

Bayes-Nash equilibrium. All dominant strategy equilibria are Bayes-

Nash equilibria, but as we have seen, the opposite is not true; for in-

stance, there is no DSE in the first-price auction. Recall that a strategy

profile is in DSE if each agent’s strategy is optimal for her regardless of

what other agents are doing. The DSE characterization theorem below

follows from the BNE characterization theorem.

Theorem 2.3 G and s are in DSE only if for all i and v,

(i) (monotonicity) xi(vi,v−i) is monotone non-decreasing in vi, and

(ii) (payment identity) pi(vi,v−i) = vixi(vi,v−i) −
∫ vi
0

xi(z,v−i) dz +

pi(0,v−i),

where (z,v−i) denotes the valuation profile with the ith coordinate re-

placed with z. If the strategy profile is onto then the converse also holds.

It was important when discussing BNE to explicitly refer to xi(vi)

and pi(vi) as the probability of allocation and the expected payments

because a game played by agents with values drawn from a distribution

will inherently, from agent i’s perspective, have a randomized outcome

and payment. In contrast, for games with DSE we can consider out-

comes and payments in a non-probabilistic sense. A deterministic game,

i.e., one with no internal randomization, will result in deterministic out-

comes and payments. For our single-dimensional game where an agent

is either served or not served we will have xi(v) ∈ {0, 1}. This specifica-

tion along with the monotonicity condition implied by DSE implies that

the function xi(vi,v−i) is a step function in vi. The reader can easily

verify that the payment required for such a step function is exactly the

critical value, i.e., v̂i at which xi(·,v−i) changes from 0 to 1. This gives

the following corollary.

Corollary 2.4 A deterministic game G and deterministic strategies s

are in DSE only if for all i and v,

(i) (step-function) xi(vi,v−i) steps from 0 to 1 at some v̂i(v−i), and
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(ii) (critical value) pi(vi,v−i) =

{

v̂i(v−i) if xi(vi,v−i) = 1

0 otherwise
+ pi(0,v−i).

If the strategy profile is onto then the converse also holds.

Notice that the above theorem deliberately skirts around a subtle

tie-breaking issue. Consider the truthtelling DSE of the second-price

auction on two agents. What happens when v1 = v2? One agent should

win and pay the other’s value. As this results in a utility of zero, from

the perspective of utility maximization, both agents are indifferent as to

which of them it is. One natural tie-breaking rule is the lexicographical

one, i.e., in favor of agent 1 winning. For this rule, agent 1 wins when

v1 ∈ [v2,∞) and agent 2 wins when v2 ∈ (v1,∞). The critical values are

t1 = v2 and t2 = v1. We will usually prefer the randomized tie-breaking

rule because of its symmetry.

2.7 Revenue Equivalence

We are now ready to make one of the most significant observations in

auction theory. Namely, mechanisms with the same outcome in BNE

have the same expected revenue. In fact, not only do they have the same

expected revenue, but each agent has the same expected payment in each

mechanism. This result is in fact a direct corollary of Theorem 2.2. The

payment identity means that the payment rule is precisely determined

by the allocation rule and the payment of the lowest type, i.e., pi(0).

Corollary 2.5 For any two mechanisms where 0-valued agents pay

nothing, if the mechanisms have the same BNE outcome then they have

same expected revenue.

We can now quantitatively compare the second-price and first-price

auctions from a revenue standpoint. Consider the case where the agent’s

values are distributed independently and identically. What is the equi-

librium outcome of the second-price auction? The agent with the highest

valuation wins. What is the equilibrium outcome of the first-price auc-

tion? This question requires a little more thought. Since the distributions

are identical, it is reasonable to expect that there is a symmetric equilib-

rium, i.e., one where si = si′ for all i and i′. Furthermore, it is reasonable

to expect that the strategies are monotone, i.e., an agent with a higher

value will out bid an agent with a lower value. Under these assumptions,
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the agent with the highest value wins. Of course, in both auctions a 0-

valued agent will pay nothing. Therefore, we can conclude that the two

auctions obtain the same expected revenue.

As an example of revenue equivalence consider first-price and second-

price auctions for selling a single item to two agents with values drawn

from U [0, 1]. The expected revenue of the second-price auction is E
[
v(2)

]
.

In Section 2.3 we saw that the symmetric strategy of the first-price auc-

tion in this environment is for each agent to bid half her value. The ex-

pected revenue of first-price auction is therefore E
[
v(1)/2

]
. An important

fact about uniform random variables is that in expectation they evenly

divide the interval they are over, i.e., E
[
v(1)

]
= 2/3 and E

[
v(2)

]
= 1/3.

How do the revenues of these two auctions compare? Their revenues are

identically 1/3.

Corollary 2.6 When agents’ values are independent and identically

distributed according to a continuous distribution, the second-price and

first-price auction have the same expected revenue.

Of course, much more bizarre auctions are governed by revenue equiv-

alence. As an exercise the reader is encourage to verify that the all-

pay auction; where agents submit bids, the highest bidder wins, and all

agents pay their bids; is revenue equivalent to the first- and second-price

auctions.

2.8 Solving for Bayes-Nash Equilibrium

While it is quite important to know what outcomes are possible in BNE,

it is also often important to be able to solve for the BNE strategies. For

instance, suppose you were a bidder bidding in an auction. How would

you bid? In this section we describe an elegant technique for calculating

BNE strategies in symmetric environments using revenue equivalence.

Actually, we use something a little stronger than revenue equivalence:

interim payment equivalence. This is the fact that if two mechanisms

have the same allocation rule, they must have the same payment rule

(because the payment rules satisfy the payment identity). As described

previously, the interim payment of agent i with value vi is pi(vi).

Suppose we are to solve for the BNE strategies of mechanism M .

The approach is to express an agent’s payment in M as a function of

the agent’s action, then to calculate the agent’s expected payment in

a strategically-simple mechanism M ′ that is revenue equivalent to M
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(usually a “second-price implementation” of M). Setting these terms

equal and solving for the agents action gives the equilibrium strategy.

We give the high level the procedure below. As a running example we

will calculate the equilibrium strategies in the first-price auction with

two U [0, 1] agents, in doing so we will use a calculation of expected

payments in the strategically-simple second-price auction in the same

environment.

(i) Guess what the outcome might be in Bayes-Nash equilibrium.

E.g., in the BNE of the first-price auction with two agents with

values U [0, 1], we expect the agent with the highest value to win.

Thus, guess that the highest-valued agent always wins.

(ii) Calculate the interim payment of an agent in the auction in terms of

the strategy function.

E.g., we calculate below the payment of agent 1 in the first-price

auction when her bid is s1(v1) in expectation when agent 2’s value

v2 is drawn from the uniform distribution.

pFP1 (v1) = E[pFP1 (v1, v2) | 1 wins]Pr[1 wins]

+E[pFP1 (v1, v2) | 1 loses]Pr[1 loses] .

Calculate each of these components for the first-price auction where

agent 1 follows strategy s1(v1):

E
[

pFP1 (v1, v2) | 1 wins
]

= s1(v1).

This by the definition of the first-price auction: if you win you pay

your bid.

Pr[1 wins] = Pr[v2 < v1] = v1.

The first equality follows from the guess that the highest-valued agent

wins. The second equality is because v2 is uniform on [0, 1].

E
[

pFP1 (v1) | 1 loses
]

= 0.

This is because a loser pays nothing in the first-price auction. This

means that we do not need to calculate Pr[1 loses]. Plug these into

the equation above to obtain:

pFP1 (v1) = s1(v1) · v1.
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(iii) Calculate the interim payment of an agent in a strategically-simple

auction with the same equilibrium outcome.

E.g., recall that it is a dominant strategy equilibrium (a special

case of Bayes-Nash equilibrium) in the second-price auction for each

agent to bid her value. I.e., b1 = v1 and b2 = v2. Thus, in the second-

price auction the agent with the highest value to wins. We calculate

below the payment of agent 1 in the second-price auction when her

value is v1 in expectation when agent 2’s value v2 is drawn from the

uniform distribution.

pSP1 (v1) = E[pSP1 (v1, v2) | 1 wins]Pr[1 wins]

+E[pSP1 (v1, v2) | 1 loses]Pr[1 loses] .

Calculate each of these components for the second-price auction:

E
[

pSP1 (v1, v2) | 1 wins
]

= E[v2 | v2 < v1]

= v1/2.

The first equality follows by the definition of the second-price auction

and its dominant strategy equilibrium (i.e., b2 = v2). The second

equality follows because in expectation a uniform random variable

evenly divides the interval it is over, and once we condition on v2 < v1,

v2 is U [0, v1].

Pr[1 wins] = Pr[v2 < v1] = v1.

The first equality follows from the definition of the second-price auc-

tion and its dominant strategy equilibrium. The second equality is

because v2 is uniform on [0, 1].

E[p1(v1) | 1 loses] = 0.

This is because a loser pays nothing in the second-price auction. This

means that we do not need to calculate Pr[1 loses]. Plug these into

the equation above to obtain:

E
[

pSP1 (v1)
]

= v21/2.

(iv) Solve for bidding strategies from expected payments.

E.g., the interim payments calculated in the previous steps must

be equal, implying:

pFP1 (v1) = s1(v1) · v1 = v21/2 = pSP1 (v1).
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We can solve for s1(v1) and get

s1(v1) = v1/2.

(v) Verify initial guess was correct. If the strategy function derived is not

onto, verify that actions out of the range of the strategy function are

dominated.

E.g., if agents follow symmetric strategies s1(z) = s2(z) = z/2 then

the agent with the highest value wins. With this strategy function,

bids are in [0, 1/2] and any bid above s1(1) = 1/2 is dominated by

bidding s1(1). All such bids win with certainty, but of these the bid

s1(1) = 1/2 gives the lowest payment.

In the above first-price auction example it should be readily apparent

that we did slightly more work than we had to. In this case it would have

been enough to note that in both the first- and second-price auction

a loser pays nothing. We could therefore simply equate the expected

payments conditioned on winning:

E[p1(v1) | 1 wins] = v1/2
︸︷︷︸

second-price

= s1(vi)
︸ ︷︷ ︸

first-price

.

We can also work through the above framework for the all-pay auction

where the agents submit bids, the highest bid wins, but all agents pay

their bid. The all-pay auction is also is revenue equivalent to the second-

price auction. However, now we compare the total expected payment

(regardless of winning) to conclude:

E[p1(v1)] = v21/2
︸︷︷︸

second-price

= s1(vi)
︸ ︷︷ ︸

all-pay

.

I.e., the BNE strategies for the all-pay auction are si(z) = z2/2. Remem-

ber, of course, that the equilibrium strategies solved for above are for

single-item auctions and two agents with values uniform on [0, 1]. For

different distributions or numbers of agents the equilibrium strategies

will generally be different.

We conclude by observing that if we fail to exhibit a Bayes-Nash

equilibrium via this approach then our original guess is contracted and

there is no equilibrium of the given mechanism that corresponds to the

guess. Conversely, if the approach succeeds then the equilibrium found
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is the only equilibrium consistent with the guess. As an example, we can

conclude the following for first-price auctions.2

Proposition 2.7 When agents’ values are independent and identically

distributed from a continuous distribution, the first-price auction has a

unique Bayes-Nash equilibrium for which the highest-valued agent always

wins.

2.9 Uniqueness of Equilibria

As equilibrium attempts to make a prediction of what will happen in a

game or mechanism, the uniqueness of equilibrium is important. If there

are multiple equilibria then the prediction is to a set of outcomes not a

single outcome. In terms of mechanism design, some of these outcomes

could be good and some could be bad. There are also questions of how

the players coordinate on an equilibrium.

As an example, in the second-price auction for two agents with values

uniformly distributed on [0, 1] there is the dominant strategy equilibrium

where agents truthfully report their values. This outcome is good from

the perspective of social surplus in that the item is awarded to the

highest-valued agent. There are, however, other Bayes-Nash equilibria.

For instance, it is also a BNE for agent 1 (Alice) to bid one and agent 2

(Bob) to bid zero (regardless of their values). Alice is happy to win and

pay zero (Bob’s bid); Bob with any value v2 ≤ 1 is at least as happy

to lose and pay zero versus winning and paying one (Alice’s bid). Via

examples like this the social surplus of the worst BNE in the second-

price auction can be arbitrarily worse than the social surplus of the best

BNE (Exercise 2.8). This latter equilibrium is not dominant strategy as

if Bob were to bid his value (a dominant strategy), then Alice would no

longer prefer to bid one. Because of this non-robustness of non-DSE in

games that possess DSE, we can assume that agents follow DSE if there

exists one.

In contrast, the first-price auction for independent and identical prior

distributions does not suffer from multiplicity of Bayes-Nash equilibria.

Specifically, the method described in the previous section for solving for

the symmetric equilibrium in symmetric auction-like games gives the

2
In the next section we will strengthen Proposition 2.7 and show that for the
first-price auction (with independent, identical, and continuous distributions)
there are no equilibria where the highest-valued agent does not win. Thus, the
equilibrium solved for is the unique Bayes-Nash equilibrium.
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unique BNE. We describe this result as two parts. First, we exclude

the possibility of multiple symmetric equilibria. Second, we exclude the

existence of asymmetric equilibria.

Lemma 2.8 For agents with values drawn independently and identi-

cally from a continuous distribution, the first-price auction admits ex-

actly one symmetric Bayes-Nash equilibrium.

Proof Consider a symmetric strategy profile s = (s, . . . , s). First, the

common strategy s(·) must be non-decreasing (otherwise BNE is con-

tradicted by Theorem 2.2).

Second, if the strategy is non-strictly increasing then there is a point

mass some bid b in the bid distribution. Symmetry with respect to this

strategy implies that all agents will make a bid equal to this point mass

with some measurable (i.e., strictly positive) probability. All but one

of these bidders must lose (perhaps via random tie-breaking). Winning,

however, must be strictly preferred to losing for some of the values in the

interval (as an agent with value v is only indifferent to winning or losing

when v = b). Such a losing agent has a deviation of bidding b + ǫ, and

for ǫ approaching zero this deviation is strictly better than bidding b.

This is a contradiction to the existence of such a non-strictly increasing

equilibrium.

Finally, for a strictly increasing strategy s the highest-valued agent

must always win; therefore, Proposition 2.7 implies that there is only

one such equilibrium.

We now make much the same argument as we did in solving for equi-

librium (Section 2.8) to exclude the possibility of asymmetric equilibria

in the first-price auction. The main idea in this argument is that there

are two formulas for the interim utility of an agent in the first-price auc-

tion in terms of the allocation rule x(·). The first formula is from the

payment identity of Theorem 2.2, the second formula is from the defi-

nition of the first-price auction (i.e., in terms of the agent’s strategy).

They are,

u(v) =

∫ v

0

x(z) dz, and (2.3)

u(v) = (v − s(v)) · x(v). (2.4)

The uniqueness of the symmetric Bayes-Nash equilibrium in the first-

price auction follows from the following lemma.

Lemma 2.9 For n = 2 agents with values drawn independently and
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Figure 2.3 Graphical depiction of the first claim in the proof of Lemma 2.9

with bi = si(v). Clearly, s
−1
2 (b1) > s

−1
1 (b2). Strict monotonicity of the

distribution function F (·) then implies that F (s
−1
2 (b1)) > F (s

−1
1 (b2)).

identically from a continuous distribution F , the first-price auction with

an unknown random reserve from known distribution G admits no asym-

metric Bayes-Nash equilibrium.

Theorem 2.10 For n ≥ 2 agents with values drawn independently and

identically from a continuous distribution F , the first-price auction there

is a unique Bayes-Nash equilibrium that is symmetric.

Proof By Lemma 2.8 there is exactly one symmetric Bayes-Nash equi-

librium of an n-agent first-price auction. If there is an asymmetric equi-

librium there must be two agents whose strategies are distinct. We can

view the n-agent first-price auction in BNE, from the perspective of this

pair of agents, as a two-agent first-price auction with a random reserve

drawn from the distribution of BNE bids of the other n − 2 agents.

Lemma 2.9 then contradicts the distinctness of these two strategies.

Proof of Lemma 2.9 We will prove this lemma for the special case of

strictly-increasing and continuous strategies (for the general argument,

see Exercise 2.12). Agent 1 is Alice and agent 2 is Bob.
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If the BNE utilities of the agents are the same at all values, i.e.,

u1(v) = u2(v) for all v in the distribution’s range, then the payment

identity of Theorem 2.2 implies that the strategies are the same at

all values. For a contradiction then, fix a strictly-increasing continuous

strategy profile s = (s1, s2) for which u1(v) > u2(v) at some v. By equa-

tion (2.3) there must be a measurable interval of values I = (a, b), i.e.,

with Pr[v ∈ I] > 0, containing this value v and for which x1(v) ≥ x2(v)

(assume I is the maximal such interval).

A first claim for strictly-increasing continuous strategies is that s1(v) >

s2(v) if any only if x1(v) > x2(v). See Figure 2.3 for a graphical repre-

sentation of the following argument. Since the strategies are continuous

and strictly increasing, the inverses of the strategies are well defined.

Calculate Alice’s interim allocation probability x1 at value v, for Bob’s

value v2 ∼ F and reserve bid b̂ ∼ G, as:

x1(v) = Pr
[

s1(v) > s2(v2) ∧ s1(v) > b̂
]

= Pr
[

s−1
2 (s1(v)) > v2 ∧ s1(v) > b̂

]

= F (s−1
2 (s1(v))) ·G(s1(v)).

Likewise, Bob’s interim allocation probability is

x2(v) = F (s−1
1 (s2(v))) ·G(s2(v)).

For s1(v) ≥ s2(v) then the last term in the allocation probabilities sat-

isfies G(s1(v)) ≥ G(s2(v)) (as the distribution function G(·) is non-

decreasing). Similarly, strict monotonicity of the strategy functions and

distribution function imply that for s1(v) ≥ s2(v) the first term in the

allocation probabilities satisfies F (s−1
2 (s1(v))) ≥ F (s−1

1 (s2(v))); more-

over, either both inequalities are strict or both are equality.

A second claim is that the low-bidding Bob on the interval I = (a, b)

obtains (weakly) at most the utility of high-bidding Alice at the end-

point a and (weakly) at least the utility of the high-bidding Alice at the

endpoint b. We argue the claim for b, the case of a is similar. The key to

this claim is that there are not higher values v > b where s2(v) < s1(b).

This is either because s1(b) = s2(b) (and the strategies are monotoni-

cally increasing) or because b is the maximum value in the support of the

value distribution F . In the first case, by the above claim x1(b) = x2(b)

so by (2.4) the agents’ utilities are equal. In the second case, Bob with

value b could deviate and bid s1(b) and obtain the same allocation prob-

ability as Alice with the same value. By equation (2.4) such a deviation
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would give Bob (with value b) the same utility as Alice (with value b).

Existence of such a deviation gives a lower bound on Bob’s utility.

Finally, we complete the lemma by writing the difference in utilities of

each of Alice and Bob with values a and a. By the second claim, above,

this difference is (weakly) greater for Bob than Alice (relative to Alice’s

utility, Bob’s utility is no higher at a and no lower at b).

u1(b)− u1(a) ≤ u2(b)− u2(a)

However, by the first claim and equation (2.3), Alice has a strictly higher

allocation rule on I and therefore strictly higher change in utility.

∫ b

a

x1(z) dz >

∫ b

a

x2(z) dz

These observations give a contradiction.

2.10 The Revelation Principle

We are interested in designing mechanisms and, while the characteri-

zation of Bayes-Nash equilibrium is elegant, solving for equilibrium is

still generally quite challenging. The final piece of the puzzle, and the

one that has enabled much of modern mechanism design is the revela-

tion principle. The revelation principle states, informally, that if we are

searching among mechanisms for one with a desirable equilibrium we

may restrict our search to single-round, sealed-bid mechanisms in which

truthtelling is an equilibrium.

Definition 2.7 A direct revelation mechanism is single-round, sealed

bid, and has action space equal to the type space, (i.e., an agent can bid

any type she might have)

Definition 2.8 A direct revelation mechanism is Bayesian incentive

compatible (BIC) if truthtelling is a Bayes-Nash equilibrium.

Definition 2.9 A direct revelation mechanism is dominant strategy

incentive compatible (DSIC) if truthtelling is a dominant strategy equi-

librium.

Theorem 2.11 Any mechanismM with good BNE (resp. DSE) can be

converted into a BIC (resp. DSIC) mechanism M′ with the same BNE

(resp. DSE) outcome.
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Proof We will prove the BNE variant of the theorem. Let s, F , andM

be in BNE. Define single-round, sealed-bid mechanismM′ as follows:

(i) Accept sealed bids b.

(ii) Simulate s(b) inM.

(iii) Output the outcome of the simulation.

We now claim that s being a BNE ofM implies truthtelling is a BNE

of M′ (for distribution F ). Let s
′ denote the truthtelling strategy. In

M′, consider agent i and suppose all other agents are truthtelling. This

means that the actions of the other players in M are distributed as

s−i(s
′
−i(v−i)) = s−i(v−i) for v−i ∼ F−i

∣
∣
vi
. Of course, in M if other

players are playing s−i(v−i) then since s is a BNE, i’s best response is

to play si(vi) as well. Agent i can play this action in the simulation of

M is by playing the truthtelling strategy s′i(vi) = vi inM
′.

Notice that we already, in Chapter 1, saw the revelation principle in

action. The second-price auction is the revelation principle applied to

the ascending-price auction.

Because of the revelation principle, for many of the mechanism de-

sign problems we consider, we will look first for Bayesian or dominant-

strategy incentive compatible mechanisms. The revelation principle guar-

antees that, in our search for optimal BNE mechanisms, it suffices to

search only those that are BIC (and likewise for DSE and DSIC). The

following are corollaries of our BNE and DSE characterization theorems.

We defined the allocation and payment rules x(·) and p(·) as func-

tions of the valuation profile for an implicit game G and strategy pro-

file s. When the strategy profile is truthtelling, the allocation and pay-

ment rules are identical the original mappings of the game from actions

to allocations and prices, denoted x
G(·) and p

G(·). Additionally, let

xG
i (vi) = E

[

xG
i (v) | vi

]

and pGi (vi) = E
[

pGi (v) | vi

]

for v ∼ F . Fur-

thermore, the truthtelling strategy profile in a direct-revelation game is

onto.

Corollary 2.12 A direct mechanism M is BIC for distribution F if

and only if for all i,

(i) (monotonicity) xM
i (vi) is monotone non-decreasing, and

(ii) (payment identity) pMi (vi) = vix
M
i (vi)−

∫ vi
0

xM
i (z) dz + pMi (0).

Corollary 2.13 A direct mechanism M is DSIC if and only if for all

i and v,
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(i) (monotonicity) xM
i (vi,v−i) is monotone non-decreasing in vi, and

(ii) (payment identity) pMi (vi,v−i) = vix
M
i (vi,v−i)−

∫ vi
0 xM

i (z,v−i) dz+

pMi (0,v−i).

Corollary 2.14 A direct, deterministic mechanismM is DSIC if and

only if for all i and v,

(i) (step-function) xM
i (vi,v−i) steps from 0 to 1 at some v̂i(v−i), and

(ii) (critical value) pMi (vi,v−i) =

{

v̂i(v−i) if xM
i (vi,v−i) = 1

0 otherwise
+ pMi (0,v−i).

When we construct mechanisms we will use the “if” directions of these

theorems. When discussing incentive compatible mechanisms we will

assume that agents follow their equilibrium strategies and, therefore,

each agent’s bid is equal to her valuation.

Between DSIC and BIC clearly DSIC is a stronger incentive constraint

and we should prefer it over BIC if possible. Importantly, DSIC requires

fewer assumptions on the agents. For a DSIC mechanisms, each agent

must only know her own value; while for a BIC mechanism, each agent

must also know the distribution over other agent values. Unfortunately,

there will be some environments where we derive BIC mechanisms where

no analogous DSIC mechanism is known.

The revelation principle fails to hold in some environments of interest.

We will take special care to point these out. Two such environments, for

instance, are where agents only learn their values over time, or where

the designer does not know the prior distribution (and hence cannot

simulate the agent strategies).

Exercises

2.1 Find a symmetric mixed strategy equilibrium in the chicken game

described in Section 2.1. I.e., find a probability ρ such that if James

Dean stays with probability ρ and swerves with probability 1 − ρ

then Buzz is happy to do the same.

2.2 Give a characterization of Bayes-Nash equilibrium for discrete single-

dimensional type spaces for agents with linear utility. Assume that

T = {v0, . . . , vN} with the probability that an agent’s value is

v ∈ T given by probability mass function f(v). Assume v0 = 0.

You will not get a payment identity; instead characterize for any

BNE allocation rule, the maximum payments.
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(a) Give a characterization for the special case where the values are

uniform, i.e., vj = j for all j.

(b) Give a characterization for the special case where the probabil-

ities are uniform, i.e., f(vj) = 1/N for all j.

(c) Give a characterization for the general case.

(Hint: You should end up with a very similar characterization to

that for continuous type spaces.)

2.3 In Section 2.3 we characterized outcomes and payments for BNE

in single-dimensional games. This characterization explains what

happens when agents behave strategically.

Suppose instead of strategic interaction, we care about fairness.

Consider a valuation profile, v = (v1, . . . , vn), an allocation vector,

x = (x1, . . . , xn), and payments, p = (p1, . . . , pn). Here xi is the

probability that i is served and pi is the expected payment of i

regardless of whether i is served or not.

Allocation x and payments p are envy-free for valuation profile

v if no agent wants to unilaterally swap allocation and payment

with another agent. I.e., for all i and j,

vixi − pi ≥ vixj − pj .

Characterize envy-free allocations and payments (and prove your

characterization correct). Unlike the BNE characterization, your

characterization of payments will not be unique. Instead, charac-

terize the minimum payments that are envy-free. Draw a diagram

illustrating your payment characterization. (Hint: You should end

up with a very similar characterization to that of BNE.)

2.4 AdWords is a Google Inc. product in which the company sells the

placement of advertisements along side the search results on its

search results page. Consider the following position auction envi-

ronment which provides a simplified model of AdWords. There are

m advertisement slots that appear along side search results and n

advertisers. Advertiser i has value vi for a click. Slot j has click-

through rate wj , meaning, if an advertiser is assigned slot j the

advertiser will receive a click with probability wj . Each advertiser

can be assigned at most one slot and each slot can be assigned

at most one advertiser. If a slot is left empty, all subsequent slots

must be left empty, i.e., slots cannot be skipped. Assume that the

slots are ordered from highest click-through rate to lowest, i.e.,

wj ≥ wj+1 for all j.
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(a) Find the envy-free (see Exercise 2.3) outcome and payments

with the maximum social surplus. Give a description and for-

mula for the envy-free outcome and payments for each adver-

tiser. (Feel free to specify your payment formula with a compre-

hensive picture.)

(b) In the real AdWords problem, advertisers only pay if they re-

ceive a click, whereas the payments calculated, i.e., p, are in

expected over all outcomes, click or no click. If we are going to

charge advertisers only if they are clicked on, give a formula for

calculating these payments p′ from p.

(c) The real AdWords problem is solved by auction. Design an auc-

tion that maximizes the social surplus in dominant strategy

equilibrium. Give a formula for the payment rule of your auc-

tion (again, a comprehensive picture is fine). Compare your DSE

payment rule to the envy-free payment rule. Draw some infor-

mal conclusions.

2.5 Consider the first-price auction for selling a single item to two

agents whose values are independent but not identical. In each of

the settings below prove or disprove the claim that there is a Bayes-

Nash equilibrium wherein the item is always allocated to the agent

with the highest value.

(a) Agent 1 has value U [0, 1] and agent 2 has value U [0, 1/2].

(b) Agent 1 has value U [0, 1] and agent 2 has value U [1/2, 1].

2.6 Consider the first-price auction for selling k units of an item to n

unit-demand agents. This auction solicits bids and allocates one

unit to each of the k highest-bidding agents. These winners are

charged their bids. This auction is revenue equivalent to the k-unit

“second-price” auction where the winners are charged the (k+1)st

highest bid, b(k+1). Solve for the symmetric Bayes-Nash equilib-

rium strategies in the first-price auction when the agent values are

i.i.d. U [0, 1].

2.7 Consider the position auction environment with n = m = 2 (see

Exercise 2.4). Consider running the following first-price auction:

The advertisers submit bids b = (b1, b2). The advertisers are as-

signed to slots in order of their bids. Advertisers pay their bid

when clicked. Use revenue equivalence to solve for BNE strategies

s when the values of the advertisers are drawn independent and

identically from U [0, 1].

2.8 Prove that in a two-agent second-price auction for a single-item,
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that the best Bayes-Nash equilibrium can have a social surplus

(i.e., the expected value of the winner) that is arbitrarily larger

than the worst Bayes-Nash equilibrium. (Hint: Show that for any

fixed β that there is a value distribution F and two BNE where

the social surplus in one BNE is strictly larger than a β fraction

of the social surplus of the other BNE.)

2.9 Show that with independent, identical, and continuously distributed

values, the two-agent all-pay auction (where agents bid, the highest-

bidder wins, and all agents pay their bids) admits exactly one

strictly continuous Bayes-Nash equilibrium.

2.10 Show that with independent, identical, and continuously distributed

values, the two-agent first-price position auction (cf. Exercise 2.4;

where agents bid, the highest bidder is served with given probabil-

ity w1, the second-highest bidder is served with given probability

w2 ≤ w1, and all agents pay their bids when they are served) ad-

mits exactly one strictly continuous Bayes-Nash equilibrium.

2.11 Consider the following auction with first-price payment semantics.

Agents bid, any agent whose bid is (weakly) higher than all other

bids wins, all winners are charged their bids. Notice that in the case

of a tie in the highest bid, all of the tied agents win. Prove that

there are multiple Bayes-Nash equilibria when agents have values

that are independently, identically, and continuously distributed.

2.12 Prove Lemma 2.9: For two agents with values drawn independently

and identically from a continuous distribution F with support

[0, 1], the first-price auction with an unknown random reserve from

known distribution G admits no asymmetric Bayes-Nash equilib-

rium. I.e., remove the assumption of strictly-increasing and con-

tinuous strategies from the proof given in the text.

Chapter Notes

The formulation of Bayesian games is due to Harsanyi (1967). The char-

acterization of Bayes-Nash equilibrium, revenue equivalence, and the

revelation principle come from Myerson (1981). Parts of the BNE char-

acterization proof presented here come from Archer and Tardos (2001).

Amann and Leininger (1996), Bajari (2001), Maskin and Riley (2003),

and Lebrun (2006) studied the uniqueness of equilibrium in the first-

price and all-pay auctions. The revenue-equivalence-based uniqueness

proof presented here is from Chawla and Hartline (2013).
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The position auction was formulated by Edelman et al. (2007) and

Varian (2007); see Jansen and Mullen (2008) for the history of auctions

for advertisements on search engines. Envy freedom has been considered

in algorithmic (e.g., Guruswami et al., 2005) and economic (e.g., Jack-

son and Kremer, 2007) contexts. Hartline and Yan (2011) characterized

envy-free outcomes for single-dimensional agents.
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Optimal Mechanisms

In this chapter we discuss the objectives of social surplus and profit. As

we will see, the economics of designing mechanisms to maximize social

surplus is relatively simple. The optimal mechanism is a simple general-

ization of the second-price auction that we have already discussed. Fur-

thermore, it is dominant strategy incentive compatible and prior-free,

i.e., it is not dependent on distributional assumptions. Social surplus

maximization is unique among economic objectives in this regard.

The objective of profit maximization, on the other hand, adds sig-

nificant new challenge: for profit there is no single optimal mechanism.

For any mechanism, there is a distribution over agent preferences and

another mechanism where this new mechanism has strictly larger profit

than the first one.

This non-existence of an absolutely optimal mechanism requires a re-

laxation of what we consider a good mechanism. To address this chal-

lenge, this chapter follows the traditional economics approach of Bayesian

optimization. We will assume that the distribution of the agents’ pref-

erences is common knowledge, even to the mechanism designer. This

designer should then search for the mechanism that maximizes her ex-

pected profit when preferences are indeed drawn from the distribution.

As an example, consider two agents with values drawn independently

and identically from U [0, 1]. The second-price auction obtains revenue

equal to the expected second-highest value, E
[
v(2)

]
= 1/3. A natural

question is whether more revenue can be had. As a first step, it is sim-

ilarly easy to calculate that the second-price auction with reserve 1/2

obtains an expected revenue of 5/12 (which is higher than 1/3).1 Above,

1
There are three cases: (i) 1/2 > v(1) > v(2), (ii) v(1) > 1/2 > v(2), and (iii),

v(1) > v(2) > 1/2. Case (i) happens with probability 1/4 and has no revenue; case

Copyright c© 2011–2014 by Jason D. Hartline.
Source: http://jasonhartline.com/MDnA/
Manuscript Date: September 2, 2014.

http://jasonhartline.com/MDnA/
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perhaps surprisingly, a seller makes more money by sometimes not sell-

ing the item even when there is a buyer willing to pay. In this chapter

we show that the second-price auction with reserve 1/2 is indeed optimal

for this two agent example and furthermore we give a concise character-

ization of the revenue-optimal auction for any single-dimensional agent

environment.

3.1 Single-dimensional Environments

In our previous discussion of Bayes-Nash equilibrium we focused on the

agents’ incentives. Single-dimensional linear agents each have a single

private value for receiving some abstract service and linear utility, i.e.,

the agent’s utility is her value for the service less her payment (Defini-

tion 2.6). Recall that the outcome of a single-dimensional game is an

allocation x = (x1, . . . , xn), where xi is an indicator for whether agent i

is served, and payments p = (p1, . . . , pn), where pi is the payment made

by agent i. Here we formalize the designer’s constraints and objectives.

Definition 3.1 A general cost environment is one where the designer

must pay a service cost c(x) for the allocation x produced. A general

feasibility environment is one where there is a feasibility constraint over

the set of agents that can be simultaneously served. A downward-closed

feasibility constraint is one where subsets of feasible sets are feasible.

Of course, downward-closed environments are a special case of general

feasibility environments which are a special case of general cost environ-

ments. We can express general feasibility environments as general costs

environments were c(·) ∈ {0,∞}. We can similarly express downward-

closed feasibility environments as the further restriction where x
† ≤ x

(i.e., for all i, x†
i ≤ xi) and c(x) = 0 and implies that c(x†) = 0. We will

be aiming for general mechanism design results and the most general

results will be the ones that hold in the most general environments. We

will pay special attention to restrictions on the environment that enable

illuminating observations about optimal mechanisms.

(ii) happens with probability 1/2 and has revenue 1/2; and case (iii) happens with
probability 1/4 and has expected revenue E

[

v(2) | case (iii) occurs
]

= 2/3. The

calculation of the expected revenue in case (iii) follows from the conditional
values being U [1/2, 1] and the fact that, in expectation, uniform random variables
evenly divide the interval they are over. The total expected revenue can then be
calculated as 5/12.
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The two most fundamental designer objectives are social surplus,

a.k.a., social welfare,2 and profit.

Definition 3.2 The social surplus of an allocation is the cumulative

value of the agents served less the service cost:

Surplus(v,x) =
∑

i
vi · xi − c(x).

The profit of allocation and payments is the cumulative payment of the

agents less the service cost:

Profit(p,x) =
∑

i
pi − c(x).

Implicit in the definition of social surplus is the fact that the payments

from the agents are transferred to the service provider and therefore do

not affect the objective.3

The single-item and routing environments that were discussed in Chap-

ter 1 are special cases of downward-closed environments. Single-item

environments have

c(x) =

{

0 if
∑

i xi ≤ 1, and

∞ otherwise.

In routing environments, recall, each agent has a message to send be-

tween a source and destination in the network.

c(x) =

{

0 if messages with xi = 1 can be simultaneously routed, and

∞ otherwise.

We have yet to see any examples of general cost environments. One

natural one is that of a multicast auction. The story for this problem

comes from live video steaming. Suppose we wish to stream live video to

viewers (agents) in a computer network. Because of the high-bandwidth

nature of video streaming the content provider must lease the network

links. Each link has a publicly known cost. To serve a set of agents, the

designer must pay the cost of network links that connect each agent,

located at different nodes in the network, to the “root”, i.e., the origin

of the multicast. The nature of multicast is that the messages need only

2
A mechanism that optimizes social surplus is said to be economically efficient;
though, we will not use this terminology because of possible confusion with
computational efficiency. A mechanism is computationally efficient if it computes
its outcome quickly (see Chapter 8).

3
An alternative notion would be to consider only the total value derived by the
agents, i.e., the surplus less the total payments. This residual surplus was
discussed in detail in Chapter 1; mechanisms for optimizing residual surplus are
the subject of Exercise 3.1.
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be transmitted once on each edge to reach the agents. Therefore, the

total cost to serve these agents is the minimum cost of the multicast tree

that connects them.4

3.2 Social Surplus

We now derive the optimal mechanism for social surplus. To do this we

walk through a standard approach in mechanism design. We completely

relax the Bayes-Nash equilibrium incentive constraints and ask and solve

the remaining non-game-theoretic optimization question. We then verify

that this solution does not violate the incentive constraints. We conclude

that the resulting mechanism is optimal.

The non-game-theoretic optimization problem of maximizing surplus

for input v = (v1, . . . , vn) is that of finding x to maximize Surplus(v,x) =
∑

i vixi − c(x). Let OPT be an optimal algorithm for solving this prob-

lem. We will care about both the allocation that OPT selects, i.e.,

argmaxx Surplus(v,x) and its surplus maxx Surplus(v,x). Where it is

unambiguous we will use notation OPT(v) to denote either of these

quantities. Notice that the formulation of OPT has no mention of Bayes-

Nash equilibrium incentive constraints.

We know from our characterization that the allocation rule of any

BNE is monotone, and that any monotone allocation rule can be im-

plemented in BNE with the appropriate payment rule. Thus, relative

to the non-game-theoretic optimization, the mechanism design problem

of finding a BIC mechanism to maximize surplus has an added mono-

tonicity constraint. As it turns out, even though we did not impose a

monotonicity constraint on OPT, it is satisfied anyway.

Lemma 3.1 For each agent i and all values of other agents v−i, the

allocation rule of OPT for agent i is a step function.

Proof Consider any agent i. There are two situations of interest. Either

i is served by OPT(v) or i is not served by OPT(v). We write out the

surplus of OPT in both of these cases. Below, notation (z,v−i) denotes

the vector v with the ith coordinate replaced with z.

4
In combinatorial optimization this problem is known as the weighted Steiner tree
problem. It is a computationally challenging variant of the minimum spanning
tree problem.
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Case 1 (i ∈ OPT):

OPT(v) = max
x

Surplus(v,x)

= vi +max
x−i

Surplus((0,v−i), (1,x−i)).

Define OPT−i(∞,v−i), the optimal surplus from agents other

than i assuming that i is served, as the second term on the right

hand side. Thus,

OPT(v) = vi +OPT−i(∞,v−i).

Notice that OPT−i(∞,v−i) is not a function of vi.

Case 2 (i 6∈ OPT):

OPT(v) = max
x

Surplus(v,x)

= max
x−i

Surplus((0,v−i), (0,x−i)).

Define OPT(0,v−i), the optimal surplus from agents other than

i assuming that i is not served, as the term on the right hand

side. Thus,

OPT(v) = OPT(0,v−i).

Notice that OPT(0,v−i) is not a function of vi.

OPT chooses whether or not to allocate to agent i, and thus which

of these cases we are in, so as to optimize the surplus. Therefore, OPT

allocates to i whenever the surplus from Case 1 is greater than the

surplus from Case 2. I.e., when

vi +OPT−i(∞,v−i) ≥ OPT(0,v−i).

Solving for vi we conclude that OPT allocates to i whenever

vi ≥ OPT(0,v−i)−OPT−i(∞,v−i).

Notice that neither of the terms on the right hand side contain vi.

Therefore, the allocation rule for i is a step function with critical value

v̂i = OPT(0,v−i)−OPT−i(∞,v−i).

Since the allocation rule induced by OPT is a step function, it satisfies

our strongest incentive constraint: with the appropriate payments (i.e.,

the “critical values”) truthtelling is a dominant strategy equilibrium

(Corollary 2.14). The resulting surplus maximization mechanism is often

referred to as the Vickrey-Clarke-Groves (VCG) mechanism, named after

William Vickrey, Edward Clarke, and Theodore Groves.
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Definition 3.3 The surplus maximization (SM) mechanism is:

(i) Solicit and accept sealed bids b.

(ii) find the optimal outcome x← OPT(b), and

(iii) set prices p as

pi ←

{

OPT(0, b−i)−OPT−i(∞, b) if i is served

0 otherwise.

An intuitive description of the critical value v̂i = OPT(0,v−i) −

OPT−i(∞,v−i) is the externality that agent i imposes on the other

agents by being served. In other words, because i is served the other

agents obtain total surplus OPT−i(∞,v−i) instead of the surplus OPT(0,v−i)

that they would have received if i was not served. We can similarly write

pi = OPT(0,v−i)−OPT−i(v) as the externality agent i imposes by be-

ing present in the mechanism (regardless of whether she is served or

not). Note that if she is not served then the second term is equal to the

first and the externality she imposes is zero. Hence, we can interpret

the surplus maximization mechanism as serving agents to maximize the

social surplus and charging each agent the externality she imposes on

the others.

By Corollary 2.14 and Lemma 3.1 we have the following theorem, and

by the optimality of OPT and the assumption that agents follow the

dominant truthtelling strategy we have the following corollary.

Theorem 3.2 The surplus maximization mechanism is dominant strat-

egy incentive compatible.

Corollary 3.3 The surplus maximization mechanism optimizes social

surplus in dominant strategy equilibrium.

Example 3.1 The second-price routing auction from Chapter 1 is

an instantiation of the surplus maximization mechanism where feasible

outcomes are subsets of agents whose messages can be simultaneously

routed.

It is useful to view the surplus maximization mechanism as a reduction

from the mechanism design problem to the non-game-theoretic optimiza-

tion problem. Given an algorithm that solves the non-game-theoretic

optimization problem, i.e., OPT, we can construct the surplus maxi-

mization mechanism from it.

Surplus maximization is singular among objectives in that there is a
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single mechanism that is optimal regardless of distributional assump-

tions. Essentially: the agents’ incentives are already aligned with the

designer’s objective and one only needs to derive the appropriate pay-

ments, i.e., the critical values. For general objectives, e.g., in the next

section we will discuss profit maximization, the optimal mechanism is

distribution dependent.

There are other ways to implement surplus maximization besides

that of Definition 3.3. By revenue equivalence, the payment rule of the

surplus maximization mechanism is unique up to the payments each

agent would make if her value was zero, i.e., pi(0,v−i) for agent i.

For instance pi = OPT−i(v) is an DSIC payment rule as well with

pi(0,v−i) = OPT(0,v−i). This payment rule does not satisfy the nat-

ural no-positive-transfers condition which requires that agents not be

paid to participate. It is also possible to design BNE mechanisms, e.g.,

with first-price semantics, that implement the same outcome in equilib-

rium as the surplus maximization mechanism (see Exercise 3.2), though

unlike the surplus maximization mechanism given above, design of such

a BNE mechanism requires distributional knowledge.

3.3 Profit

A non-game-theoretic optimization problem looks to maximize some ob-

jective subject to feasibility. Given the input, we can search over feasible

outcomes for the one with the highest objective value for this input.

The outcome produced on one input need not bear any relation to the

outcome produced on an (even slightly) different input. Mechanisms, on

the other hand, additionally must address agent incentives which im-

pose constraints over the outcomes that the mechanism produces across

all possible misreports of the agents. In other words, the mechanism’s

outcome on one input is constrained by its outcome on similar inputs.

Therefore, a mechanism may need to tradeoff its objective performance

across inputs.

When the distribution of agent values is specified, e.g., by a common

prior (Definition 2.5) and the designer has knowledge of this prior, such a

tradeoff can be optimized. In particular, the prior assigns a probability

to each input and the designer can then optimize expected objective

value over this probability distribution. The mechanism that results from

such an optimization is said to be Bayesian optimal. In this section we

derive the Bayesian optimal mechanism for the objective of profit. Other
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objectives that are linear in social surplus and payments can be similarly

considered (e.g., residual surplus, see Exercise 3.1).

We will use agents with values drawn from the following distributions

as examples.

Example 3.2 A uniform agent has single-dimensional linear utility

with value v drawn uniformly from [0, 1], i.e., F (z) = z and f(z) = 1.

Example 3.3 A bimodal agent has single-dimensional linear utility

with value v drawn uniformly from [0, 3] with probability 3/4 and uni-

formly from (3, 8] with probability 1/4, i.e., the distribution defined by

density function f(v) = 1/4 for v ∈ [0, 3] and f(v) = 1/20 for v ∈ (3, 8]

(see Figure 3.4, page 71).

Mathematical Note. At various points in the remainder of this chap-

ter it will be convenient to write the expectations of discontinuous dis-

tributions via the integral of their density function which is, at their

discontinuity, not well defined. We will then reinterpret the expectation

via integration by parts. This notational convenience can be made pre-

cise via the Dirac delta function which integrates to a step function;

however, we will not describe these details formally.

Consider, as an example, the following which is taken from the con-

struction of Proposition 3.9 on page 73. Draw a random variable q̂ ∈ [0, 1]

from a distribution G with distribution function G(q). If G is continu-

ous then its density g(q) = d
dqG(q) is well defined and we can write the

expectation of some function P (·) of q̂ as Eq̂∼G[P (q̂)] =
∫ 1

0 P (q)g(q) dq.

If G is discontinuous (i.e., it possesses point masses) the same formula is

correct when the density g contains the appropriate Dirac delta function.

A change of variables allows any integral over [0, 1] to be reinterpreted

as the expectation of a function of a uniform random variable. From the

above example,

Eq̂∼G[P (q̂)] = Eq∼U [0,1][P (q)g(q)] .

Finally, integration by parts gives, for example, the following formula

for rearranging an integral, with d
dqP (q) denoted by p(q),

∫ 1

0

P (q)g(q) dq =
[

P (q)G(q)
]1

0
−

∫ 1

0

p(q)G(q) dq.
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When P (0) = P (1) = 0 the first term on the right-hand side is identi-

cally zero. If not, we can set P (0) = P (1) = 0 which will introduce a

discontinuity in to P (·) which we can express in p(·) via the Dirac delta

function as described above. Formulaically, this modification allows the

first term of the right-hand side to be accounted for by the integral.

We can, as above, write these integrals as expectations of functions of

a uniform random variable. Integration by parts can be thus expressed

for q ∼ U [0, 1] as:

E[P (q)g(q)] = E[−p(q)G(q)] .

3.3.1 Highlevel Approach: Amortized Analysis

The profit of a mechanism is given by the sum of the agents’ payments

(minus the cost of serving them) which, via the payment identity of

Theorem 2.2, namely

p(v) = v · x(v) −

∫ v

0

x(v†) dv†, (3.1)

depends on the allocation rule of each agent (in particular, on x(v†) for
v† ≤ v for an agent with value v). In other words, what the mechanism

chooses to do when the agent’s value is v† < v affects the revenue the

mechanism obtains when her value is v.

This dependence of the payment on the allocation that the agent

would receive if she had a lower value implies that there is no pointwise

optimal mechanism (as there was for social surplus maximization, cf.

Section 3.2). Consider selling an item to a single agent with value v

drawn uniformly from [0, 1] (Example 3.2). If her value is 0.2, then it

is pointwise optimal to offer her the item at price 0.2. This corresponds

to the allocation rule which steps from zero to one at 0.2. Similarly if

her value is 0.7, then it is pointwise optimal to offer her the item at

price 0.7. Of course, offering a 0.7-valued agent a price of 0.2 or a 0.2-

valued agent a price of 0.7 is not optimal. There is no single mechanism

that is pointwise optimal on both of these inputs. On the other hand,

given a distribution over the agent’s value, we can easily optimize for the

price with maximum expected revenue: post the price v̂ that maximizes

v̂ · (1−F (v̂)). For the uniform agent where F (z) = z, this optimal price

is v̂⋆ = 1/2.5

5
Set d

dv̂
[v̂ · (1 − v̂)] = 1− 2v̂ = 0 and solve for v̂ to get the optimal price to post

of v̂
⋆
= 1/2.
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Figure 3.1 Depicted are virtual value functions φ(v) = v − 1−F (v)
f(v)

for the

uniform and bimodal agent examples (Example 3.2 and Example 3.3). No-

tice that the virtual value function in the uniform example is monotone

non-decreasing in value while in the bimodal example it is not. For refer-

ence, the line v2 = v1 is depicted (grey dotted line).

The payment identity (3.1) gives a formula for the expected payment

that a v-valued agent makes in terms of her allocation rule. As is evi-

dent from the integral form of the payment identity, an agent’s payment

at a given value depends on the allocation probability she would have

obtained with a lower value. In fact, her payment is highest when the al-

location to lower values is the lowest. Our approach to optimizing profit

will be via an amortized analysis where we charge the loss in revenue

from high values due to high allocation probability at low values to the

low values themselves. Via such an approach, the amortized benefit from

serving an agent with a given value is her value less a deduction that

accounts for the lowered the payment for higher values. We will refer to

this amortized benefit as virtual value and we will show that the prob-

lem of optimizing profit in expectation over the distribution of values

reduces to the problem of maximizing virtual surplus pointwise.

A straightforward approach to such an amortized analysis (given sub-

sequently in Section 3.3.4) will give virtual value function

φ(v) = v −
1− F (v)

f(v)
. (3.2)

In equation (3.2), v is the revenue from serving the agent with value v

(at a price of v) and 1−F (v)
f(v) represents the loss of revenue from serving

higher values. We will see that such a formulation satisfies

Ev∼F [p(v)] = Ev∼F [φ(v) · x(v)] (3.3)

for any allocation and payment rules (x, p) that satisfy the Bayes-Nash

equilibrium characterization (Theorem 2.2; i.e., monotonicity of x and
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the payment identity (3.1)). Equation (3.3) can be derived simply by

applying the definition of expectation (as an integral) to the payment

identity and simplifying (see Exercise 3.3); we will give a less direct but

more economically intuitive construction subsequently in Section 3.3.4.

From equation (3.2) the virtual value function for the uniform agent

example is φ(v) = 2v − 1; for the bimodal agent example it is depicted

in Figure 3.1. Notice that φ(0) < 0 as there is no value from serving an

agent with value zero but serving such an agent lowers the price that

she could be charged if her value were higher. Notice that the highest

virtual value is always equal to the highest value as there is no amortized

deduction necessary to account for lower prices obtained by higher values

as no higher values exist, e.g., the uniform agent with values on interval

[0, 1] has φ(1) = 1 and the bimodal agent with values on interval [0, 8]

has φ(8) = 8.

The importance of equation (3.3) is that it enables the non-pointwise

optimization of expected payments to be recast as a pointwise opti-

mization of virtual surplus. The non-game-theoretic optimization prob-

lem of maximizing virtual surplus is that of finding x to maximize

Surplus(φ(v),x) =
∑

i φi(vi) · xi − c(x).6 Let OPT again be the sur-

plus maximizing algorithm. We will care about both the allocation that

OPT(φ(v)) selects, i.e., argmaxx Surplus(φ(v),x) and its virtual sur-

plus maxx Surplus(φ(v),x). Where it is unambiguous we will use no-

tation OPT(φ(v)) to denote either of these quantities. Note that this

formulation of OPT has no mention of the incentive constraints.

We now give the first part of the derivation of the optimal mechanism

for virtual surplus (and, hence, for profit). To do this we again walk

through a standard approach in mechanism design. We completely re-

lax the incentive constraints and solve the remaining non-game-theoretic

optimization problem. Since expected profit equals expected virtual sur-

plus, this non-game-theoretic optimization problem is to optimize virtual

surplus. We then verify that this solution does not violate the incentive

constraints (under some conditions). We conclude that (under the same

conditions) the resulting mechanism is optimal.

We know from the BIC characterization (Corollary 2.12) that incen-

tive constraints require that the allocation rule be monotone. Thus, the

mechanism design problem of finding a BIC mechanism to maximize

virtual surplus has an added monotonicity constraint. Notice that, even

though we did not impose a monotonicity constraint on OPT(φ(·)), if

6
Here, φ(v) denotes the profile of virtual values (φ1(v1), . . . , φn(vn)).
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the virtual valuation functions φi(·) for each agent i are monotone then

OPT(φ(·)) is monotone.

Lemma 3.4 For any profile of virtual value functions φ, monotonic-

ity of φi(·) implies the monotonicity of the allocation to agent i of

OPT(φ(z,v−i)) with respect to z.

Proof Let x(·) be the allocation rules of OPT, i.e., x(v) = argmax
x

† Surplus(v,x†).
Recall from Lemma 3.1 that maximizing surplus is monotone in that

xi(z,v−i) is monotone in z. Therefore xi(φi(z),φ−i(v−i)) is monotone

in φi(z), i.e., increasing φi(z) does decrease xi. By assumption φi(z)

is monotone in z; therefore, increasing z cannot decrease φi(z) which

cannot decrease xi(φi(z),φ−i(v−i)).

For many distributions the virtual value function v − 1−F (v)
f(v) of equa-

tion (3.2) is monotone, e.g., uniform (Example 3.2), normal, and ex-

ponential distributions. We refer to these as regular distributions. For

regular distributions the approach suggested above is sufficient for de-

scribing the optimal mechanism.

Definition 3.4 A distribution F is regular if v − 1−F (v)
f(v) is monotone

non-decreasing.

On the other hand, many relevant distributions are irregular, e.g., bi-

modal (Example 3.3; Figure 3.1(b)). For irregular distributions a more

sophisticated amortized analysis is needed to derive the appropriate vir-

tual values. To obtain a mechanism that optimizes non-monotone virtual

value functions we cannot initially relax the monotonicity constraint;

instead we must optimize virtual surplus subject to monotonicity. In

Section 3.3.5 we will describe a generic procedure for ironing a non-

monotone virtual value function to obtain a monotone (ironed) virtual

value function. For ironed virtual values from this procedure, pointwise

optimization of the ironed virtual surplus is equivalent to optimization

of the original virtual surplus subject to monotonicity. We conclude that,

even for irregular distributions, the design of optimal mechanisms in ex-

pectation for a known distribution on values is equivalent to the point-

wise optimization of a virtual surplus that is given by monotone virtual

value functions.

3.3.2 The Virtual Surplus Maximization Mechanism

As revenue-optimal mechanism are virtual surplus maximizers, we now

give a generic and formal description of this sort of mechanism. For



3.3 Profit 65

monotone virtual value functions, Lemma 3.4 implies that virtual sur-

plus maximization gives a monotone allocation rule for each agent and

any fixed values of the other agents; therefore, it satisfies our strongest

incentive constraint. With the appropriate payments (i.e., the “critical

values”) truthtelling is a dominant strategy equilibrium (recall Corol-

lary 2.14). One way to view the suggested virtual surplus maximization

mechanism is as a reduction to surplus maximization, which is solved by

the SM mechanism (Definition 3.3; also known as VCG).

Definition 3.5 The virtual surplus maximization (VSM) mechanism

for single-dimensional linear agents and monotone virtual value functions

φ is:

(i) Solicit and accept sealed bids b,

(ii) simulate the surplus maximization mechanism on virtual bids

(x,p†)← SM(φ(b)),

(iii) set prices p from critical values as

pi ←

{

φ−1
i (p†i ) if i is served,

0 otherwise, and

(iv) output outcome (x,p).

Notice that the payments p calculated by VSM can be viewed as fol-

lows. SM on virtual values outputs virtual prices p†. For winners these
correspond to the minimum virtual value that the agent must have to

win. The price an agent pays is the minimum value that she must have

to win, this can be calculated from these virtual prices via the inverse

virtual valuation function. (For virtual value functions φ(·) that are dis-

continuous or not strictly increasing this inverse virtual value function

is defined as φ−1(z) = inf{v† : φ(v†) ≥ z}.)

Theorem 3.5 For monotone virtual value functions φ = (φ1, . . . , φn),

the virtual surplus maximization mechanism VSM is dominant strategy

incentive compatible.

Proof The theorem follows from Lemma 3.4 applied to each agent, the

definition of VSM, and Corollary 2.14.

Corollary 3.6 For monotone virtual value functions φ, the virtual

surplus maximization mechanism optimizes virtual surplus in dominant

strategy equilibrium.
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Notice that the approach above was for optimization of an objective

in expectation in Bayes-Nash equilibrium. The mechanism we obtained,

in fact, satisfies the stronger dominant strategy incentive compatibility

condition. Moreover, even though possibly randomized mechanisms were

optimized over, the optimal mechanism is deterministic. When there are

ties in virtual surplus, i.e., by multiple distinct outcomes each of which

gives the same virtual surplus, these ties can be broken arbitrarily; we

may, however, prefer the symmetry of random tie breaking.

To employ Corollary 3.6 for optimizing a given objective, it remains to

find a virtual value function for which pointwise optimization of virtual

surplus corresponds to optimization of the expected objective value.

Definition 3.6 A virtual value function φ(·) for a given objective is

a weakly monotone function that maps a value to a virtual value for

which expected optimal virtual surplus is equal to the optimal expected

objective value.

3.3.3 Single-item Environments

The above description of the virtual surplus maximization mechanisms

does not offer much in the way of intuition. To get a clearer picture,

we consider optimal mechanisms the special case of single-item environ-

ments, i.e., where the feasible outcomes serve at most one agent. We will

consider here four special cases: a single agent, multiple (generally asym-

metric) agents, multiple agents with a symmetric strictly-increasing vir-

tual value function, and multiple agents with a symmetric (not strictly)

increasing virtual value function.

For a single agent with a monotone virtual value function φ(·), there is

some value v̂⋆ = φ−1(0) where the function crosses zero. For example, for

the uniform agent this value is v̂⋆ = 1/2, see Figure 3.1(a). Maximizing

virtual surplus is simple: if v ≥ v̂⋆ then serve the agent; otherwise, do

not serve the agent. In other words, the agent has a critical value of v̂⋆

and the outcome is identical to that from posting a take-it-or-leave-it

price of v̂⋆.

Definition 3.7 For an agent with value v drawn from distribution

F and virtual value function φ, the monopoly price v̂⋆ = φ−1(0) is the

posted price that obtains the highest expected virtual surplus.

Now consider a single-item auction environment and the virtual sur-

plus maximization mechanism for the profile of virtual value functions
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φ. The mechanism will serve the agent with the highest positive virtual

value, or nobody if all virtual values are negative. To see what the critical

value of an agent i in this auction is we can write out the condition that

must hold for the agent to win. In particular, φi(vi) ≥ max(φj(vj), 0)

for all j 6= i, so i’s critical value is

v̂i = max(φ−1
i (φj(vj)), φ

−1
i (0)) (3.4)

for j with the highest virtual value of the other agents. Notice that the

auction depends on the precise details of the virtual value functions (see

Example 3.4 below). Notice that the second term in the maximization is

the monopoly price v̂⋆i = φ−1
i (0). If the other agents are not competitive,

i.e., all agents j have φj(vj) < 0, then the optimization problem reduces

to the single-agent case and agent i should see a reserve price of v̂⋆i .

Corollary 3.7 For single-item environments and monotone virtual

value functions, the auction that allocates to the agent with the highest

non-negative virtual value maximizes virtual surplus in dominant strat-

egy equilibrium.

Example 3.4 Consider a two-agent single-item environment with agent

1’s (Alice) value from U [0, 1] (as in Example 3.2) and agent 2’s (Bob)

value from U [0, 2] (with distribution function F2(z) = z/2). The vir-

tual values for revenue from equation (3.2) are φ1(v1) = 2v1 − 1 and

φ2(v2) = 2v2−2. The virtual surplus maximization mechanism serves Al-

ice whenever φ1(v1) > max(φ2(v2), 0), i.e., when v1 > max(v2− 1/2, 1/2).

Note that in this revenue-optimal auction Alice may have a lower value

than Bob and still win.

Now suppose the virtual value functions are monotone, strictly in-

creasing, identical, and denoted by φ. This happens when the agents

are independent and identically distributed and, as discussed above, the

function v− 1−F (v)
f(v) is strictly monotone. In such a scenario, φ−1

i (φj(vj)) =

φ−1(φ(vj)) = vj , and equation (3.4) for agent i’s critical value simplifies

to v̂i = max(vj , v̂
⋆) where j is the highest valued of the other agents.

The virtual surplus maximizing auction thus serves the agent with the

highest value that is at least v̂⋆ = φ−1(0), a.k.a., the monopoly price.

What auction has this equilibrium outcome? The second-price auction

with monopoly reserve v̂⋆.

Definition 3.8 The second-price auction with reservation price v̂, sells

the item if any agent bids above v̂. The price the winning agent pays
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the maximum of the second highest bid and v̂. The monopoly-reserve

auction sets v̂ = v̂⋆.

Corollary 3.8 In single-item environments with identical strictly-increasing

virtual value function φ, the virtual surplus maximizing mechanism is the

second-price auction with monopoly reserve v̂⋆ = φ−1(0).

Example 3.5 Consider a two-agent single-item environment with i.i.d.

uniform agents (as in Example 3.2). As we have calculated, φ(v) = 2v−1

is monotone and strictly increasing, the monopoly price is v̂⋆ = φ−1(0) =
1/2, and the revenue-optimal auction is the second-price auction with

reserve price 1/2. Our calculation at the introduction of this chapter

showed its expected revenue to be 5/12. Now we see that this revenue

is optimal among all mechanisms for this scenario.

Notice that the optimal reserve price is not a function of the number

of agents. For more intuition for why the reserve price is invariant to

the number of agents, notice the following. Either the other agents are

competitive and the reserve is irrelevant or the other agents are irrelevant

and the designer faces the same revenue tradeoffs as in the single-agent

example. This single-agent tradeoff is optimized by a reserve equal to

the monopoly price. Furthermore, the result can easily be extended to

single-item multi-unit auctions where the optimal reserve price is also

not a function of the number of units that are for sale (and beyond, see

Proposition 4.23 in Chapter 4).

We conclude this section by considering the case of symmetric vir-

tual value functions that are increasing but not strictly so. Notice that,

with strictly increasing virtual value functions and values drawn from a

continuous distribution, ties in virtual value are a measure zero event,

i.e., for any two agents i and j, Pr
[
φi(vi) = φj(vj)

]
= 0. On the other

hand, when virtual value functions are constant on an interval [a, b]

and the distribution assigns some non-zero probability to values in this

interval, there is a measurable, i.e., non-zero, probability of ties. The vir-

tual surplus maximization mechanism can break these ties arbitrarily or

randomly. Especially in symmetric environments we will prefer the sym-

metric tie-breaking rule by, e.g., for single-unit environments, choosing

the winner of the tie uniformly at random.

It is instructive to see exactly what the virtual surplus maximization

mechanism does when there are ties in virtual values. Figure 3.2 depicts

such a virtual valuation function (which corresponds to the ironed virtual

value for revenue for the bimodal agent that will be derived subsequently
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(b) Non-unique highest virtual value.

Figure 3.2 The weakly monotone virtual valuation function φ(v) under two

realizations of four agent values depicting both the case where the highest

virtual value is unique and the case where it is not unique.

in Section 3.3.5). Instantiating the agents’ values corresponds to picking

points on the horizontal axis. The agents’ virtual valuations can then be

read off the plot. The optimal auction assigns the item to the agent with

the highest virtual value. If there is a tie, it picks a random tied agent

to win.

Figure 3.2(a) depicts a realization of values for n = 4 agents where

the highest virtual value is unique. What does the virtual surplus maxi-

mization do here? It allocates the item to the highest-valued agent, i.e.,

agent 1 in the figure. Figure 3.2(b) depicts a second realization of val-

ues where the highest virtual value is not unique. With uniform random

tie breaking, a random tied agent is selected as the winner, i.e., one of

agents 1, 2, and 3 in the figure. In general if the highest virtual value

has a k-agent tie then each of these tied agents wins with probability
1/k.

The payment an agent must make in expectation over the random

tie-breaking rule can be calculated as follows. Consider the case where

there is a unique highest virtual value. The agent with this virtual value
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(b) a ≤ v1 ≤ b

Figure 3.3 The allocation (black line) and payment rule (gray region) for

agent 1 given fixed v−1 with k − 1 of the other agents tied for having the

highest virtual value, i.e., with values in [a, b] (e.g., from virtual valuation

function of Figure 3.2). For v1 ∈ [a, b], agent 1 would be in a k-agent tie

for the highest virtual value; for v1 > b agent 1 would win outright.

wins, assume it is agent 1 (Alice). To calculate her payment we need to

consider her allocation rule for fixed values v−1 of the other agents. This

allocation rule is

x1(z,v−1) =







1 if z > b

1/k if z ∈ [a, b]

0 if z < a.

when v−1 has a k − 1 agents in interval [a, b]. The 1/k probability of

winning for z ∈ [a, b] arises from our analysis of what happens in a k-

agent tie. When Alice has the unique highest virtual value, i.e., v1 > b,

then p1 = b − b−a/k, see Figure 3.3(a). On the other hand, when Alice

is tied for the highest virtual value with k − 1 other agents with values

in interval [a, b], as depicted in Figure 3.3(b), her expected payment

is p1 = a/k. Of course, x1 = 1/k so such an expected payment can be

implemented by charging a to the tied agent that wins and zero to the

losers.
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(b) Inverse demand curve V (q).

Figure 3.4 Depicted are the cumulative distribution function and inverse

demand curve corresponding to the bimodal agent of Example 3.3. The

inverse demand curve is obtained from the cumulative distribution function

by rotating it 90 degrees counterclockwise.

3.3.4 Quantile Space, Price-posting Revenue, and

Derivation of Virtual Values

In this section we give an economically intuitive derivation of virtual

value functions for revenue maximization.

Consider an agent Alice with a single-dimensional linear preference

(Definition 2.6). Alice’s preference is described by her value v which

is drawn from distribution F . There is a one-to-one mapping between

Alice’s value and her strength relative to the distribution. For instance,

Alice with value v = 0.9 drawn from U [0, 1] is stronger than 90% and

weaker than 10% of values drawn from the same distribution. Denote

by quantile quantile q the relative strength of of a value where q = 0 is

the strongest and q = 1 is the weakest, and by V (·) the inverse demand

curve that maps quantiles to values. Importantly, the distribution of

an agent’s quantile is always U [0, 1] as the probability that an agents

quantile q is below a given q̂ is exactly q̂.

Definition 3.9 The quantile of a single-dimensional agent with value

v ∼ F is the measure with respect to F of stronger values, i.e., q =

1 − F (v); the inverse demand curve maps an agent’s quantile to her

value, i.e., V (q) = F−1(1− q).

Example 3.6 For the example of a uniform agent (Example 3.2) where

F (z) = z, the inverse demand curve is V (q) = 1− q; for the example of
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Figure 3.5 Depicted are the inverse demand curve and revenue curve corre-

sponding to the bimodal agent of Example 3.3. The price-posting revenue

curve is given by P (q̂) = q̂ · V (q̂), i.e., the area of the rectangle of width q̂

and height V (q̂) that fits under the inverse demand curve.

a bimodal agent (Example 3.3), the inverse demand curve is depicted in

Figure 3.4.

In Section 2.4 we defined the allocation rule for an agent as a func-

tion of her value as x(·) and characterized the allocation rules that can

arise in Bayes-Nash equilibrium as the class of monotone non-decreasing

functions (of value). The allocation rule in quantile space is denoted

y(q) = x(V (q)). Since quantile and value are indexed in the opposite

direction, y(·) will be monotone non-increasing in quantile.

Consider posting a take-it-or-leave-it price of V (q̂) for some quantile

q̂. By the definition of the inverse demand curve V (·), such a price is

accepted with probability q̂. In other words, the ex ante sale probability

of posting price V (q̂) is q̂. Notice that the allocation rule of this price-

posting mechanism is simply the reverse step function that starts at

one and steps from one to zero at q̂. We can define a revenue curve by

considering the revenue from this price-posting approach as a function

of the ex ante service probability q̂. For the uniform example, the price-

posting revenue curve is P (q̂) = q̂ − q̂2; for the bimodal example, it is

depicted in Figure 3.5(b).

Definition 3.10 The price-posting revenue curve of a single-dimensional

linear agent specified by inverse demand curve V (·) is P (q̂) = q̂ · V (q̂)

for any q̂ ∈ [0, 1].

We can use revenue equivalence (via the payment identity) to express
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the revenue of any allocation rule in terms of the price-posting revenue

curve. The main idea is the following. By revenue equivalence, any two

mechanisms with the same allocation rule have the same revenue. Given

an allocation rule y we can construct a mechanism with that alloca-

tion rule by taking the appropriate convex combination of price-posting

mechanisms. Below we walk through this approach in detail.

An allocation rule y is a monotone non-increasing function from [0, 1]

to [0, 1]. The allocation rules for price postings are reverse step func-

tions. The class of reverse step functions are a basis for the class of

monotone non-increasing functions from [0, 1] to [0, 1]: any such mono-

tone non-increasing function can be expressed as a convex combination

of (a.k.a., distribution over) reverse step functions. Consider the distri-

bution Gy(z) = 1−y(z) and the mechanism that draws q̂ ∼ Gy and posts

price V (q̂). Notice, that the probability that Alice with fixed quantile q

and value V (q) is allocated by this mechanism is:

Prq̂∼G
y [V (q̂) < V (q)] = Prq̂∼G

y [q̂ > q] = 1−Gy(q) = y(q).

The mechanism resulting from the above convex combination of price

postings has allocation rule exactly y(·) and Alice’s expected payment

(i.e., the expected revenue) is equal to the same convex combination of

revenues P (q̂) from posting price V (q̂) with q̂ ∼ Gy. This revenue is as

follows, via a change of variables from q̂ ∼ Gy to q ∼ U [0, 1] according

to Gy ’s density function gy(z) = d
dzG

y(z) = d
dz (1 − y(z)) = −y′(z),

integration by parts, and the assumption that P (0) = P (1) = 0 (there is

no revenue from always selling or never selling; see Mathematical Note

on page 60).

Eq̂∼G
y [P (q̂)] = Eq∼U [0,1]

[
−y′(q) · P (q)

]

= Eq∼U [0,1]

[
P ′(q) · y(q)

]
,

where P ′(q) = d
dqP (q) is the marginal increase in price-posting revenue

for an increase in ex ante allocation probability, a.k.a., the marginal

price-posting revenue at q. Notice that the calculation of Alice’s expected

payment for allocation rule y above is implicitly taking the expectation

over Alice’s quantile q ∼ U [0, 1] via the definition of the price-posting

revenue curve P (·). Of course, by revenue equivalence (Theorem 2.2), any

mechanism with the same allocation rule generates the same revenue.

Proposition 3.9 A single-agent mechanism with allocation rule y has

expected revenue equal to the allocated marginal price-posting revenue

Eq

[
P ′(q) · y(q)

]
.
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The above rephrasing of the expected revenue in terms of marginal

revenue is an amortized analysis. Notice that if we serve Alice with quan-

tile q with some probability then, were her quantile lower (i.e., stronger),

she would be served with no lower a probability. Therefore, the contri-

bution to the revenue from all quantiles above quantile q can be credited

to the change in service probability at q. The marginal price-posting rev-

enue is precisely this reamortizing of revenues across the different agent

quantiles.

The marginal price-posting revenues are exactly the virtual values

described previously by equation (3.2).

P ′(q) = d
dq (q · V (q)) = V (q) + qV ′(q) = v − 1−F (v)

f(v) , (3.5)

where the first equality follows from the definition of price-posting rev-

enue (Definition 3.10) and the last equality follows from the definition of

the inverse demand curve V (·) whereby v = V (q) satisfies F (v) = 1− q

and 1/f(v) = − d
dqV (q) = −V ′(q). Recall that a distribution is regular

if v − 1−F (v)
f(v) is monotone non-decreasing or, equivalently, the marginal

price-posting revenue is monotone non-increasing, or equivalently the

price-posting revenue curve is concave.

Proposition 3.10 A distribution F is regular if and only if its corre-

sponding price-posting revenue curve is concave.

Proposition 3.9 shows the expected revenue of a mechanism is equal to

its allocated marginal price-posting revenue. For regular distributions,

the marginal price posting revenue derived above is monotone; there-

fore, we can conclude that the virtual surplus maximization mechanism

with virtual value function defined by the marginal price-posting rev-

enue curve (Definition 3.5) is dominant strategy incentive compatible

and profit optimal (Corollary 3.6).

Theorem 3.11 For agents with values drawn from regular distribu-

tions the marginal price-posting revenue curves are virtual value func-

tions for revenue and the virtual surplus maximization mechanism opti-

mizes expected profit in dominant strategy equilibrium.

The price-posting revenue curve P (q̂) is defined by the revenue ob-

tained be posting a price that is accepted with probability q̂. Consider

instead the single-agent optimization of optimizing revenue subject to an

ex ante constraint q̂. This optimization problem is not generally solved

by a price posting; however, for regular distributions it is. Subsequently

in Section 3.4 we will consider this more general problem and define
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from it (optimal) revenue curves. For regular distributions price-posting

revenue curves and (optimal) revenue curves are equal.

3.3.5 Virtual Surplus Maximization Subject to

Monotonicity

We now turn our attention to the case where the non-game-theoretic

problem of optimization of marginal price-posting revenue is not it-

self inherently monotone. An irregular distribution is one for which the

price-posting revenue curve is non-concave (in quantile). The marginal

price-posting revenue curves (and virtual value functions defined from

them) are non-monotone; therefore, a higher value might result in a

lower virtual value. As OPT(φ(·)) is non-monotone for such a virtual

value function, there is no payment rule with which its outcome is in-

centive compatible (by the only-if direction of Corollary 2.12). We must

instead optimize this virtual surplus subject to monotonicity.

Recall that virtual values, e.g., v − 1−F (v)
f(v) , correspond to an amor-

tized analysis where we “charge” the value v if it is served for the lower

price its service implies for higher values. When this direct approach to

an amortized analysis gives a non-monotone virtual value function, the

following generic ironing procedure gives an ironed virtual value function

which is monotone and for which pointwise optimization is equivalent to

the optimization of expected virtual surplus subject to monotonicity of

the allocation rule.

There are two key ideas to this ironing procedure. First, if there is some

interval [a, b] of quantiles that all receive the same allocation probability,

then the virtual values of these quantiles can be reamortized arbitrar-

ily and the expected virtual value of the allocation rule is unchanged.

Second, if we reamortize by simple averaging then we get “ironed” vir-

tual values that are constant on the [a, b] interval and optimization of

the ironed virtual surplus will give the same allocation probability to

quantiles within the interval. Therefore, the approach of the second part

implies the assumption of the first part. Moreover, in terms of fixing

non-monotonicities, after ironing the virtual value are constant (and

therefore weakly monotone) on the interval [a, b].

As in previous sections, the geometry of this reamortization is more

transparent in quantile space rather than value space. This is because

quantiles are drawn from a uniform distribution so reamortizing by mov-

ing virtual value from one quantile to another is balanced with respect

to the distribution. If we were to do such a shift of virtual value in value
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space then we would need to normalize by the density function of the dis-

tribution. We therefore proceed by considering a virtual value function

φ(·) in quantile space. We denote the cumulative virtual value for quan-

tiles at most q̂ as Φ(q̂) =
∫ q̂

0 φ(q) dq. For profit maximization, the virtual

value functions correspond to marginal price-posting revenue curves and

cumulative virtual value functions correspond to price-posting revenue

curves, i.e., φ(q) = P ′(q) and Φ(q) = P (q). The ironing procedure we

will describe, however, can be applied to any non-monotone virtual value

function.

The goal of ironing is arrive at a monotone (ironed) virtual value func-

tion, equivalently, a concave cumulative virtual value function, without

any loss in virtual surplus for monotone allocation rules. We now inves-

tigate the consequences of the ironing procedure proposed above on the

virtual value and cumulative virtual value functions. The averaging of

virtual value over an interval [a, b] in quantile space replaces the function

on that interval with a constant equal to the original function’s average.

We can then integrate to see what the effect on the cumulative virtual

value is. Notice that on q ∈ [0, a] and q ∈ [b, 1] this integral is identi-

cally Φ(q); while for q ∈ [a, b] it is the integral of a constant function

and therefore linearly connects (a,Φ(a)) to (b,Φ(b)) with a line segment.

For the bimodal agent of Example 3.3 these quantities are depicted in

Figure 3.6 with an arbitrary choice of a and b.

If we iron the virtual value functions and then optimize with ironed

virtual values as virtual values, then the revenue is again the virtual

surplus (by the correctness of ironing construction, e.g., as proven by

Theorem 3.12, below). It remains to choose the appropriate intervals on

which to iron so that the ironed virtual value functions are monotone

(equivalently, the ironed revenue curve is concave) and the optimization

of ironed virtual surplus also optimizes the virtual surplus. Intuitively,

higher revenue curves produce higher revenues. As the ironing proce-

dure operates on the cumulative virtual value functions by replacing an

interval with a line segment, we can construct the concave hull, i.e., the

smallest concave upper-bound, of the cumulative virtual value function

by ironing. Notice that this ironed cumulative virtual value function has

two advantages over the original cumulative virtual value function: it is

pointwise higher and it is concave.

Definition 3.11 The ironing procedure for (non-monotone) virtual

value function φ (in quantile space)7 is:

7
The ironing procedure can also be expressed in value space by first mapping



3.3 Profit 77

+
a

+
b

+
0

+
1

+0

+1

(a) Ironed cumulative virtual values.

+-10

+0

+10

+
0

+
a

+
b

+
1

(b) Ironed virtual values.

Figure 3.6 Consider the bimodal agent of Example 3.3 and virtual value

function equal to the marginal price-posting revenue curve. The cumulative

virtual value and virtual value functions in quantile space are are depicted

(thick, gray, dashed lines) in the left and right diagram, respectively. After

ironing on an arbitrarily selected interval [a, b], the resulting cumulative

virtual value and virtual value functions are depicted (thin, black, solid

lines).

(i) Define the cumulative virtual value function as Φ(q̂) =
∫ q̂

0
φ(q) dq.

(ii) Define ironed cumulative virtual value function as Φ̄(·) as the concave

hull of Φ(·).

(iii) Define the ironed virtual value function as φ̄(q) = d
dq Φ̄(q) = Φ̄′(q).

Theorem 3.12 For any monotone allocation rule y(·) and any virtual

value function φ(·), the expected virtual surplus of an agent is upper-

bounded by her expected ironed virtual surplus, i.e.,

E[φ(q) · y(q)] ≤ E[φ̄(q) · y(q)] .

Furthermore, this inequality holds with equality if the allocation rule y

satisfies y′(q) = 0 for all q where Φ̄(q) > Φ(q).

Proof By integration by parts for any virtual value function φ†(·) and
monotone allocation rule y(·) (see Mathematical Note on page 60),

E[φ†(q) · y(q)] = E[−y′(q) · Φ†(q)] . (3.6)

Notice that the (non-increasing) monotonicity of the allocation rule y(·)

values to quantiles via the cumulative distribution function or inverse demand
curve, executing the ironing procedure in quantile space, and then mapping
ironed virtual value functions back into value space.
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implies the non-negativity of −y′(q). With the left-hand side of equa-

tion (3.6) as the expected virtual surplus, it is clear that a higher cumula-

tive virtual value implies no lower expected virtual surplus. By definition

of Φ̄(·) as the concave hull of Φ(·), Φ̄(q) ≥ Φ(q) and, therefore, for any

monotone allocation rule, in expectation, the ironed virtual surplus is at

least the virtual surplus. I.e., E
[
−y(q) · Φ̄(q)

]
≥ E[−y(q) · Φ(q)].

To see the equality under the assumption that y′(q) = 0 for all q where

Φ̄(q) > Φ(q), rewrite the difference between the ironed virtual surplus

and the virtual surplus via equation (3.6) as,

E
[
φ̄(q) · y(q)

]
−E[φ(q) · y(q)] = E

[
−y′(q) ·

[
Φ̄(q)− Φ(q)

]]
.

The assumption implies the term inside the expectation on the left-hand

side is zero for all q.

Corollary 3.13 For any virtual value function φ(·) with ironed virtual

value φ̄(·) from the ironing procedure (Definition 3.11), the optimization

of virtual surplus subject to monotonicity of the allocation rule is equiv-

alent to optimization of ironed virtual surplus pointwise.

We now conclude this section by summarizing the consequences of

ironing for virtual surplus maximization. First, we can define the ironed

virtual surplus maximization mechanism for virtual value functions φ

as the virtual surplus maximization mechanism applied to the ironed

virtual value functions φ̄. This profile φ̄ of ironed virtual value functions

is constructed from the profile φ of virtual value functions by applying

the ironing procedure individually to each virtual value function.

Theorem 3.14 For any (non-monotone) virtual value functions φ,

the ironed virtual surplus maximization mechanism maximizes expected

virtual surplus in dominant strategy equilibrium.

Corollary 3.15 For (irregular) single-dimensional linear agents, the

ironed marginal price-posting revenue curves are virtual value functions

for revenue and the virtual surplus maximization mechanism optimizes

expected profit in dominant strategy equilibrium.

The ironing procedure above results in virtual value functions that

are not strictly monotone. See Section 3.3.3 for a discussion of the vir-

tual surplus maximization mechanism with non-strictly monotone vir-

tual value functions in single-item environments.
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3.4 Multi- to Single-agent Reduction

While the previous sections gave a complete approach to profit maxi-

mization for single-dimensional linear agents, here we give an alternative

derivation that comes to the same conclusion but provides more concep-

tual understanding, especially for irregular distributions. The approach

will be to reduce the problem of solving a multi-agent mechanism de-

sign problem to that of solving a collection of simple single-agent pricing

problems. It observes and makes use of a revenue-linearity property that

is satisfied by single-dimensional agents with linear utility. In Chapter 7

this reduction is extended to multi-dimensional non-linear agents.

A mechanism for a single agent is simply a menu of outcomes where,

after the agent realizes her value from the distribution, she chooses the

outcome she most prefers. This observation is known as the taxation

principle and is a simple consequence of the revelation principle (Theo-

rem 2.11). It can be seen as follows: The agent’s actions in the mechanism

induce a set of (possibly randomized) outcomes; for a fully rational agent,

these probabilistic outcomes may as well be listed on a menu from which

the agent just chooses her favorite. Each of these probabilistic outcomes

can be summarized by its allocation probability and expected payment

(as far as the preferences of a single-dimensional linear agent is con-

cerned). We call such a probabilistic allocation a lottery, and the menu

of lotteries and their accompanying prices a lottery pricing. The allo-

cation and payment rules (x(·), p(·)) described in Section 3.1 precisely

define such a menu where the outcomes are indexed so that the agent

with value v prefers outcome (x(v), p(v)) over all other outcomes.

Below we will look at two optimization problems. The first will be

an ex ante pricing problem where we look for the lottery pricing with

the optimal revenue subject to a constraint on the ex ante service prob-

ability Ev[x(v)]. The revenue of the optimal ex ante pricings induce a

concave revenue curve. We will then look at an interim pricing prob-

lem where we have a constraint on the allocation rule x(·) and we again

wish to optimize revenue subject to that constraint. The main conclu-

sion will be that we can express the optimal interim pricing as a convex

combination of optimal ex ante pricings. The decomposition will enable

the expected payments to be expressed in terms of a monotone marginal

revenue curve (cf. Section 3.3.4). Pointwise optimization of the allocated

marginal revenue then gives the optimal revenue.
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3.4.1 Revenue Curves

It will be more economically intuitive to study lottery pricings in quan-

tile space. Alice has her quantile q drawn from the uniform distribution

U [0, 1] and value V (·) according to the inverse demand curve. Upon re-

alizing her quantile, she will choose her preferred outcome from a lottery

pricing. This two step process induces an allocation rule y(q) = x(V (q))

and an ex ante probability Eq[y(q)] that Alice is served. Recall that

the allocation rule is taken in expectation with respect to the random-

ization in the outcome of the lottery that Alice buys, and the ex ante

service probability is taken additionally in expectation with respect to

the randomization of Alice’s quantile.

Definition 3.12 With equality constraint q̂ on the ex ante alloca-

tion probability, the single-agent ex ante pricing problem is to find the

revenue-optimal lottery pricing. The optimal ex ante revenue, as a func-

tion of q̂, is denoted by the revenue curve R(q̂).

It will be important to contrast the revenue-optimal lottery pricing

for an ex ante constraint q̂ with the price posting that satisfies the same

constraint. The revenues of these two pricings are given by the revenue

curve R(q̂) and price-posting revenue curve P (q̂) (from Section 3.3.4).

First, recall that the difficulty with deriving optimal mechanisms directly

from the price-posting revenue curve P (·) is that it may not be concave.

On the other hand the revenue curve R(·) is always concave.8 Second,

notice that the allocation rule for price posting, which serves all values

that are at least V (q̂), is the strongest allocation rule with ex ante ser-

vice probability q̂ in the following sense. Any other allocation rule can

shift allocation probability from stronger (lower) quantiles to weaker

(higher) quantiles but cannot allocate with any greater probability to

the strongest q̂ measure of quantiles. Therefore, for the ex ante proba-

bility q̂, the allocation rule of the optimal ex ante pricing is no stronger

than that of price posting. Third, the optimal ex ante pricing for con-

straint q̂ obtains at least the revenue of price posting. This observation

is immediate from the fact that it is optimizing over lottery pricings that

include the posting price V (q̂). We summarize these observations as the

8
This observation follows from the fact that the space of lottery pricings is convex:
randomizing between two lottery pricings gives a lottery pricing that corresponds
to the lotteries’ convex combination and gives ex ante allocation probability and
expected revenue according to the same convex combination. In contrast, the
space of price postings is not convex: the convex combination of two price
postings cannot be expressed as a price posting. Consequently and as we have
already observed, the price-posting revenue curve is not generally concave.
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following proposition which, with Proposition 3.9 (essentially, revenue

equivalence), will be sufficient for proving the optimality of marginal

revenue maximization; we defer precise characterization of the optimal

ex ante lottery pricing to later in this section.

Proposition 3.16 The optimal ex ante pricing problems induce a con-

cave revenue curve and, for any ex ante service probability, the optimal

lottery has no stronger an allocation rule and no lower a revenue than

price posting.

3.4.2 Optimal and Marginal Revenue

We now formulate an interim lottery pricing problem that takes an allo-

cation rule as a constraint and asks for the optimal lottery pricing with

an allocation rule that is no stronger than the one given. To do so we

must first generalize the definition of strength (as discussed previously

when comparing price posting with optimal lotteries). Recall that with

the same ex ante allocation probability the difference between the price

posting and an optimal lottery is that the optimal lottery may have

service probability shifted from strong (low) quantiles to weak (high)

quantiles. This condition generalizes naturally.

The ex ante probability that allocation rule y(·) allocates to the strongest

q̂ measure of quantiles is Y (q̂) =
∫ q̂

0 y(q) dq; we refer to Y (·) as the cu-

mulative allocation rule for y(·). The (non-increasing) monotonicity of

allocation rules implies that cumulative allocation rules are concave. As

follows, we can view an allocation rule ŷ(·) as a constraint via its cumu-

lative allocation rule Ŷ .

Definition 3.13 Given an allocation constraint ŷ with cumulative

constraint Ŷ , the allocation rule y with cumulative allocation rule Y is

weaker (resp. ŷ is stronger) if and only if it satisfies Y (q̂) ≤ Ŷ (q̂) for all

q̂; denote this relationship by y � ŷ.

A strong allocation rule as a constraint corresponds to a weak con-

straint as it permits the most flexibility in allocation rules that satisfy

it. The ex ante pricing problem for constraint q̂ is a special case of the

interim pricing problem. The strongest allocation rule that serves with

probability q̂ is the reverse step function that steps from one to zero at

q̂; therefore, the allocation constraint ŷq̂ is the weakest constraint that

allows service probability at most q̂. In comparison, a general allocation

constraint ŷ (e.g., with total allocation probability E[ŷ(q)] = q̂) allows
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more fine-grained control by giving a constraint, for all q̂†, on the cu-

mulative service probability of any [0, q̂†] measure of quantiles by Ŷ (q̂†).
Of course, given an allocation constraint ŷ, the strongest allocation rule

that satisfies the constraint is the constraint itself, i.e., y = ŷ. From this

notion of strength we can take an allocation rule as a constraint and

consider the optimization question of finding an allocation rule that is

no stronger and with the highest possible revenue.

Definition 3.14 The optimal revenue subject to an allocation con-

straint ŷ(·) is Rev[ŷ] and it is attained by the optimal interim pricing

for ŷ.

An important property of this definition of the strength of an alloca-

tion rule is that it closed under convex combination, i.e., if ŷ = ŷ† + ŷ‡,
y† � ŷ†, and y‡ � ŷ‡ then y � ŷ for y = y† + y‡. This means that

one approach to construct an allocation rule y that satisfies the allo-

cation constraint ŷ is to express y as a convex combination of ex ante

constraints, and to implement each with the optimal ex ante pricing.

Relative to the construction of Proposition 3.9, using optimal lottery

pricings improves on price postings in that for each q̂ the optimal ex

ante revenue R(q̂) may exceed the price-posting revenue P (q̂). Consider

the mechanism that draws q̂ from the distribution Gŷ(z) = 1− ŷ(z) and

offers Alice the optimal ex ante pricing for q̂. The optimal revenue for

allocation constraint ŷ must be at least the revenue of this mechanism.

By the Mathematical Note on page 60, we have:

Rev[ŷ] ≥ E
q̂∼G

ŷ [R(q̂)]

= Eq

[
−ŷ′(q) · R(q)

]

= Eq

[
R′(q) · ŷ(q)

]
,

where R′(q) = d
dqR(q) is the marginal revenue at q.

Definition 3.15 The allocated marginal revenue of an allocation con-

straint ŷ is MargRev[ŷ] = Eq

[
R′(q) · ŷ(q)

]
.

3.4.3 Downward Closure and Pricing

We now make a brief aside to discuss downward closure of the environ-

ment and its relationship to the previously defined single-agent lottery

pricing problems. Recall that a downward closure environment is one
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where from any feasible outcome it is always feasible to additionally re-

ject and agent who was previously being served. Our definition of the

optimal ex ante pricing problem is not downward closed as we required

that the ex ante constraint be met with equality. On the other hand, our

definition of the optimal interim pricing problem was downward closed

as it was allowed that Y (1) < Ŷ (1). These definitions were given above

as they are the most informative.

It is possible to consider a downward-closed variant of the ex ante

pricing problem where a lottery pricing is sought with ex ante probabil-

ity at most q̂. Obviously, adding downward closure results in a revenue

curve that is monotone non-decreasing. From the non-downward-closed

revenue curve, the downward-closed revenue curve is given as a function

of q̂ by maxq≤q̂ R(q). Thus, the downward-closed revenue curve after

the monopoly quantile is constant. Importantly, the downward-closed

marginal revenue curve is always non-negative. It is similarly possible to

consider a non-downward-closed variant of the interim pricing problem

where it is additionally required that Y (1) = Ŷ (1).

In our discussion of revenue linearity in the subsequent section, it will

be important not to mix-and-match with respect to downward closure.

3.4.4 Revenue Linearity

The above derivation says the allocated marginal revenue of an allocation

constraint is a lower bound on its optimal revenue. A central dichotomy

in optimal mechanism design is given by the partitioning of single-agent

problems into those for which this inequality is tight and those when it is

not. Notice that linearity of the revenue operator Rev[·] implies by the

above derivation that for any allocation constraint the optimal revenue

and allocated marginal revenue are equal.

Definition 3.16 A agent (with implicit utility function, type space,

and distribution over types) is revenue linear if Rev[·] is linear, i.e., if

when ŷ = ŷ† + ŷ‡ then Rev[ŷ] = Rev[ŷ†] +Rev[ŷ‡].9

Proposition 3.17 For a revenue-linear agent and any allocation con-

straint ŷ, the optimal revenue is equal to the allocated marginal revenue,

i.e., Rev[ŷ] = MargRev[ŷ].

We now show that single-dimensional linear agents are revenue linear.

9
It is assumed that the ex ante and interim problem are consistent with respect to
downward closure, see Section 3.4.3.
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This result is a consequence of three main ingredients: the concavity of

the revenue curve R(·), that the optimal ex ante pricings which define

the revenue curve gives more revenue with a weaker allocation rule than

the price postings which define price-posting revenue curves (Proposi-

tion 3.16), and that revenue equivalence allows revenue to be expressed

in terms of price-posting revenue curves (Proposition 3.9). Optimal rev-

enue equaling allocated marginal revenue for single-dimensional linear

agents, then, is an immediate corollary of this revenue linearity and

Proposition 3.17.

Theorem 3.18 A single-dimensional linear agent is revenue linear.

Proof Before we begin, notice that for any revenue curve R(·) and al-

location rule y(·) the allocated marginal revenue MargRev[y] can be

equivalently expressed as

Eq

[
−y′(q)R(q)

]
= Eq

[
R′(q)y(q)

]
= Eq

[
−R′′(q)Y (q)

]
+R′(1)Y (1)

via integration by parts (with R(1) = R(0) = Y (0) = 0; see Mathe-

matical Note on page 60). The same equations also govern the allocated

marginal price-posting revenue in terms of revenue curve P (·). Two ob-

servations:

(i) The left-hand side shows that a pointwise higher revenue curve gives

a no lower revenue (as −y′(·) is non-negative). In particular, the allo-

cated marginal revenue exceeds the allocated marginal price-posting

revenue as R(q) ≥ P (q) for all q (by Proposition 3.16).

(ii) The right-hand side shows that for concave revenue curves, i.e., where

−R′′(·) is non-negative, e.g., R(·) not P (·); a stronger allocation rule

gives higher revenue. In particular, the allocation rule y obtained by

optimizing for ŷ has no higher allocated marginal revenue than does

ŷ.10

We have already concluded that the allocated marginal revenue lower

bounds the optimal revenue; so to prove the theorem it suffices to upper

bound the optimal revenue by the allocated marginal revenue. Suppose

we optimize for ŷ and get some weaker allocation rule y, then y is a fixed

10
Consistency with respect to downward-closure (see Section 3.4.3) implies the

inequality on the R
′
(1)Y (1) term. For the downward-closed case: the marginal

revenue R
′
(1) is non-negative and thus R

′
(1)Ŷ (1) ≥ R

′
(1)Y (1). For the

non-downward-closed case: it is required that Ŷ (1) = Y (1) and thus

R
′
(1)Ŷ (1) = R

′
(1)Y (1).
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point of Rev[·] (optimizing with y as an allocation constraint gives back

allocation rule y); therefore,

Rev[ŷ] = Rev[y].

By revenue equivalence (Proposition 3.9), the revenue of any allocation

rule is equal to its allocated marginal price-posting revenue, so

Rev[y] = E
[
P ′(q) · y(q)

]
.

By observation (i), for allocation rule y, the allocated marginal revenue

is at least the allocated marginal price-posting revenue,

E
[
−y′(q) · P (q)

]
≤ E

[
−y′(q) ·R(q)

]
.

By observation (ii), the allocated marginal revenue for ŷ is at least that

of y,

E
[
−R′′(q) · Y (q)

]
≤ E[−R′′(q) · Ŷ (q)] = MargRev[ŷ].

The above sequence of inequalities implies that the allocated marginal

revenue is at least the optimal revenue for ŷ,

Rev[ŷ] ≤MargRev[ŷ].

Corollary 3.19 For an agent with single-dimensional, linear utility,

the optimal revenue equals the marginal revenue, i.e.,

Rev[ŷ] = MargRev[ŷ] = E
[
R′(q)ŷ(q)

]
.

Observe that Corollary 3.19 implies that the marginal revenue curve

is a virtual value function for revenue. The virtual surplus maximization

mechanism for these virtual values maximizes expected profit.

Theorem 3.20 For linear single-dimensional agents, the marginal rev-

enue curves are a virtual value functions for revenue and the virtual

surplus maximization mechanism optimizes expected profit in dominant

strategy equilibrium.

3.4.5 Optimal Ex Ante Pricings, Revisited

We now return to the question of characterizing the optimal ex ante

pricings that define the revenue curve (Definition 3.12). Given an ex

ante constraint q̂, what is the optimal lottery pricing? We saw previously

that price posting V (q̂) is a simple way to serve an agent with ex ante

probability q̂. When the distribution is regular, it is easy to see that

price posting is optimal. By monotonicity of the marginal price-posting
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Figure 3.7 Depicted are the revenue curve, price-posting revenue curve, and

their allocation rules corresponding to ex ante allocation constraint q̂ for

the bimodal agent of Example 3.3. For this agent the revenue curve R(·)
(thin, black, solid line) is obtained from the price-posting revenue curve

P (·) (thick, grey, striped line) by replacing the curve on interval [a, b] with

a line segment. The allocation rule for posting price V (q̂) is the reverse

step function at q̂ (thick, grey, striped line). For q̂ ∈ [a, b] as depicted, the

allocation rule (thin, black, solid line) for the q̂ optimal ex ante pricing is

the appropriate convex combination of the reverse step functions at a and

b. Notice that the area under both allocation rules is equal to the ex ante

service probability q̂.

revenue curve, the q̂ measure of types with the highest marginal revenues

is precisely those with quantile in [0, q̂]. The mechanism that serves only

these types is the V (q̂) price posting. Therefore, for regular distributions

R(·) = P (·). The following is a restatement of Proposition 3.9 in terms

of the revenue curve for the regular case.

Corollary 3.21 For regular single-agent environments, allocation rule

y has expected revenue equal to the allocated marginal revenue Eq

[
R′(q) · y(q)

]
.

To solving the ex ante pricing problem for irregular distributions we

will define a very natural class of lottery pricings which directly re-

solve the problematic non-convexity of the price-posting revenue curves.

Suppose the price-posting revenue is non-concave at some q̂, instead of

posting price V (q̂) another method for serving with ex ante probabil-

ity q̂ would be to pick any interval [a, b] that contains q̂ and take the

appropriate convex combination of posting prices V (a), which serves

with probability a < q̂, and V (b), which serves with probability b > q̂,

so that the combined service probability is exactly q̂. The revenue from
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this convex combination is the same convex combination of the revenues;

the allocation rule is given by the same convex combination of the two

reverse step functions. Figure 3.7(b) depicts these allocation rules. For-

mulaically,

yq̂(q) =







1 if q < a,
q̂−a
b−a if q ∈ [a, b], and

0 if b < q.

It is easy to see that via two-price lotteries of this form we can obtain

an ex ante revenue for every q̂ that corresponds to the convex hull of

P (·). See Figure 3.7(a).

This class of two-price lotteries satisfies all the conditions that the

optimal pricings satisfies with respect to Proposition 3.16. Optimal two-

price lotteries (a) induce a concave revenue curve, (b) have at least the

revenue of price posting, and (c) have allocation rules is no stronger

than those of price posting. Consequently, via the exact same proof

as Theorem 3.18 (and Corollary 3.19) the optimal revenue is given by

convex combination of ex ante pricings from this class. Applying this

revenue-optimality result to the allocation constraint ŷq̂(·), for which

the aforementioned convex combination places probability one on q̂, we

see that the optimal two-price lottery for ex ante constraint q̂ is in fact

optimal among all lottery pricings.

Theorem 3.22 For a single-dimensional linear agent and ex ante con-

straint q̂, the optimal ex ante pricing is a two-priced lottery and the opti-

mal ex ante revenue R(q̂) is given by the concave hull of the price-posting

revenue curve P (·) at q̂.

3.4.6 Optimal Interim Pricings, Revisited

We now reconsider the problem of finding the optimal interim pricing

(with allocation rule y) for allocation constraint ŷ, i.e., solving Rev[ŷ].

Recall that ŷ is a constraint, but the allocation rule y of the optimal

mechanism subject to ŷ may be generally weaker than ŷ, i.e., y � ŷ.

Just as we can view the ironing of the price-posting revenue curve on

interval I as averaging marginal price-posting revenue on this interval,

we can so view the optimization of y subject to ŷ. To optimize a weakly

monotone function R′(·) subject to ŷ we should greedily assign low quan-

tiles to high probabilities of service except on ironed intervals, i.e., [a, b]
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Figure 3.8 The optimal single-item auction is depicted for three bimodal

agents (Example 3.3. The price-posting revenue curve P (·) is depicted by

a thick, grey, dashed line in Figure 3.8(a). The revenue curve (thin, black,

solid line) is its concave hull. The ironed interval (a, b) where R(q) > P (q)

is depicted. The allocation constraint ŷ(q) = (1− q)
2
(Figure 3.8(d), thick,

grey, dashed line) corresponds to lowest-quantile-wins for three agents; the

allocation rule y(q) (thin, black, solid line) results from optimizing Rev[ŷ].

Simply, ironing corresponds to a line-segment for revenue curves and cumu-

lative allocation rules and to averaging for marginal revenues and allocation

rules.

where q ∈ [a, b] satisfies R′′(q) = 0. Quantiles on ironed intervals are as-

signed to the average probability of service for the ironed interval. One

way to obtain such an allocation rule is via a resampling transforma-

tion σ that, for quantile q in some ironed interval [a, b], resamples the

quantile from this interval, i.e., as y(q) = Eσ[ŷ(σ(q))]. The cumulative

allocation rule Y is exactly equal to the cumulative allocation constraint

Ŷ except every ironed interval is replaced with a line segment. In other
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words, the revenue optimization of Rev[·] can be effectively solved by

superimposing the revenue curve and the allocation constraint on the

same quantile axis and then ironing the allocation constraint where the

revenue curve is ironed. Figure 3.8 illustrates this construction.

We will typically be in environments that are downward-closed where

optimizing revenue allows the exclusion of any agent with negative vir-

tual value. Thus, the optimal allocation rule y drops to zero after the

quantile q̂⋆ of the monopoly price; equivalently Y is flat after q̂⋆. For non-

downward-closed environments the definition of Rev[·] can be modified

so that the total ex ante allocation probability of the constraint is met

with equality, i.e., Ŷ (1) = Y (1). See Section 3.4.3.

3.5 Social Surplus with a Balanced Budget

In this section we explore the role that the designer’s budget constraint

plays on mechanism design for the objective of social surplus. Assume

that the mechanism designer would like to maximize social surplus, but

cannot subsidize the transaction, i.e., she is constrained to mechanisms

with non-negative profit. Notice that such a constraint introduces a

non-linearity into the designer’s objective; however, this particular non-

linearity instead can be instead represented as a constraint on total

payments which, because revenue is linear (Theorem 3.18), is a linear

constraint.

Recall that with outcome (x,p) the social surplus of a mechanism is
∑

i vixi − c(x) and its profit is
∑

i pi − c(x). There are two standard

environments where budget balance is a crucial issue. First, in an ex-

change the mechanism designer is the mediator between a buyer and

seller. The feasibility constraint is all or none in that either the trade

occurs, in which case both agents are “served,” or the trade does not

occur, in which case neither agent is served. Second, in a non-excludable

public project there is a fixed cost for producing a public good, e.g., for

building a bridge, and if the good is produced then all agents can make

use of the good. Again, the feasibility constraint is all or none.

The surplus maximization mechanism (Definition 3.3) has a deficit,

i.e., negative profit, in non-trivial all-or-none environments. For instance,

to maximize surplus in an exchange, the good should be traded when the

buyer’s value exceeds the seller’s value for the good. The critical value

for the buyer is the seller’s value; the critical value for the seller is the

buyer’s value. When the good is sold the buyer pays the seller’s value,
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the seller is paid the buyer’s value, and the mechanism has a deficit

of the difference between the two values. This difference is positive as

otherwise the trade would not have occurred.

Here we address the question of maximizing social surplus subject to

budget balance (taking both quantities in expectation). As with profit

maximization, there is no mechanism that optimizes surplus subject to

budget balance pointwise. E.g., in an exchange, if the values were known

then the buyer and seller would be happy to trade at any price between

their values; this is budget balanced. This approach, however, requires

knowledge of a price that is between the buyer and seller’s values, and

this knowledge is not generally available in Bayesian mechanism design.

Our objective is surplus:

Surplus(v,x) =
∑

i
vixi − c(x);

in addition to the feasibility constraint (which is given by c(·)), incen-

tive constraints (i.e., monotonicity of each agent’s allocation rule), and

individual rationality constraints we have a budget-balance constraint

Profit(p,x) =
∑

i
pi − c(x) ≥ 0.

To optimize this objective in expectation subject to budget balanced in

expectation we obtain the mathematical program

max
x(·),p(·)

Ev

[∑

i
vixi(v)− c(x(v))

]

(3.7)

s.t. x(·) and p(·) are IC and IR

Ev

[∑

i
pi − c(x)

]

≥ 0

where expectations are simply integrals with respect to the density func-

tion of the valuation profile.

3.5.1 Lagrangian Relaxation

We will make two transformations of mathematical program (3.7) so

as to be able to describe its solution. First, we will employ Proposi-

tion 3.9 to write expected payments in terms of the allocation rule (and

the marginal price-posting revenue curve). Second, we will employ the

method of Lagrangian relaxation on the budget-balance constraint to

move it into the objective. Intuitively, Lagrangian relaxation allows the

constraint to be violated but places a linear cost on violating the con-

straint. This cost is parameterized by the Lagrangian parameter λ, for



3.5 Social Surplus with a Balanced Budget 91

high values of λ there is a high cost for violating the constraint (and a

high benefit for slack in the constraint, i.e., the margin by which the con-

straint is satisfied), for low values of λ there is a low cost for violating the

constraint. E.g., λ = 0 the optimization is the original problem without

the budget-balance constraint; with λ = ∞ the optimization is entirely

one of maximizing the slack in the constraint. In our case the slack in

the constraint is the profit of the mechanism. Therefore, the λ =∞ case

is to maximize profit and the λ = 0 case is to maximize social surplus

(without budget balance). Adjusting the Lagrangian parameter λ traces

out the Pareto frontier between the two objectives of social surplus and

profit (see Figure 3.9(a)). From this Pareto frontier we can see how to

optimize social surplus subject to a constraint on profit (such as bud-

get balance) or optimize profit subject to a constraint on social surplus.

Notice that when the constraint that is Lagrangian relaxed is met with

equality then it drops from the objective entirely and the objective value

obtained is the optimal value of the original program.

In quantile space with payments expressed in terms of the allocation

rule, the Lagrangian relaxation of our program is as follows.

max
ŷ(·)

Eq

[∑

i
Vi(qi)ŷi(q)− c(ŷ(q))

]

(3.8)

+ λEq

[∑

i
P ′(qi)ŷi(v)− c(ŷ(q))

]

s.t. y(·) is monotone.

Simplifying the objective with the identity (3.5) of P ′(q) = d
dq (q·V (q)) =

V (q)− q · V ′(q), we have

Eq

[∑

i

[
(1 + λ) · Vi(qi) + λq · V ′

i (qi)
]
· ŷi(q)− (1 + λ) · c(y(q))

]

.

This is simply a (Lagrangian) virtual surplus optimization where agent

i’s virtual value is

φλ
i (q) = (1 + λ) · Vi(qi) + λq · V ′

i (qi). (3.9)

and with (Lagrangian) cost (1 + λ)c(·), subject to monotonicity of each

agent’s the allocation rule.

If our original non-game-theoretic problem (without incentive and

budget-balance constraints) is solvable, the same solution can be ap-

plied to solve this Lagrangian optimization. First, we can normalize the

objective by dividing by (1+λ), the result is a virtual surplus optimiza-

tion with the same cost function as the original problem. Second, the

budget-balance constrained optimization problem be effectively solved
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to an arbitrary degree of precision, e.g., by binary searching for the La-

grangian parameter λ for which solutions to the Lagrangian optimization

are just barely budget balanced. The details of this search are described

below.

3.5.2 Monotone Lagrangian Virtual Values

For any Lagrangian parameter λ, the optimal mechanism for the La-

grangian objective is the one that maximizes Lagrangian virtual surplus

subject to monotonicity of each agent’s the allocation rule. When the

Lagrangian virtual value φλ
i (·) is monotone non-increasing in qi for each

i the virtual surplus maximization mechanism for these Lagrangian vir-

tual values and Lagrangian cost optimizes the Lagrangian objective in

dominant strategy equilibrium (Corollary 3.6).

Lemma 3.23 For a regular distribution (Definition 3.4, page 64) given

by inverse demand function V (·) and any non-negative Lagrangian pa-

rameter λ, the Lagrangian virtual value function φλ(q) = (1+λ) ·V (q)+

λq · V ′(q) is monotonically decreasing.

Proof The Lagrangian virtual value function of equation (3.9) is a con-

vex combination of the inverse demand curve V (·) and the marginal

price-posting revenue curve P ′(q) = V (q)− q · V ′(q), i.e., virtual values
for revenue. The inverse demand curve is strictly decreasing by definition

(Definition 3.9) and the marginal price-posting revenue curve is non-

increasing by the regularity assumption (Proposition 3.10). The convex

combination of two monotone functions is monotone; if one of the func-

tions is strictly monotone then so is any non-trivial convex combination

of them. The lemma follows.

To optimize expected social surplus subject to budget balance we need

to tune the Lagrangian parameter so that the budget-balance constraint

is met with equality. So tuned, the mechanism’s expected profit will be

zero and the expected Lagrangian objective will be equal to the true ob-

jective (expected social surplus). Expected profit is, as described above,

a monotone function of the Lagrangian parameter. When expected profit

is continuous in the Lagrangian parameter λ, this tuning of λ is straight-

forward. Recall that for surplus maximization subject to budget balance,

the slack in the Lagrangian constraint is equal to the expected profit.

Lemma 3.24 For Lagrangian virtual value functions that are con-

tinuous in the Lagrangian parameter, the slack in the Lagrangian con-
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straint for expected Lagrangian virtual surplus maximization is continu-

ously non-decreasing in the Lagrangian parameter.

Proof The distribution of quantiles and a fixed Lagrangian parameter

induce a distribution on profiles of Lagrangian virtual values. Continuity

of Lagrangian virtual values with respect to the Lagrangian parameter

implies that the joint density function on profiles of Lagrangian virtual

values is continuous in the Lagrangian parameter. For any fixed profile

of Lagrangian virtual values, Lagrangian virtual surplus maximization

finds a (deterministic) pointwise optimal solution, the slack of this solu-

tion is also fixed and deterministic. As the distribution over these profiles

is continuous in the Lagrangian parameter so is the expected slack.

Theorem 3.25 For regular general-costs environments, an Lagrangian

virtual values from equation (3.9), there exists a Lagrangian parameter

for which the virtual surplus maximization mechanism has zero expected

profit and with this parameter the mechanism maximizes expected social

surplus subject to budget balance in dominant strategy equilibrium.

Example 3.7 Consider two agents with uniformly distributed values

and a non-excludable public project with cost one, i.e.,

c(x) =







1 if x = (1, 1),

0 if x = (0, 0), and

∞ otherwise.

The Lagrangian virtual values in value space are φ(v) = (2λ + 1) · v −

λ. The Lagrangian virtual surplus mechanism serves both agents when

(2λ+1)(v1+v2)−2λ > 1+λ (for allocation x = (1, 1), the left-hand side

is the Lagrangian virtual surplus, the right-hand side is the Lagrangian

cost), i.e., when

v1 + v2 ≥
3λ+1
2λ+1 . (3.10)

For λ = 0 we serve if v1+v2 ≥ 1 (clearly this maximizes surplus) and for

λ =∞ we serve if v1+v2 ≥ 3/2 (this maximizes profit). In equation (3.10)

we see that (for the uniform distribution), for any Lagrangian parameter

λ, the form of the optimal mechanism is a threshold rule on the sum of

the agent values. It is easy then to solve for the threshold satisfies the

budget-balance constraint with equality. The optimal threshold is 5/4,

the optimal Lagrangian parameter is λ⋆ = 1/2, and the social surplus is
9/64 ≈ 0.14. This example is depicted in Figure 3.9.
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(d) Optimal Mechanism, v2 versus v1

Figure 3.9 Depiction of the Pareto frontier for surplus (vertical axis) and

profit (horizontal axis). On the Pareto frontier, the surplus maximizing

point is profit minimizing (with negative profit) and the profit maximizing

point is surplus minimizing. The surplus optimal point subject to budget

balance is denoted by “◦”. The surplus and profit versus the Lagrangian

parameter λ are depicted along with their asymptote (grey, dotted line) as

λ → ∞. The profit versus λ plot has been rotated 90
◦
clockwise so as to line

up with the profit axis of the Pareto frontier plot. The optimal mechanism

is depicted by plotting v2 versus v1 where the region of valuation profiles

for which the project is provided is shaded.

3.5.3 Non-monotone Lagrangian Virtual Values and

Partial Ironing

When the Lagrangian virtual value functions are non-monotone then

the ironing procedure (Definition 3.11) can be applied and the virtual

surplus maximization mechanism with the resulting ironed Lagrangian

ironed virtual values is optimal for the Lagrangian objective. After iron-
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ing, however, the slack in the Lagrangian constraint, e.g., expected profit,

is generally discontinuous in the Lagrangian parameter. In such case

there is a point λ⋆ such that for λ < λ⋆ the expected profit of any so-

lution is negative and for λ > λ⋆ the expected profit of any solution

is positive. At λ = λ⋆ there are multiple solutions to the Lagrangian

objective. These solutions vary in the contribution to the relaxed objec-

tive from the original objective and from the slack in the Lagrangian

constraint (which is part of the relaxed objective); the expected profits

of these solution span the gap between the negative profit solutions and

the positive profit solutions. In particular, a convex combination of the

supremum (with respect to expected profit) of solutions with negative

profit with infimum of solutions with positive profit will optimize ironed

Lagrangian virtual surplus and meet the budget-balance constraint with

equality.

This convex combination of mechanisms can be interpreted as an

ironed virtual surplus optimizer with a non-standard tie-breaking rule.

Consider virtual value function φ(·) and ironed virtual value function

φ̄(·) constructed for φ(·) for distribution F via the ironing procedure

(Definition 3.11). By the definition of the ironing procedure, the cumu-

lative ironed virtual value function Φ̄(·) is the smallest concave upper

bound on the cumulative virtual value function Φ(·). Define [a, b] to be

an ironed interval if Φ̄(q) > Φ(q) for q ∈ (a, b) and Φ̄(q) = Φ(q) for

q ∈ {a, b}. The ironing procedure gives ironed virtual values that are

equal to virtual values in expectation under the assumption that all

quantiles within the same ironed interval have the same allocation prob-

ability (Theorem 3.12). Such an outcome is always obtained for outcomes

selected solely based on ironed virtual values (ignoring actual values).

For Lagrangian ironed virtual value functions, it may be that two ad-

jacent ironed intervals have the same ironed virtual value. In such a case

outcomes selected solely based on ironed virtual values will produce the

same allocation probability for quantiles in the union of the adjacent

ironed intervals. Notice that the equality of ironed virtual values across

adjacent ironed intervals is sensitive to small changes in the Lagrangian

parameter. With a slightly higher Lagrangian parameter these ironed

intervals will be strictly merged; with a slightly lower Lagrangian pa-

rameter these ironed intervals will be strictly distinct. Thus, infimum

mechanism is the one that tie-breaks to merge adjacent ironed intervals

with the same ironed virtual value and the supremum mechanism is the

one that tie-breaks to keep adjacent ironed intervals distinct. We refer
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to the mixing over two tie-breaking rule for maximizing ironed virtual

surplus as partial ironing.

Theorem 3.26 For general-cost environments, and Lagrangian vir-

tual values from equation (3.9), there exists a Lagrangian parameter and

partial-ironing parameter for which the partially-ironed Lagrangian vir-

tual surplus maximization mechanism optimizes social surplus subject to

budget balance in dominant strategy equilibrium.

Exercises

3.1 In computer networks such as the Internet it is often not possible

to use monetary payments to ensure the allocation of resources

to those who value them the most. Computational payments, e.g.,

in the form of “proofs of work”, however, are often possible. One

important difference between monetary payments and computa-

tional payments is that computational payments can be used to

align incentives but do not transfer utility from the agents to the

seller. I.e., the seller has no direct value from an agent perform-

ing a proof-of-work computation. Define the residual surplus as

the social surplus less the payments, i.e.,
∑

i (vi · xi − pi) − c(x).

(For more details, see the discussion of non-monetary payments in

Chapter 1.)

Describe the mechanism that maximizes residual surplus when

the distribution on agents’ values satisfy the monotone hazard rate

assumption, i.e., f(v)/1−F (v) is monotone non-decreasing. Your de-

scription should first include a description in terms of virtual val-

ues and then you should interpret the implication of the monotone

hazard rate assumption to give a simple description of the optimal

mechanism. In particular, consider monotone hazard rate distribu-

tions in the following environments:

(a) a single-item auction with i.i.d. values,

(b) a single-item auction with non-identical values, and

(c) an environment with general costs specified by c(·) and non-

identical values.

3.2 Give a mechanism with first-price payment semantics that imple-

ments the social surplus maximizing outcome in equilibrium for

any single-dimensional agent environment. Hint: Your mechanism

may be parameterized by the distribution.
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3.3 Derive equation (3.3),

Ev∼F [p(v)] = Ev∼F [φ(v) · x(v)] (3.3)

by taking expectation of the payment identity (3.1),

p(v) = v · x(v) −

∫ v

0

x(z) dz, (3.1)

for v ∼ F and simplifying.

3.4 Consider the non-downward closed environment of public projects:

either every agent can be served or none of them. I.e., the cost

structure satisfies:

c(x) =







0 if
∑

i xi = 0,

0 if
∑

i xi = n, and

∞ otherwise.

(a) Describe the revenue-optimal mechanism for general distribu-

tions.

(b) Describe the revenue-optimal mechanism when agents’ values

are i.i.d. from U [0, 1].

(c) Give an asymptotic, in terms of the number n of agents, analysis

of the expected revenue of the revenue-optimal public project

mechanism when agents’ values are i.i.d. from U [0, 1].

3.5 Consider a two unit auction to four agents and a virtual value func-

tion that is strictly monotone except for an interval [a, b] where it

is a positive constant (e.g., Figure 3.2 on 69). Suppose the valua-

tion profile v satisfies v1 > b, v2, v3 ∈ [a, b], and v4 < a. Calculate

the probability of winning and expected payments of all agents (in

terms of a and b).

3.6 Consider profit maximization with values drawn from a discrete

distribution. Derive virtual values for revenue for discrete single-

dimensional type spaces for agents with linear utility. Assume that

T = {v0, . . . , vN} with the probability that an agent’s value is v ∈

T given by probability mass function f(v). Assume v0 = 0. Note:

You must first solve Exercise 2.2 to characterize BNE equilibrium.

(a) Derive virtual values for the special case where the values are

uniform, i.e., vj = j for all j.

(b) Derive virtual values for the special case where the probabilities

are uniform, i.e., f(vj) = 1/N for all j.

(c) Give virtual values for the general case.
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(Hint: You should end up with a very similar formulation to that

for continuous type spaces.)

3.7 The text has focused on forward auctions where the auctioneer is a

seller and the agents are buyers. The same theory can be applied to

reverse auctions (or procurement) where the auctioneer is a buyer

and the agents are sellers. It is possible to consider reverse auctions

within the framework described in this chapter where an agents

value for service is negative, i.e., in order to provide the service

they must pay a cost. It is more intuitive, however, to think in

terms of positive costs instead of negative values.

(a) Derive a notion analogous to revenue curves for an agent (as a

seller) with private cost drawn from a distribution F .

(b) Derive a notion of virtual cost functions analogous to virtual

value functions.

(c) Suppose the auctioneer has a value of v for procuring a service

from one of several sellers with costs distributed i.i.d. and uni-

formly on [0, 1]. Describe the auction that optimizes the seller’s

profit (value for procurement less payments made to agents).

3.8 Consider a profit-maximizing broker mediating the exchange be-

tween a buyer and a seller. The broker’s profit is the difference

between payment made by the buyer and payment made to the

seller. Use the derivation of virtual values for revenue (from Sec-

tion 3.3.4) and virtual costs (from Exercise 3.7).

(a) Derive the optimal exchange mechanism for regular distribu-

tions for the buyer and seller.

(b) Solve for the optimal exchange mechanism in the special case

where the buyer’s and seller’s values are both distributed uni-

formly on [0, 1].

3.9 In Example 3.7 it was shown that for to agents with uniform values

on interval [0, 1] and a cost of one for serving both of them together,

the surplus maximizing mechanism with a balanced budget in ex-

pectation serves the agents when the sum of their values is at least
4/3. There is a natural dominant strategy “second-price” imple-

mentation of this mechanism; instead give a “first-price” (a.k.a.,

pay-your-bid) implementation. Your mechanism should solicit bids,

decide based on the bids whether to serve the agents, and charge

each agent her bid if they are served.
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Chapter Notes

The surplus-optimal Vickrey-Clarke-Groves (VCG) mechanism is cred-

ited to Vickrey (1961), Clarke (1971), and Groves (1973).

The characterization of revenue-optimal single-item auctions as vir-

tual value maximizers (for regular distributions) and ironed virtual value

maximizers (for irregular distributions) was derived by Roger Myerson

(1981). Its generalization to single-dimensional agent environments is

an obvious extension. The relationship between revenue-optimal auc-

tions, price-posting revenue curves, and marginal price-posting revenue

(equivalent to virtual values) is due to Bulow and Roberts (1989). The

revenue-linearity-based approach is from Alaei et al. (2013).

Myerson and Satterthwaite (1983) characterizedmechanisms that max-

imize social surplus subject to budget balance via Lagrangian relaxation

of the budget-balance constraint. The discussion of partial ironing for

Lagrangian virtual surplus maximizers given here is from Devanur et al.

(2013). This partial ironing suggests that the optimal mechanism is not

deterministic, the problem of finding a deterministic mechanism to max-

imize social surplus subject to budget balance is much more complex as

the space of deterministic mechanisms is not convex (Diakonikolas et al.,

2012).



4

Bayesian Approximation

One of the most intriguing conclusions from the preceding chapter is

that for i.i.d. regular single-item environments the second-price auction

with a reservation price is revenue optimal. This result is compelling as

the solution it proposes is quite simple, therefore, making it easy to pre-

scribe. Furthermore, reserve-price-based auctions are often employed in

practice so this theory of optimal auctions is also descriptive. Unfortu-

nately, i.i.d. regular single-item environments are hardly representative

of the scenarios in which we would like to design good mechanisms.

Furthermore, if any of the assumptions are relaxed, reserve-price-based

mechanisms are not optimal.

Another point of contention is that auctions, even simple ones like

the second-price auction, can be a slow and inconvenient way to allocate

resources. In many contexts posted pricings are preferred to auctions. As

we have seen, posted pricings are not optimal unless there is only a single

consumer. In addition to being preferred for their speed and simplicity,

posted pricings also offer robustness to out-of-model phenomena such

as collusion. Therefore, approximation results for posted pricings imply

that good collusion resistant mechanisms exist.

In this chapter we address these deficiencies by showing that while

posted pricings and reserve-price-basedmechanisms are not generally op-

timal, they are approximately optimal in a wide range of environments.

Furthermore, these approximately optimal mechanisms are more robust,

less dependent on the details of the distribution, and sometimes provide

more conceptual understanding than their optimal counterparts. The

approximation factor obtained by most of these approximation mech-

anisms is two. Meaning, for the worst distributional assumptions, the

mechanism’s expected performance is within a factor two of the optimal

Copyright c© 2011–2014 by Jason D. Hartline.
Source: http://jasonhartline.com/MDnA/
Manuscript Date: September 2, 2014.
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mechanism. Of course, in any particular environment these mechanisms

may perform better than this worst-case guarantee.

A number of properties of the environment will be crucial for enabling

good approximation mechanisms. As in Chapter 3 these are: indepen-

dence of the distribution of preferences for the agents, distributional reg-

ularity as implied by the concavity of the price-posting revenue curve,

and downward closure of the designer’s feasibility constraint. In addition,

two new structural restrictions on the environment will be introduced.

A matroid set system is one that is downward closed and satisfies an

additional “augmentation property.” An important characterization of

the matroid property is that the surplus maximizing allocation (subject

to feasibility) is given by the greedy-by-value algorithm: sort the agents

by value, then consider each agent in-turn and serve the agent if doing so

is feasible given the set of agents already being served. The optimality of

greedy-by-value implies that the order of the agents’ values is important

for finding the surplus maximizing outcome, but the relative magnitudes

of their values are not.

The monotone hazard rate condition is a refinement of the regularity

property of a distribution of values. Intuitively, the monotone hazard

rate condition restricts how heavy the tail of the distribution is, i.e., how

much probability mass is on very high values. An important consequence

of the monotone hazard rate assumption is that the optimal revenue and

optimal social surplus are within a factor of e ≈ 2.718 of each other.

This will enable mechanism that optimize social surplus to give good

approximations to revenue.

Mathematical Note Subsequently we will consider using monopoly

reserve prices for distributions where these prices are not unique. For

these distributions we should always assume the worst tie-breaking rule

as it is always possible to perturb the distribution slightly to make that

worst monopoly price unique. Recall that a regular distribution can be

equivalently specified by its distribution function or its revenue curve.

The equal revenue distribution has constant revenue curve, REQR(q) = 1,

and therefore any price on [1,∞) is optimal. A sufficient perturbation to

make unique monopoly price v̂⋆ = 1 is given by revenue curveREQR(q) =

1− ǫ(1− q).

In the previous two chapters, with the characterization of Bayes-Nash

equilibrium (Theorem 2.2) and the characterization of profit-optimal

mechanisms (Corollary 3.15), we assumed that the values of the agents

were drawn from continuous distributions. In this chapter, especially
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when describing examples that show that the assumptions of a theorem

are necessary, it will sometimes more expedient to work with discrete

distributions. A discrete distribution is specified by a set of values and

probabilities for these values.

There are two ways to relate these discrete examples to the continuous

environments we have heretofore been considering. First, we could red-

erive Theorem 2.2 and Corollary 3.15 (and their variants) for discrete

distributions (see Exercise 2.2 and Exercise 3.6, respectively). Impor-

tantly, via such a rederivation, it is apparent that discrete and contin-

uous environments are intuitively similar. Second, we could consider a

continuous perturbation of the discrete distribution which will exhibit

the same phenomena with respect to optimization and approximation.

For example, one such perturbation is, for a sufficiently small ǫ, to re-

place any value v from the discrete distribution with a uniform value

from [v, v + ǫ].

4.1 Monopoly Reserve Pricing

We start our discussion of simple mechanisms that are approximately

optimal by showing that a natural generalization of the second-price

auction with monopoly reserve continues to be approximately optimal

for regular but asymmetric distributions. Recall that monopoly prices

are a property of virtual value functions which are a property of the dis-

tributions from which agents’ values are drawn (Definition 3.7). When

the agents’ values are drawn from distinct distributions their monopoly

prices are generally distinct. The following definition generalizes the

second-price auction with a single reserve price to one with discrimi-

natory, i.e., agent-specific, reserve prices.

Definition 4.1 The second-price auction with (discriminatory) re-

serves v̂ = (v̂1, . . . , v̂n) is:

(i) reject each agent i with vi < v̂i,

(ii) allocate the item to the highest valued agent remaining (or none if

none exists), and

(iii) charge the winner her critical price.

With non-identical distributions the optimal single-item auction in-

deed needs the exact marginal revenue functions to determine the opti-

mal allocation (see Example 4.1). This contrasts to the i.i.d. regular case
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Figure 4.1 In Example 4.1 Agent 1 has value v1 ∼ U [0, 2]; agent 2 has

value v2 ∼ U [0, 3]. In the space of valuation profiles v ∈ [0, 2]× [0, 3], with

agent 1’s value on the horizontal axis and agent 2’s value on the vertical

axis, the allocation x = (x1, x2) for the (asymmetric) optimal auction and

(asymmetric) monopoly-reserves auction are depicted.

where all we needed was a single number, the monopoly price for the

distribution, and reserve pricing with this number is optimal. Figure 4.1

compares allocations of the (asymmetric) optimal auction with those of

the second-price auction with (asymmetric) monopoly reserves.

Example 4.1 Consider a two-agent single-item auction where agent 1

(Alice) and agent 2 (Bob) have values distributed uniformly on [0, 2]

and [0, 3], respectively. The virtual value functions are φ1(v1) = 2v1 − 2

and φ2(v2) = 2v2− 3. Alice’s monopoly price one; Bob’s monopoly price

is 3/2. Alice has a higher virtual value than Bob when v1 > v2 − 1/2.

The optimal auction is asymmetric. It serves an agent only if one is

above their respective monopoly price. If both are above their respective

monopoly reserves, it serves the highest valued agent with a penalty of
1/2 against Bob (cf. Example 3.4, page 67). In contrast the monopoly-

reserves auction is the same but with no penalty for Bob. See Figure 4.1.

In the remainder of this section we show that if the agents’ values

are drawn from regular distributions then the (single item) monopoly-

reserves auction is a two approximation to the optimal revenue. We will
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then show that, except for the consideration of more general feasibility

constraints, this result is tight. The approximation bound of two is tight:

we show by example that there is a non-identical regular distribution

where the ratio of the optimal to monopoly-reserves revenue is two. The

regularity assumption is tight: for irregular distributions the approxima-

tion ratio of monopoly reserves can be as bad as linear (i.e., it grows with

the number of agents). Thus, we conclude that this two-approximation

result for regular distributions in single-item environments is essentially

the right answer. Later in the chapter we will consider the extent to

which this result generalizes beyond single-item environments.

4.1.1 Approximation for Regular Distributions

The main result of this section shows that, though distinct, the monopoly-

reserves auction and the revenue-optimal auction have similar revenues.

Theorem 4.1 For single-item environments and agents with values

drawn independently from (non-identical) regular distributions, the second-

price auction with (asymmetric) monopoly reserve prices obtains at least

half the revenue of the (asymmetric) optimal auction.

The proof of Theorem 4.1 is enabled by the following three properties

of regular distributions and virtual value functions. First, Corollary 3.21

shows that for a regular distribution, a monotone allocation rule, and

virtual value given by the marginal revenue curve, the expected revenue

is equal to the expected virtual surplus. The second and third properties

are given by the two lemmas below.

Lemma 4.2 For any virtual value function, the virtual values corre-

sponding to values that exceed the monopoly price are non-negative.

Proof The lemma follows immediately from the definition of virtual

value functions which requires their monotonicity (Definition 3.6) .

Lemma 4.3 For any distribution, the value of an agent is at least her

virtual value for revenue.

Proof We prove the lemma for regular distributions (as is necessary for

Theorem 4.1) and leave the general proof to Exercise 4.3. For regular

distributions, where the virtual values for revenue are given by the for-

mula φ(v) = v − 1−F (v)
f(v) , the lemma follows as both 1 − F (v) and f(v)

are non-negative.
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Our goal will be to show that the expected revenue of the monopoly-

reserves auction is approximately an upper bound on the expected vir-

tual surplus of the optimal auction (which is equal to its revenue). Con-

sider running both auctions on the same random input. Notice that

conditioned on the event that both auctions serve the same agent, both

auctions obtain the same (conditional) expected virtual surplus. Notice

also that conditioned on the event that the auctions serve distinct agents,

the monopoly-reserves auction has higher expected payments than the

optimal auction. It is not correct to bound revenue by combining condi-

tional virtual values with conditional payments as the amortized analysis

that defines virtual values is only correct under unconditional expecta-

tions. Therefore, for the second case we will instead relate the payment

of monopoly reserves to the virtual value of the winner in the optimal

auction (for which it gives an upper bound).

Proof of Theorem 4.1 Let REF denote the optimal auction and its ex-

pected revenue and APX denote the second-price auction with monopoly

reserves and its expected revenue. Clearly, REF ≥ APX; our goal is to

give an approximate inequality in the opposite direction by showing that

2APX ≥ REF. Let I be the winner of the optimal auction and J be the

winner of the monopoly reserves auction. I and J are random variables.

Notice that neither auctions sell the item if and only if all virtual values

are negative; in this situation define I = J = 0. With these definitions

and Corollary 3.21, REF = E[φI(vI)] and APX = E[φJ (vJ )].

We start by simply writing out the expected revenue of the optimal

auction as its expected virtual surplus conditioned on I = J and I 6= J .

REF = E[φI(vI) | I = J ]Pr[I = J ]
︸ ︷︷ ︸

REF=

+E[φI(vI) | I 6= J ]Pr[I 6= J ]
︸ ︷︷ ︸

REF 6=

.

We will prove the theorem by showing that both the terms on the right-

hand side are bounded from above by APX. Thus, REF ≤ 2APX. For

the first term:

REF= = E[φI(vI) | I = J ]Pr[I = J ]

= E[φJ (vJ ) | I = J ]Pr[I = J ]

≤ E[φJ (vJ ) | I = J ]Pr[I = J ] +E[φJ (vJ ) | I 6= J ]Pr[I 6= J ]

= APX .
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The inequality in the above calculation follows from Lemma 4.2 as even

when I 6= J the virtual value of J must be non-negative. Therefore, the

term added is non-negative. For the second term:

REF6= = E[φI(vI) | I 6= J ]Pr[I 6= J ]

≤ E[vI | I 6= J ]Pr[I 6= J ]

≤ E[pJ(v) | I 6= J ]Pr[I 6= J ]

≤ E[pJ(v) | I 6= J ]Pr[I 6= J ] +E[pJ(v) | I = J ]Pr[I = J ]

= APX .

The first inequality in the above calculation follow from values upper

bounding virtual values (Lemma 4.3). The second inequality follows be-

cause, among agents who meet their reserve, J is the highest valued

agent and I is a lower valued agent. Therefore, as APX is a second-price

auction, the winner J ’s payment is at least the loser I’s value. The third

inequality follows because payments are non-negative so the term added

is non-negative.

Theorem 4.1 shows that when agent values are non-identically dis-

tributed at least half of the revenue of the optimal asymmetric auction

which is parameterized by complicated virtual value functions can be

obtained by a simple auction which is parameterized by natural statisti-

cal quantities, namely, each distribution’s monopoly price. The theorem

holds for a broad class of distributions that satisfy the regularity prop-

erty. While for specific distributions the approximation bound may be

better than two, we will see subsequently, by example, that if the only as-

sumption on the distribution is regularity then the approximation factor

of two is tight.

Definition 4.2 The equal-revenue distribution has distribution func-

tion FEQR(z) = 1− 1/z and density function fEQR(z) = 1/z2 on support

[1,∞).

The equal-revenue distribution is so called because the revenue ob-

tained from posting any price is the same. Consider posting price v̂ > 1.

The expected revenue from such a price is v̂ · (1−FEQR(v̂)) = 1. As the

price-posting revenue curve is the constant function PEQR(q̂) = 1, the

distribution is on the boundary between regularity and irregularity. As

it is the boundary between regularity and irregularity, it often provides

an extremal example for results that hold for regular distributions.

Lemma 4.4 There is an (non-identical) regular two-agent single-item
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environment where the optimal auction obtains twice the revenue of the

second-price auction with (discriminatory) monopoly reserves.

Proof For any ǫ > 0 we will give a distribution and show that there

is an auction with expected revenue strictly greater than 2 − ǫ but the

revenue of the monopoly reserves auction is precisely one.

Consider the asymmetric two-agent single-item environment where

agent 1 (Alice) has value (deterministically) one and agent 2 (Bob)

has value distributed according to the equal-revenue distribution. The

monopoly price for the equal-revenue distribution is ill-defined because

every price is optimal, but a slight perturbation of the distribution has a

unique monopoly price of v̂⋆2 = 1 (see Mathematical Note on page 101).

Thus the monopoly prices are v̂
⋆ = (1, 1) and the expected revenue of

the second-price auction with monopoly reserves is one.

Of course, for this distribution it is easy to see how we can do much

better. Offer Bob a high price h. If he rejects this price then offer Alice

a price of 1. Notice that by the definition of the equal-revenue distri-

bution, Bob’s expected payment is one, but still Bob rejects the offer

with probability 1− 1/h and the item can be sold to Alice. The expected

revenue of the mechanism is h · 1/h + 1 · (1 − 1/h) = 2 − 1/h. Choosing

h > 1/ǫ gives the claimed result.

While the monopoly-reserves auction (parameterized by n monopoly

prices) is significantly less complex than the optimal auction (parame-

terized by n virtual value functions), it is not often used in practice. In

practice, even in asymmetric environments, auctions are often parame-

terized by a single anonymous reserve price. For regular, non-identical

distributions anonymous reserve pricing continues to give a good approx-

imation to the optimal auction. This and related results are discussed

in Section 4.4.

4.1.2 Inapproximability Irregular Distributions

The second-price auction with monopoly reserve prices only guarantees

a two approximation for regular distributions. The proof of Theorem 4.1

relied on regularity crucially when it invoked Corollary 3.21 to calculate

revenue in terms of virtual surplus for all monotone allocation rules.

Recall that for irregular distributions, revenue is only equal to virtual

surplus for allocation rules that are constant where the virtual value

functions are constant. For irregular distributions there are two chal-

lenges for that the monopoly-reserves auction must confront. First, even
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Figure 4.2 The revenue curve (thin, solid, black) and price-posting revenue

curve (gray, thick, dashed) for the discrete two-point equal revenue distri-

bution from the proof of Proposition 4.5 with h = 2. As usual for revenue

curves, the horizontal axis is quantile.

if the distributions are identical, the optimal auction is not the second-

price auction with monopoly reserves; it irons (see Section 3.3.3). Sec-

ond, the distributions may not be identical. We show here that even

for i.i.d. irregular distributions this trivial bound cannot be improved

(Proposition 4.5), and that this lower bound is tight as the monopoly-

reserves auction for (non-identical) irregular distributions is, trivially, an

n approximation (Proposition 4.6).

Of course, irregular distributions that are “nearly regular” do not ex-

hibit the above worst case behavior. For example, Exercise 4.6 formal-

izes a notion of near regularity under which reasonable approximation

bounds can be proven.

Proposition 4.5 For (irregular) i.i.d. n-agent single-item environ-

ments, the second-price auction with monopoly reserve is at best an n

approximation.

Proof Consider the discrete equal-revenue distribution on {1, h}, i.e.,

with f(h) = 1/h and f(1) = 1 − 1/h, slightly perturbed so that the

monopoly price is one (see Mathematical Note on page 101). With a

monopoly reserve of v̂⋆ = 1 and all values at least one, the reserve is

irrelevant for the second-price auction.

Consider the expected revenues of the second-price auction APX(h)

and the optimal auction REF(h) as a function of h. We show the follow-
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ing limit result which implies the proposition.

APX = lim
h→∞

APX(h) = 1, and (4.1)

REF = lim
h→∞

REF(h) = n. (4.2)

An agent is high-valued with probability 1/h and low valued with prob-

ability (1 − 1/h). The probability that there are exactly k high valued

agents is:

Pr[exactly k are high valued] =
(
n
k

)
· h−k · (1− 1/h)n−k.

For constant n and k and in the limit as h goes to infinity, the first term

is constant and the last term is one. The middle term goes to zero at a

rate of h−k. Thus,

lim
h→∞

hk ·Pr[exactly k are high valued] =
(
n
k

)
, and (4.3)

lim
h→∞

hk ·Pr[at least k are high valued] =
(
n
k

)
. (4.4)

For the discrete equal-revenue distribution, φ(1) = 0 and φ(h) =

h (see Figure 4.2 and Exercise 3.6). Now we can calculate REF =

limh→∞ REF(h) as φ(1) times the probability that there are no high-

valued agents plus φ(h) times the probability that there are one or more

high-valued agents. REF = 0 +
(
n
1

)
= n.

We can similarly calculate APX = limh→∞ APX(h) as one times the

probability that there are one or fewer high-valued agents plus h times

the probability that there are two or more high-valued agents. By equa-

tion (4.3) with k = 0 and 1, the first term is one; by equation (4.4) with

k = 2, the second term is zero. Thus, APX = 1.

Proposition 4.6 For (non-identical, irregular) n-agent single-item en-

vironments, the second-price auction with monopoly reserve is at worst

an n approximation.

Proof Let REF and APX and denote the monopoly-reserve auction

and the optimal auction and their revenue, respectively, in an n-agent,

single-item environment.

As usual for approximation bounds when the optimal mechanism REF

is complex, we will formulate an upper bound that is simple. Denote by

UB the optimal auction and its revenue for the n-agent, n-unit environ-

ment (a.k.a. a digital good). Clearly, UB ≥ REF as this auction could

discard all but one unit and then simulate the outcome REF (the optimal

single-unit auction). UB is also very simple. As there are n units and n
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agents there is no competition between the agents and the optimization

problem decomposes into n independent monopoly pricing problems.

Denote by R
⋆ = (R⋆

0, . . . , R
⋆
n) the profile of monopoly revenues. The

revenue of the optimal n-unit auction is:

UB =
∑

i
R⋆

i .

We now get a lower bound on the monopoly-reserves revenue APX.

Consider the mechanism LB that chooses, before asking for agent re-

ports, the agent i⋆ with the highest monopoly revenue and offers this

agent her monopoly price v̂⋆i⋆ . LB obtains revenue

LB = maxiR
⋆
i .

Moreover, APX ≥ LB as if i⋆ would accept price her monopoly price v̂⋆i⋆

then some agent in APX must accept a price of at least v̂⋆i⋆ (either agent

i⋆ or an agent beating out agent i⋆).

Finally, we make the simple observation that n·LB ≥ UB which proves

the proposition.

4.2 Oblivious Posted Pricings and the Prophet

Inequality

Two problematic aspects of employing auctions to allocate resources is

that (a) they require multiple rounds of communication (i.e., they are

slow) and (b) they require all agents to be present at the time of the

auction. Often both of these requirements are prohibitive. In routing in

computer networks a packet needs to be routed, or not, quickly and, if

the network is like the Internet, without state in the routers. Therefore,

auctions are unrealistic for congestion control. In a supermarket where

you go to buy lettuce, we should not hope to have all the lettuce buyers

in the store at once. Finally, in selling goods on the Internet, eBay has

found empirically that posted pricing via the “buy it now” option is

more appropriate than a slow (days or weeks) ascending auction.

Posted pricings give very robust revenue guarantees. For instance,

their revenue guarantees are impervious to many kinds of collusive be-

havior on the part of the agents. Moreover, the prices (to be posted) can

also be used as reserve prices for the first- and second-price auctions and

this only improves on the revenue from price posting.

In a posted pricing, distinct prices can be posted to the agents with
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first-come-first-served and while-supplies-last semantics. In this section

we show that oblivious posted pricing, where agents arrive and consider

their respective prices in any arbitrary order, gives a two approximation

to the optimal auction. In the next section, we show that sequential

posted pricing, where the mechanism chooses the order in which the

agents are permitted to consider their respective posted prices, gives an

improved approximation of e/e−1 ≈ 1.58. Both results hold for objectives

of revenue and social surplus and for any independent distribution on

agent values (i.e., regularity is not assumed).

There are several challenges to the design and analysis of oblivious

posted pricings. First, for any particular n-agent scenario, an oblivious

posted pricing potentially requires optimization of n distinct prices. In

high dimensions (i.e., large n) this optimization problem is computation-

ally challenging. Moreover, it is not immediately clear that the resulting

optimal prices would perform well in comparison to the optimal auction.

To justify usage of posted pricings over auctions, we must be able to eas-

ily find good prices and these prices should give revenue that compares

favorably to that of the optimal auction. The approach of this section

is to solve both problems at once by identifying a class of easy-to-find

posted pricings that perform well.

4.2.1 The Prophet Inequality

The oblivious posted pricing theorem we present is an application of a

prophet inequality theorem from optimal stopping theory. Consider the

following scenario. A gambler faces a series of n games, one on each

of n days. Game i has prize vi distributed independently according to

distribution Fi. The order of the games and distribution of the prize

values is fully known in advance to the gambler. On day i the gambler

realizes the prize vi ∼ Fi of game i and must decide whether to keep

this prize and stop or to return the prize and continue playing. In other

words, the gambler is only allowed to keep one prize and must decide

whether or not to keep a given prize immediately on realizing the prize

and before any future prizes are realized.

The gambler’s optimal strategy can be calculated by backwards induc-

tion. On day n the gambler should stop with whatever prize is realized.

This results in expected value E[vn]. On day n− 1 the gambler should

stop if the prize has greater value than v̂n−1 = E[vn], the expected value

of the prize from the last day. On day n − 2 the gambler should stop

with if the prize has greater value than v̂n−2, the expected value of the
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strategy for the last two days. Proceeding in this manner the gambler

can calculate a threshold v̂i for each day where the optimal strategy is

to stop with prize i if and only if vi ≥ v̂i.

This optimal strategy suffers from many of the drawbacks of optimal

strategies. It is complicated: it takes n numbers to describe it. It is

sensitive to small changes in the game, e.g., changing of the order of

the games or making small changes to distribution i strictly above v̂i.

It does not allow for much intuitive understanding of the properties of

good strategies. Finally, it does not generalize well to give solutions to

other similar kinds of games, e.g., that of our oblivious posted pricing

problem.

Approximation gives a crisper picture. A uniform threshold strategy is

given by a single threshold v̂ and requires the gambler to accept the first

prize i with vi ≥ v̂. Threshold strategies are clearly suboptimal as even

on day n if prize vn < v̂ the gambler will not stop and will, therefore,

receive no prize. We refer to the prize selection procedure when multiple

prizes are above the threshold as the tie-breaking rule. The tie-breaking

rule implicit in the specification of the gambler’s game is lexicographical,

i.e., by “smallest i.”

Theorem 4.7 For any product distribution on prize values F = F1 ×

· · · ×Fn, there exists a uniform threshold strategy such that the expected

prize of the gambler is at least half the expected value of the maximum

prize; moreover, the bound is invariant with respect to the tie-breaking

rule; moreover, for continuous distributions with non-negative support

one such threshold strategy is the one where the probability that the gam-

bler receives no prize is exactly 1/2.

Theorem 4.7 is a prophet inequality: it suggest that even though the

gambler does not know the realizations of the prizes in advance, she can

still do half as well as a prophet who does. While this result implies

that the optimal (backwards induction) strategy satisfies the same per-

formance guarantee, this guarantee was not at all clear from the original

formulation of the optimal strategy.

Unlike the optimal (backwards induction) strategy this prophet in-

equality provides substantial conclusions. Most obviously, it is a very

simple strategy. The result is clearly driven by trading off the prob-

ability of not stopping and receiving no prize with the probability of

stopping early with a suboptimal prize. Notice that the order of the

games makes no difference in the determination of the threshold, and if

the distribution above or below the threshold changes, neither the bound
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nor suggested strategy is affected. Moreover, the invariance of the theo-

rem to the tie-breaking rule suggests the bound can be applied to other

related scenarios. The profit inequality is quite robust.

Proof of Theorem 4.7 Let REF denote prophet and her expected prize,

i.e., the expected maximum prize,E[maxi vi], and APX denote a gambler

with threshold strategy v̂ and her expected prize. Define q̂i = 1−Fi(v̂) =

Pr[vi ≥ v̂] as the probability that prize i is above the threshold v̂ and

χ =
∏

i(1 − q̂i) as the probability that the gambler rejects all prizes.

The proof follows in three steps. In terms of the threshold v̂ and failure

probability χ, we get an upper bound on the expected prophet’s payoff.

Likewise, we get a lower bound on expected gambler’s payoff. Finally,

we choose v̂ so that χ = 1/2 to obtain the bound. If there is no v̂ with

χ = 1/2, which is possible if the distributions F are not continuous, we

give a slightly more sophisticated method for choosing v̂.

In the analysis below, the notation “(vi − v̂)+” is shorthand for “max(vi−

v̂, 0).” The prophet is allowed not to pick any prize, e.g., if all prizes

have negative value, to denote this outcome we add a prize indexed

0 with value deterministically v0 = 0; all summations are over prizes

i ∈ {0, . . . , n}.

(i) An upper bound on REF = E[maxi vi]:

The prophet’s expected payoff is

REF = E[maxi vi] = v̂ +E[maxi(vi − v̂)]

≤ v̂ +E[maxi (vi − v̂)+]

≤ v̂ +
∑

i
E[(vi − v̂)+] . (4.5)

The last inequality follows because (vi − v̂)+ is non-negative.

(ii) A lower bound on APX = E[prize of gambler with threshold v̂]:

We will split the gambler’s payoff into two parts, the contribution

from the first v̂ units of the prize and the contribution, when prize

i is selected, from the remaining vi − v̂ units of the prize. The first

part is APX1 = (1− χ) · v̂. To get a lower bound on the second part

we consider only the contribution from the no-tie case. For any i, let

Ei be the event that all other prizes j are below the threshold v̂ (but

vi is unconstrained). The bound is:

APX2 ≥
∑

i
E[(vi − v̂)+ | Ei]Pr[Ei]

≥ χ ·
∑

i
E[(vi − v̂)+] .
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The second line follows because Pr[Ei] =
∏

j 6=i(1−q̂j) ≥
∏

j(1−q̂j) =

χ and because the conditioned variable (vi − v̂)+ is independent from

the conditioning event Ei. Therefore, the gambler’s payoff is at least:

APX ≥ (1− χ) · v̂ + χ ·
∑

i
E[(vi − v̂)+] . (4.6)

(iii) Plug in v̂ with χ = 1/2:

From the upper and lower bounds of equations (4.5) and (4.6), if

there is a non-negative v̂ such that χ = 1/2 then, for this v̂, APX ≥

REF /2.

For discontinuous distributions, e.g., ones with point masses, χ as

a function of v̂, denoted χ(v̂), may be discontinuous. Therefore, there

may be no v̂ with χ(v̂) = 1/2. For distributions that have negative

values in their supports the v̂ with χ(v̂) = 1/2 may be negative. For

these cases there is another method for finding a suitable threshold

v̂. Observe that the two common terms of equations (4.5) and (4.6),

namely v̂ and
∑

i E[(vi − v̂)+] are continuous functions of v̂. The

former is strictly increasing from v̂ = 0, the latter strictly decreases

to zero; therefore they must cross at some non-negative v̂†. For v̂†

satisfying v̂† =
∑

iE[(vi − v̂†)+], regardless of the corresponding χ ∈

[0, 1], the right-hand side of equation (4.5) is exactly twice that of

equation (4.6). For this v̂† the two-approximation bound holds.

The prophet inequality is tight in the sense that a better approxima-

tion bound cannot generally by obtained by a uniform threshold strategy

(Exercise 4.9).

As alluded to above, the invariance to the tie-breaking rule implies

that the prophet inequality gives approximation bounds in scenarios

similar to the gambler’s game. In an oblivious posted pricing agents

arrive in a worst-case order and the first agent who desires to buy the

item at her offered price does so. We now use the prophet inequality to

show that there is are oblivious posted pricings that guarantee half the

optimal surplus and half the optimal auction revenue, respectively.

4.2.2 Oblivious Posted Pricing

Consider attempting to allocate a resource to maximize the social sur-

plus. We know from Corollary 1.4 that the second-price auction obtains

the optimal surplus of maxi vi. Suppose we wish to instead us a sim-

pler posted pricing mechanism. A uniform posted price corresponds to a

uniform threshold in value space. In worst case arrival order, the agent
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with the lowest value above the posted price is the one who buys. This

corresponds to a game like the gambler’s with tie-breaking by smallest

value vi. The invariance of the prophet inequality to the tie-breaking

rule allows the conclusion that posting an uniform (a.k.a. anonymous)

price gives a two-approximation to the optimal social surplus.

Proposition 4.8 In single-item environments there is an anonymous

pricing whose expected social surplus under any order of agent arrival is

at least half of that of the optimal social surplus.

Not consider the objective of revenue. The revenue-optimal single-item

auction select the winner with the highest (positive) virtual value (for

revenue). To draw a connection between the auction problem and the

gambler’s problem, we note that the gambler’s problem in prize space

is similar to the auctioneer’s problem in virtual-value space (with vir-

tual value functions given by the marginal revenue curves of the agents’

distributions). The gambler aims to maximize expected prize while the

auctioneer aims to maximize expected virtual value. A uniform thresh-

old in the gambler’s prize space corresponds to a uniform virtual price in

virtual-value space. Note, however, in value space uniform virtual prices

correspond to non-uniform (a.k.a., discriminatory) prices.

Definition 4.3 A virtual price φ̂ corresponds to uniform virtual pric-

ing v̂ = (v̂1, . . . , v̂n) satisfying φi(v̂i) = φ̂ for all i.

Now compare uniform virtual pricing to the gambler’s threshold strat-

egy in the stopping game. The difference is the tie-breaking rule. For

uniform virtual pricing, we obtain the worst revenue when the agents

arrive in order of increasing price (in value space). Thus, the uniform

virtual pricing revenue implicitly breaks ties by smallest posted price v̂i.

The gambler’s threshold strategy breaks ties by the ordering assumption

on the games (i.e., lexicographically by smallest i). Recall, though, that

irrespective of the tie-breaking rule the bound of the prophet inequality

holds.

Theorem 4.9 In single-item environments there is a uniform virtual

pricing (for virtual values equal to marginal revenues) whose expected

revenue under any order of agent arrival is at least half of that of the

optimal auction.

Proof A uniform virtual price φ̂ corresponds to non-uniform prices (in

value space) v̂ = (v̂1, . . . , v̂n). The outcome of such a posted pricing, for

the worst-case arrival order of agents, is as follows. When there is only



116 Bayesian Approximation

one agent i with value vi that exceeds her offered price v̂i, the revenue is

precisely v̂i. When there are multiple agents S whose values exceed their

offered prices, the one with the lowest price arrives first and pays her

offered price of mini∈S v̂i. In other words, with respect to the gambler’s

game, the tie-breaking rule is by smallest v̂i.

To derive a bound on the revenue of is uniform virtual pricing with

the worst-case arrival order we will relate its revenue to its virtual sur-

plus. For the aforementioned outcome of a uniform virtual pricing (with

virtual values as the marginal revenue) satisfies the conditions of The-

orem 3.12. In particular, the induced allocation rule for each agent is

constant wherever the marginal revenue is constant. Therefore, the ex-

pected revenue of a uniform virtual pricing is equal to its expected virtual

surplus.

By the prophet inequality (Theorem 4.7), there is a uniform virtual

price that obtains a virtual surplus of at least half the maximum virtual

value (i.e., the optimal virtual surplus for single-item environments).

Thus, the revenue of the corresponding price posting is at least half the

optimal revenue.

In Chapter 1 we saw that that an anonymous posted pricing can be a
e/e−1 ≈ 1.58 approximation to the optimal mechanism for social surplus

for i.i.d. distributions (Theorem 1.5). This approximation factor also

holds for revenue and i.i.d., regular distributions. In the next section

we will give a more general result that shows that if the mechanism is

allowed to order the agents (i.e., in the best-case order instead of the

worst-case order as above) then this better e/e−1 bound can be had even

for asymmetric distributions. In this context of best-case versus worst-

case order, the i.i.d. special case is precisely the one where symmetry

renders the ordering of agents irrelevant.

4.3 Sequential Posted Pricings and Correlation Gap

In this section we consider sequential posted pricings, i.e., where the

mechanism posts prices to the agents in an order that it specifies. See

Section 4.2 for additional motivation for posted pricings.

One of the main challenges in designing and analyzing simple ap-

proximation mechanisms is that the optimal mechanism is complex and,

therefore, difficult to analyze. For single-item auctions, this complexity

arises from virtual values which come from arbitrary monotone func-
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tions. The main approach for confronting this complexity is to derive

a simple upper bound on the optimal auction and then exploit the

structure suggested by this bound to construct an simple approxima-

tion mechanism.

4.3.1 The Ex Ante Relaxation

One method for obtaining a simple upper bound for an optimization

problem is to relax some of the constraints in the problem. For example,

ex post feasibility for a single-item auction requires that, in the outcome

selected by the auction, at most a single agent is served. In other words,

the feasibility constraint binds ex post. For Bayesian mechanism design

problems, we can relax the feasibility constraint to bind ex ante. The

corresponding ex ante constraint for a single-item environment is that

the expected (over randomization in the mechanism and the agent types)

number of agents served is at most one.

Definition 4.4 The ex ante relaxation of mechanism design problem is

the optimization problem with the ex post feasibility constraint replaced

with a constraint that holds in expectation over randomization of the

mechanism and the agents’ types. The solution to the ex ante relaxation

is the optimal ex ante mechanism.

Proposition 4.10 The optimal ex ante mechanism’s performance up-

per bounds the optimal (ex post) mechanism’s performance.

To see what the optimal ex ante mechanism is, consider any mecha-

nism and denote by q̂ = (q̂1, . . . , q̂n) the ex ante probabilities that each

of the agents is served by this mechanism. By linearity of expectation

the expected number of agents served is
∑

i q̂i. For a single-item envi-

ronment the ex ante feasibility constraint then requires that
∑

i q̂i ≤ 1.

Notice that as far as the ex ante constraint is concerned, the agents only

impose externalities on each other via their ex ante allocation probabil-

ity. If we fix attention to mechanisms for which agent i is allocated with

ex ante probability q̂i then the remaining allocation probability for the

other agents is fixed to at most 1 − q̂i. Any method of serving agent i

with probability q̂i can be combined with any other method for serving

an expected 1 − q̂i number of the remaining agents. Thus, the relaxed

optimization problem with an ex ante feasibility constraint decomposes

across the agents.

Considering an agent i, one way to serve the agent with ex ante prob-

ability q̂i is to use the ex ante optimal lottery pricing (Definition 3.12).
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The expected payment of the agent is given by her revenue curve as

Ri(q̂i). Thus, for ex ante allocation probabilities q̂ the optimal revenue

is
∑

iRi(q̂i). Recall that for regular distributions, this optimal pricing

is simply to post the price Vi(q̂i) which has probability q̂i of being ac-

cepted by the agent. Therefore, for regular distributions the optimal ex

ante mechanism is a posted pricing.

The optimal ex ante mechanism design problem is identical to the clas-

sical microeconomic problem of optimizing the amount of a unit supply

of a good (e.g., grain) to fractionally allocate across each of several mar-

kets. Each market i has a concave revenue curve as a function of the

faction of the supply allocated to it. Both of these optimization problem

are given by the following convex program:

max
q̂

∑

i
R(q̂i) (4.7)

s.t.
∑

i
q̂i ≤ 1.

As described previously, the marginal revenue interpretation provides a

simple method for solving this program. The optimal solution equates

marginal revenues, i.e., R′
i(q̂i) = R′

j(q̂j) for i and j with q̂i and q̂j strictly

larger than zero. We conclude with the following proposition.

Proposition 4.11 The optimal ex ante mechanism is a uniform virtual

pricing (with virtual values defined as marginal revenues).

Because, at least for regular distributions, the optimal ex ante mech-

anism is a price posting, it provides a convenient upper bound for deter-

mining the extent to which price posting (with the ex post constraint)

approximates the optimal (ex post) auction. In particular, if we post the

exact same prices then the difference between the ex ante and ex post

posted pricing is in how violations of the ex post feasibility constraint

are resolved. In the former, violations are ignored, in the latter they

must be addressed. In the terminology of the previous section, we must

address how ties, i.e., multiple agents desiring to buy at their respective

prices, are to be resolved to respect the ex post feasibility constraint.

Unlike the previous section where the oblivious ordering assumption re-

quired breaking ties in worst-case order, in this section we break ties in

the mechanisms favor.

Consider the special-case where the distribution is regular and that

the optimal ex ante revenue of Ri(q̂i) = q̂iv̂i from agent i is obtained by

posting price v̂i = Vi(q̂i). The best order to break ties is in favor of higher

prices, i.e., by larger v̂i. For general (possibly irregular distributions) this
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corresponds to ordering the agents by Ri(q̂i)/q̂i, i.e., the agent’s bang-

per-buck. The goal of this section is to prove an approximation bound

on this sequential price posting.

4.3.2 The Correlation Gap

The sequential posted pricing theorem we present is an application of a

correlation gap theorem from stochastic optimization. Consider a non-

negative real-valued set function g over subsets S of an n element ground

set N = {1, . . . , n} and a distribution over subsets given by D. Let q̂i
be the ex ante1 probability that element i is in the random set S ∼ D

and let DI be the distribution over subsets induced by independently

adding each element i to the set with probability equal to its ex ante

probability q̂i. The correlation gap is then the ratio of the expected value

of the set function for the (correlated) distribution D, i.e., ES∼D[g(S)],
to the expected value of the set function for the independent distribution

DI , i.e., E
S∼DI [g(S)] A typical analysis of correlation gap will consider

specific families of set functions g in worst case over distributions D.

We show below that for any values v̂ the maximum-weight-element

set function gMWE(S) = maxi∈S v̂i has a correlation gap of e/e−1.

Lemma 4.12 The correlation gap for any maximum-weight-element

set function and any distribution over sets is e/e−1.

Proof This proof proceeds in three steps. First, we argue that it is

without loss to consider distributions D over singleton sets. Second, we

argue that it is without loss to consider set functions where the weights

are uniform, i.e., the one-or-more set function. Third, we show that for

distributions over singleton sets, the one-or-more set function has a cor-

relation gap of e/e−1.

(i) We have a set function gMWE(S) = maxi∈S v̂i. Add a dummy element

0 with weight v̂0 = 0; if S = ∅ then changing it to {0} affects neither

the correlated value nor the independent value. Moreover, the corre-

lated value ES∼D

[

gMWE(S)
]

is unaffected by changing the set to only

ever include its highest weight element. This change to the distribu-

tion only (weakly) decreases the ex ante probabilities q̂ = (q̂1, . . . , q̂n)

1
In probability theory, this probability is also known as the marginal probability
of i ∈ S; however to avoid confusion with usage of the term “marginal” in
economics, we will refer to it via its economic interpretation as an ex ante
probability as if S was the feasible set output by a mechanism.
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and the independent value E
S∼DI

[

gMWE(S)
]

is monotone increasing

in the ex ante probabilities. Therefore, this transformation only makes

the correlation gap larger. We conclude that it is sufficient to bound

the correlation gap for distributions D over singleton sets for which

the ex ante probabilities sum to one, i.e.,
∑

i q̂i = 1.

(ii) With set distributionD over singletons and a maximum-weight-element

set function gMWE(S) = maxi∈S v̂i, the correlated value simplifies to

ES∼D

[

gMWE(S)
]

=
∑

i q̂iv̂i. Scaling the weights v̂ = (v̂1, . . . , v̂n) by

the same factor has no effect on the correlation gap; therefore, it is

without loss to normalize so that the correlated value is
∑

i q̂iv̂i = 1.

We now argue that among all such normalized weights v̂, the ones

that give the largest correlation gap are the uniform weights v̂i = 1

for all i. This special case of the maximum-weight-element set func-

tion is the one-or-more set function, gOOM(S) = 1 if |S| ≥ 1 and

otherwise gOOM(S) = 0.

Sort the elements by v̂i and let ci =
∏

j<i(1− q̂j) denote the proba-

bility that no element with higher weight than i is in S and, therefore,

i’s contribution to the independent value is ciq̂iv̂i. Let δi = q̂i ·(v̂i−1)

be the additional contribution in excess of one to the correlated value

of i with value v̂i. Importantly, by our normalization assumption

that
∑

i q̂iv̂i = 1, the sum of these excess contributions is zero, i.e.,
∑

i δi = 0. The expected independent value for the maximum-weight-

element set function is
∑

i
ciq̂iv̂i =

∑

i
ci · (q̂i + δi) ≥

∑

i
ciq̂i. (4.8)

where the inequality follows from monotonicity of ci and the fact that
∑

i δi = 0. The right-hand side of (4.8) is the expected independent

value of the one-or-more set function. The correlated value is one for

both (normalized) general weights and uniform weights, so uniform

weights give no lower correlation gap.

(iii) The correlation gap of the one-or-more set function gOOM on any

distribution D over singletons can be bounded as follows. First, the

expected correlated value is one. Second, the expected independent

value is, for S ∼ DI ,

E
[

gOOM(S)
]

= Pr[|S| ≥ 1] = 1−Pr[|S| = 0] = 1−
∏

i
(1− q̂i)

≥ 1− (1− 1/n)n ≥ 1− 1/e,

where the first inequality follows because
∑

i q̂i = 1 and because the

product of a set of positive numbers with a fixed sum is maximized
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when the numbers are equal. The last inequality follows as (1− 1/n)n

is monotonically increasing in n and it is 1/e in the limit as n goes to

infinity.2

4.3.3 Sequential Posted Pricings

The correlation gap is central to the theory of approximation for se-

quential posted pricings. Contrast the revenue of the optimal ex ante

mechanism (a price posting) with the revenue from sequentially post-

ing the same prices. The optimal ex ante mechanism has total ex ante

service probability
∑

i q̂i ≤ 1 (by definition). If we could coordinate the

randomization (by adding correlation to the randomization of agents’

types and the mechanism) then we could obtain this optimal revenue

and satisfy ex post feasibility. In a sequential posted pricing, of course,

no such coordination is permitted. Instead, ex post feasibility is satisfied

by serving the agent that arrives first in the specified sequence.

Given any q̂ with
∑

i q̂i ≤ 1, consider the correlated distribution D

that selects the singleton set {i} with probability q̂i and the empty set

∅ with probability 1 −
∑

i q̂i. The induced ex ante probabilities of this

correlated distribution are exactly q̂i for each agent i. Assume for now

that the distribution is regular and that the revenue of Ri(q̂i) = q̂iv̂i is

obtained by posting price v̂i = Vi(q̂i). For the maximum-weight-element

set function, i.e., gMWE(S) = maxi∈S v̂i. For S ∼ D the expected value

of this set function is precisely the optimal ex ante revenue
∑

i v̂iq̂i.

On the other hand, consider sequentially posting prices v̂ = (v̂1, . . . , v̂n)

to agents ordered by largest v̂i. Let S denote the set of agents whose

values are at least their prices, i.e., S = {i : vi ≥ v̂i}. Each agent i is

in S independently with probability q̂i. Importantly, S may have cardi-

nality larger than one, but when it does, the ordering of agents by price

implies that the agent i ∈ S with the highest price wins. The revenue

of the sequential posted pricing is given by the expected value of the

maximum-weight-element set function gMWE(S) on S ∼ DI .

For regular distributions, the translation from the solution to the op-

timal ex ante mechanism which is given by q̂ to a sequential pricing is

direct. As described above, the prices v̂i = Vi(q̂i) are posted to agents in

decreasing order of v̂i. For irregular distributions the q̂i optimal lottery

2
The last part of this analysis is identical to the proof of Theorem 1.5. Again,
(1− 1/n)

n ≤ 1/e is a standard observation that can be had by taking the natural
logarithm and then applying L’Hopital’s rule for evaluating the limit.
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for agent i is not necessary a posted pricing. It may be, via Theorem 3.22,

a lottery over two prices. These lottery pricings arise when q̂i is in an

interval where the revenue curve has been ironed and is therefore lo-

cally linear. The marginal revenue (i.e., virtual value) is constant on

this interval. If we break ties in the optimization of program (4.7) lexi-

cographically, then for the optimal ex ante probabilities q̂ at most one

is contained strictly within an ironed interval. Recall that the marginal

revenues of any agents who have non-zero ex ante allocation probability

are equal. At this marginal revenue, the lexicographical tie breaking rule

requires that we increase the allocation probability to the early agents

before later agents. We stop when we run out of ex ante allocation prob-

ability and at this stopping point the ex ante allocation probabilities can

be within at most one agents ironed interval.

By the above discussion, the suggested sequential pricing potentially

has one agent receiving a lottery over two prices. The expected rev-

enue of this pricing satisfies the approximation bound guaranteed by

the correlation gap theorem. Of course, it cannot be the case that both

the pricings in the support of the randomized pricing have revenue be-

low the expected revenue of the lottery pricing. Therefore, the pricing

with the higher revenue gives the desired approximation. Notice that

the lexicographical ordering and derandomization steps may result in

prices (in value space) that are discriminatory even in the case that the

environment is symmetric (i.e., for i.i.d. distributions).

Theorem 4.13 For any single-item environment, there is sequential

posted pricing (ordered by price) with uniform virtual prices that obtains

a revenue that is an e/e−1 ≈ 1.58 approximation to the optimal auction

revenue (and the optimal ex ante mechanism revenue).

Proof By Proposition 4.10 the optimal ex ante revenue upper bounds

the optimal auction revenue. The upper bound on the approximation

ratio then follows directly from the correspondence between the revenues

of the optimal ex ante mechanism and the sequential posted pricing

revenue and the correlated and independent values for the maximum

weight element set system (Lemma 4.12). The prices correspond to a

uniform virtual pricing by the characterization of the optimal ex ante

mechanism (Proposition 4.11).

The construction and analysis of Theorem 4.13 can similarly be ap-

plied to the objective of social surplus (see Exercise 4.10) to obtain an
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e/e−1 by a sequential posted pricing that generalizes Theorem 1.5 to

non-identical distributions.

4.4 Anonymous Reserves and Pricings

Thus far we have shown that simple posted pricings and reserve-price-

based auctions approximate the optimal auction. Unfortunately, these

prices are generally discriminatory and, thus, may be impractical for

many scenarios, especially ones where agents could reasonably expect

some degree of fairness of the auction protocol. We therefore consider

the extent to which an anonymous posted price or an auction with an

anonymous reserve price, i.e., the same for each agent, can approximate

the revenue of the optimal, perhaps discriminatory, auction.

For instance, in the eBay auction the buyers are not identical. Some

buyers have higher ratings and these ratings are public knowledge. The

value distributions for agents with different ratings may generally be

distinct and, therefore, the eBay auction may be suboptimal. Surely

though, if the eBay auction was very far from optimal, eBay would have

switched to a better auction. The theorem below gives some justification

for eBay sticking with the second-price auction with anonymous reserve.

Our approach to approximation for (first- or second-price) auctions

with anonymous reserve will be to show that anonymous price post-

ing gives a good approximation and then to argue via the following

proposition, that the auction revenue pointwise dominates the pricing

revenue. While there is not a succinct close-form expression for the

best anonymous reserve price for the second-price auction; the best

anonymous posted price is precisely the monopoly price for the distri-

bution of the maximum value. Notice that with distribution functions

F1, . . . , Fn, the distribution of the maximum value has distribution func-

tion Fmax(z) =
∏

i Fi(z). From this formula, the monopoly price can be

directly calculated.

Proposition 4.14 In any single-item environment, the revenues from

the first- and second-price auctions with an anonymous reserve price is

at least the revenue from the anonymous posted pricing with the same

price.

Proof Recall that a posted pricing of v̂ obtains revenue v̂ if and only

if there is an agent with value at least v̂. For the auction, the utility

an agent receives for bidding strictly below v̂ is zero, while individual
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regular auction regular pricing irregular
identical 1 ≈ e/e−1 2

non-identical [2, 4] [2, 4] n

Figure 4.3 Approximation bounds are given for the second-price auction

with anonymous reserve and for anonymous posted pricing. If a number is

given, then the bound is tight in worst case, if a range is given then the

bound is not known to be tight. For irregular distributions, the auction and

pricing bounds are the same. For i.i.d. regular distributions, the approxi-

mation ratio of anonymous pricing is upper bounded by e/e−1 for all n;

for small n the bound can be improved, e.g., for n = 1 pricing is optimal,

for n = 2 it is a 4/3 approximation. A nearly matching lower bound is the

subject of Exercise 4.12.

rationality implies that an agent with value v ≥ v̂ will have a non-

negative utility from bidding on [v̂, v]. Thus, the auction sells at a price

of at least v̂ if and only if there is an agent with value at least v̂.

4.4.1 Identical Distributions

We start with results for anonymous posted pricing and identical distri-

butions; these bounds are summarized by the first row of Figure 4.3. For

i.i.d. regular distributions the second-price auction with an anonymous

reserve is optimal (Corollary 3.8). For anonymous posted pricing, Theo-

rem 4.13 implies a e/e−1 ≈ 1.58 approximation for regular distributions

and Theorem 4.9 implies a two approximation for irregular distribu-

tions. Notice that while Theorem 4.13 holds for irregular distributions,

for identical irregular distributions the prices for which the result holds

may not be anonymous (due to the derandomization step).

Corollary 4.15 For i.i.d. regular single-item environments, anony-

mous posted pricing is an e/e−1 approximation to the optimal auction;

this bound is nearly tight.

Proof For i.i.d. distributions, the optimization problem of program

(4.7) is symmetric and convex and, therefore, always admits a symmet-

ric optimal solution. For regular distributions, this symmetric optimal

solution corresponds to an anonymous posted pricing. Theorem 4.13

shows that this anonymous posted pricing is a e/e−1 approximation. For

tightness, see Exercise 4.12.

Corollary 4.16 For i.i.d. (irregular) single-item environments, both

anonymous posted pricing and the second-price auction with anonymous
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reserve are two approximations to the optimal auction revenue; these

bounds are tight.

Proof For any (possibly irregular) distribution, Theorem 4.9 shows that

posting a uniform virtual price gives a two approximation to the revenue

of the optimal auction. For i.i.d. distributions where the virtual value

functions are identical, uniform virtual prices are anonymous. The price-

posting result follows. By Proposition 4.14, using this anonymous price

as a reserve price in the second-price auction only improves the revenue.

To see that this bound of two is tight, we give an i.i.d. irregular distri-

bution for which the approximation ratio of anonymous reserve pricing

for n agents is 2 − 1/n. Consider the discrete distribution and h ≫ n

where

v =

{

h (high valued) w.p. 1/h, and

n (low valued) otherwise.

We then analyze the optimal auction revenue, REF, and the second-

price auction with any reserve, APX, for n agents and in the limit as

h goes to ∞. We show that REF = 2n − 1 and APX = n; the result

follows. For any given value of h, the probability that there are k high-

valued agents and n − k low valued agents is the same as in the proof

of Proposition 4.5; the analysis below makes use of equations (4.3) and

(4.4) from its proof.

We start by analyzing REF. The virtual values are φ(h) = h and, as h

goes to ∞, φ(n) = n− 1. The optimal auction has virtual surplus n− 1

if there are no high-valued agents and virtual surplus h if there is one or

more high-valued agents. The former case happens with probability that

goes to one and so the expected virtual surplus is n−1; and in the limit,

h times the probability of the latter case goes to n. Thus, REF = 2n−1.

We now analyze APX. We show that both a reserve of n and a reserve

of h give the same revenue of n in the limit. For the first case: a reserve

of n is never binding. The second-price auction has revenue h if there

are two or more high-valued agents and a revenue of n if there are one or

fewer. In the limit (as h goes to infinity) the contribution to the expected

revenue of the first term is zero and that of the second term is n. For

the second case: a reserve of h gives revenue of h when there is one or

more high-valued agent, and otherwise zero. As above, the product of h

and this probability is n in the limit. Thus, APX = n.
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4.4.2 Non-identical Distributions

We now turn to asymmetric distributions. For asymmetric distributions,

the challenge with anonymous pricing comes from the asymmetry in

the environment. For non-identical regular distributions, an anonymous

posted pricing gives a constant approximation (implying the same for

anonymous reserve pricing). For non-identical irregular distributions,

anonymous posted and reserve pricing are n approximations. We begin

with lower and upper bounds for regular distributions.

Lemma 4.17 Anonymous reserve or posted pricing is at best a two

approximation to the optimal revenue.

Proof This lower bound is exhibited by an n = 2 agent example where

agent 1’s value is a point-mass at one and agent 2’s value is drawn from

the equal revenue distribution (Definition 4.2) on [1,∞), i.e., F2(z) =

1− 1/z. Recall that, for the equal revenue distribution, posting any price

v̂ ≥ 1 gives an expected revenue of one. For this asymmetric setting

the revenue of the second-price auction with any anonymous reserve is

exactly one. On the other hand, an auction could first offer the item to

agent 2 at a very high price (for expected revenue of one), and if (with

very high probability) agent 2 declines, then it could offer the item to

agent 1 at a price of one. The expected revenue of this mechanism in

the limit is two.

Theorem 4.18 For single-item environments and agents with values

drawn independently from regular distributions, anonymous reserve and

posted pricings give a four approximation to the revenue of the opti-

mal auction. One such anonymous price is the monopoly price for the

distribution of the maximum value.

Proof This proof combines elements from the proof of the prophet in-

equality (Section 4.2.1, page 111) theorem with the upper bound on the

optimal auction given by the ex ante relaxation (Section 4.3.1, page 117).

Let REF =
∑

i v̂iq̂i denote the optimal ex ante mechanism which posts

prices v̂i = Vi(q̂i) and, with out loss of generality, satisfies
∑

i q̂i = 1.

Let APX denote the revenue from posting an anonymous price v̂. A key

part of the proof is to use regularity (i.e., convexity of the price-posting

revenue curve) to derive a lower bound on the probability that an agent

i with v̂i (from the optimal ex ante mechanism, above) has value at least

the anonymous price v̂. The full proof is left to Exercise 4.13.

We now give a tight inapproximation bound for anonymous reserves
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and pricings with irregular distributions. Recall the proof of Proposi-

tion 4.6 which implies that, for (non-identical) irregular distributions,

posting an anonymous price that corresponds to the monopoly reserve

price of the agent with the highest monopoly revenue gives an n ap-

proximation to the optimal auction. This is, in fact, the best bound

guaranteed by the second-price auction with an anonymous reserve or

an anonymous posted pricing.

Theorem 4.19 For (non-identical, irregular) n-agent single-item envi-

ronments the second-price auction with anonymous reserve and anony-

mous posted pricing are n approximations to the optimal auction rev-

enue; these bounds are tight.

Proof The upper bound can be seen by adapting the proof of Propo-

sition 4.6 as per the above discussion. The lower bound can be seen by

analyzing the optimal revenue and the revenue of the second-price auc-

tion with any anonymous reserve on the following discrete distribution

in the limit as parameter h approaches infinity. Agent i’s value is drawn

as:

vi =

{

hi w.p. h−i, and

0 otherwise.

The details of this analysis are left to Exercise 4.15.

4.5 Multi-unit Environments

The simplest environment we could consider generalizing approxima-

tion results to are multi-unit environments. In a multi-unit environment,

there are multiple units of a single item for sale and each agent desires

a single unit. Denote by k the number of units. For k-unit environments

the surplus maximization mechanism is simply the (k + 1)st-price auc-

tion where the k agents with the highest bids win and are required to

pay the (k+1)st bid. Except for the anonymous reserve pricing result for

non-identical regular distributions, all of the single-item results extend

to multi-unit environments.

Consider extending the results for monopoly reserve pricing to multi-

unit environments. For regular (non-identical) k-unit environments, the

(k + 1)st-price auction with monopoly reserves continues to be a two

approximation to the revenue optimal auction. We defer the statement
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and proof this result to Section 4.6 where it is a special case of Theo-

rem 4.27. For irregular distributions the tight approximation bound for

single-unit environments of Proposition 4.5 and Proposition 4.6 general-

ize to k-unit environments where the approximation ratio of monopoly

reserve pricing is n/k (see Exercise 4.16).

It is possible to generalize and improve the prophet inequality to show

that a gambler who is able to select k prizes can, with a uniform thresh-

old, obtain a (1 +
√

8/k ln k) approximation to the prophet (i.e., the ex-

pected maximum value of k prizes) for sufficiently large k. From this gen-

eralized prophet inequality, the same bound holds for oblivious posted

pricing.

Proposition 4.20 For k-unit environments with sufficiently large k,

there is an oblivious posted pricing that is a (1+
√

8/k ln k) approximation

to the optimal auction.

Sequential posted pricing bounds generalize to multi-unit environ-

ments and the bound obtained improves with k and asymptotically ap-

proach one, i.e., optimal. The proof of this generalization follows from

considering the correlation gap of the k-maximum-weight-elements set

function, reducing its correlation gap to that of the k-capped-cardinality

set function g(S) = min(k, |S|) (the one-or-more set function is the 1-

capped-cardinality), and showing that this set function’s correlation gap

in the limit as n approaches infinity is (1− (k/e)k· 1/k!)−1 which, by Stir-

ling’s approximation3 is (1− 1/
√
2πk)−1 (see Exercise 4.17).

Proposition 4.21 For k-unit environments, there is a sequential posted

pricing that is a (1− 1/
√
2πk)−1 approximation to the optimal auction.

An anonymous reserve price continues to be revenue optimal for i.i.d.

regular multi-unit environments. For i.i.d. regular multi-unit environ-

ments the correlation-gap-based sequential posted pricing result (Propo-

sition 4.21, above) implies the same bound is attained by an anonymous

pricing because for i.i.d. regular distributions, a uniform virtual pricing

is an anonymous pricing (in value space). For i.i.d. irregular multi-unit

environments the prophet-inequality-based oblivious posted pricing re-

sult (Proposition 4.20, above) implies the same bound by an anonymous

pricing (and consequently for the (k+1)st price auction with an anony-

3
Stirling’s approximation is k! = (k/e)

k√
2πk. This approximation is obtained by

approximating the natural logarithm as ln(k!) = ln(1) + . . .+ ln(k) by an integral
instead of a sum.
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mous reserve), because for i.i.d. distributions the uniform virtual pricing

identified corresponds to an anonymous pricing (in value space).

The one result that does not generalize from single-item environments

to multi-unit environments is the anonymous posted and reserve pric-

ing for non-identical distributions. In fact, this lower bound holds more

generally for any set system where where it is possible to serve k agents

(see Lemma 4.22, below). For irregular, non-identical distributions the

n-approximation bound of Theorem 4.19 for single-item environments

generalizes and is tight.

Lemma 4.22 For any (non-identical) regular environment where it

is feasible to simultaneously serve k agents, anonymous pricing and

anonymous reserve pricing are at best an Hk ≈ ln k approximation to

the optimal mechanism revenue, where Hk is the kth harmonic number

Hk =
∑k

i=1
1/i.

Proof Fix a set of k agents that are feasible to simultaneously serve

and reindex them without loss of generality to be {1, . . . , k}. The value

distribution that gives this bound is the one where Fi is a pointmass at
1/i for agents i ∈ {1, . . . , k} and a pointmass at zero for agents i > k. For

such a distribution, competition does not increase the price above the

reserve, therefore anonymous reserve pricing is identical to anonymous

posted pricing. For any i ∈ {1, . . . , k}, anonymous pricing of 1/i to all

agents obtains revenue i · 1/i = 1 as there are i agents with values that

exceed 1/i. On the other hand, the optimal auction posts a discriminatory

price to the top k agents of 1/i for agent i; its revenue is the kth harmonic

number
∑k

i=1
1/i = Hk. The kth harmonic number can be approximated

by the integral
∫ k

1
1/i di and satisfies ln k − 1 ≤ Hk ≤ ln k.

To summarize the generalization of the single-item results to multi-

unit environments: all approximation and inapproximation results gen-

eralize (and some improve) except for the anonymous pricing result for

non-identical, regular distributions.

4.6 Ordinal Environments and Matroids

In Chapter 3 we saw that the second-price auction with the monopoly

reserve was optimal for i.i.d. regular single-item environments. In the

first section of this chapter we showed that the second-price auction
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with monopoly reserves is a two approximation for (non-identical) reg-

ular single-item environments. We now investigate to what extent the

constraint on the environment to single-item feasibility can be relaxed

while still preserving these approximation results. In this section we give

equivalent algorithmic and combinatorial answers to this question. The

algorithmic answer is “when the greedy-by-value algorithm works;” the

combinatorial answer is “when the set system satisfies a augmentation

property (i.e., matroids).”

Definition 4.5 The greedy-by-value algorithm is

(i) Sort the agents in decreasing order of value (and discard all agents

with negative value).

(ii) x← 0 (the null assignment).

(iii) For each agent i (in sorted order),

if (1,x−i) is feasible, xi ← 1.

(I.e., serve i if i can be served alongside previously served agents.)

(iv) Output x.

Notice that the greedy-by-value algorithm is optimal for single-item

environments. To optimize surplus in a single-item environment we wish

to serve the agent with the highest value (when it is non-negative, and

none otherwise). The greedy-by-value algorithm does just that. Notice

also that the optimality of the greedy-by-value algorithm for all profiles

of values implies that, for the purpose of selecting the optimal outcome,

the relative magnitudes of the agents’ values do not matter, only the

order of the of the values (and zero) matters.

Definition 4.6 An environment is ordinal if for all valuation profiles,

the greedy-by-value algorithm optimizes social surplus.

Recall the argument for i.i.d. regular single-item environments that

showed that the optimal auction is the second-price auction with the

monopoly reserve price (Corollary 3.8). An agent, Alice, had to satisfy

two properties to win. She must have the highest virtual value and her

virtual value must be non-negative. Having a non-negative virtual value

is equivalent having a value of at least the monopoly price. Having the

highest virtual value, by regularity and symmetry, is equivalent to having

the highest value. Thus, Alice wins when she has the highest value and

is at least the monopoly price. This auction is precisely the second-price

auction with the monopoly reserve price. For general environments, the

non-negativity of virtual value again suggests any agents who do not
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have values at least the monopoly reserve price should be rejected. For an

ordinal environment with values drawn i.i.d. from a regular distribution,

maximization of virtual surplus for the remaining agents gives the same

outcome as maximizing the surplus of the remaining agents as symmetry

and strictly increasing virtual value functions imply that the relative

order values is identical to that of virtual values. We conclude with the

following proposition.

Proposition 4.23 For i.i.d. regular ordinal environments, surplus

maximization with the monopoly reserve price optimizes expected rev-

enue.

We will see in the remainder of this section that ordinality is a suffi-

cient condition on the feasibility constraint of the environment to per-

mit the extension of several of the single-item results from the preceding

sections. In particular, for regular (non-identical) distributions, surplus

maximization with (discriminatory) monopoly reserves continues to be

a two approximation. For general distributions a sequential posted pric-

ing continues to be an e/e−1 approximation. Neither anonymous posted

prices or reserve prices generalize (as they do not generalize even for the

special case of multi-unit environments, see Section 4.5).

Definition 4.7 The surplus maximization mechanism with reserves v̂

is:

(i) filter out agents who do not meet their reserve price, v† ← {agents with vi ≥ v̂i}

(ii) simulate the surplus maximization mechanism on the remaining agents,

and

(x,p†)← SM(v†)

(iii) set prices p from critical values as:

pi ←

{

max(v̂i, p
†
i ) if xi = 1, and

0 otherwise,

where SM is the surplus maximization mechanism with no reserves.

4.6.1 Matroid Set Systems

As ordinal environments enable good approximation mechanisms, it is

important to be able to understand and identify environments that are

ordinal. For general feasibility environments (Definition 3.1) subsets of

agents that can be simultaneously served are given by a set system.
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We will see shortly, that set systems that correspond to ordinal environ-

ments, i.e., where the greedy-by-value algorithm optimizes social surplus,

are matroid set systems. Checking ordinality of the environment then is

equivalent to checking whether the matroid conditions hold.

Definition 4.8 A set system is (N, I) where N is the ground set of

elements and I is a set of feasible subsets of N .4 A set system is a

matroid if it satisfies:

• downward closure: subsets of feasible sets are feasible.

• augmentation: given two feasible sets, there is always an element from

the larger whose union with the smaller is feasible.

∀I, J ∈ I, |J | < |I| ⇒ ∃i ∈ I \ J, {i} ∪ J ∈ I.

The augmentation property trivially implies that all maximal feasible

sets of a matroid have the same cardinality. These maximal feasible

sets are referred to as bases of the matroid; the cardinality of the bases

is the rank of the matroid. To get some more intuition for the role of

the augmentation property, the following lemma shows that if the set

system is not a matroid then the greedy-by-value algorithm is not always

optimal.

Lemma 4.24 The greedy-by-value algorithm selects the feasible set

with largest surplus for all valuation profiles only if feasible sets are a

matroid.

Proof The lemma follows from showing for any non-matroid set system

that there is a valuation profile v that gives a counterexample. First, we

show that downward closure is necessary and then, for downward-closed

set systems, that the augmentation property is necessary.

If the set system is not downward closed there are subsets J ⊂ I with

I ∈ I and J 6∈ I. Consider the valuation profile v with

vi =







2 if i ∈ J ,

1 if i ∈ I \ J , and

0 otherwise.

The optimal outcome is to select set I which is feasible and contains

all the elements with positive value. The greedy-by-value algorithm will

4
For matroid set systems the feasible sets are often referred to as independent
sets. To avoid confusion with independent distributions and to promote the
connection between the set system and a designer’s feasibility constraint, we will
prefer the former term.
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start adding elements i ∈ J . As J is not feasible, it must fail to add at

least one of these elements. This element is permanently discarded and,

therefore, the set selected by greedy is not equal to I and, therefore, not

optimal.

Now, assume that the set system is downward-closed but does not

satisfy the augmentation property. In particular there exists sets J, I ∈ I

with |J | < |I| but there is no i ∈ I \ J that can be added to J , i.e., such

that J ∪{i} ∈ I. Consider the valuation profile v with (for a ground set

N of size n)

vi =







n+ 1 if i ∈ J ,

n if i ∈ I \ J , and

0 otherwise.

The greedy-by-value algorithm first attempts to and succeeds at adding

all the elements of J . As there are no elements in I \ J that are feasible

when added to J , the algorithm terminates selecting exactly the set J .

Because I has at least one more element than J , the value of I exceeds

the value of J , and the optimality of the algorithm is contradicted.

The following matroids will be of interest.

• In a k-uniform matroid all subsets of cardinality at most k are feasible.

The 1-uniform matroid corresponds to a single-item auction; the k-

uniform matroid corresponds to a k-unit auction.

• In a transversal matroid the ground set is the set of vertices of part A

of the bipartite graph G = (A,B,E) (where vertices A are adjacent to

vertices B via edges E) and feasible sets are the subsets of A that can

be simultaneously matched. E.g., if A is people, B is houses, and an

edge from a ∈ A to b ∈ B suggests that b is acceptable to a; then the

feasible sets are subsets of people that can simultaneously be assigned

acceptable houses with no two people assigned the same house. Notice

that k-uniform matroids are the special case where |B| = k and all

houses are acceptable to each person. Therefore, transversal matroids

represent a generalization of k-unit auctions to a market environment

where not all units are acceptable to every agent.

• In a graphical matroid the ground set is the set of edges E in graph

G = (V,E) and feasible sets are acyclic subgraphs (i.e., a forest). Max-

imal feasible sets in a connected graph are spanning trees. The greedy-

by-value algorithm for graphical matroids is known as Kruskal’s algo-

rithm.
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The matroid properties characterize the set systems for which the

greedy-by-value algorithm optimizes social surplus. Typically the most

succinct method for arguing that matroid/ordinal environments have

good properties is by using the fact that the greedy-by-value algorithm

is optimal. Typically the most succinct method for arguing that an en-

vironment is matroid/ordinal is by showing that it satisfies the augmen-

tation property (and is downward closed).

Theorem 4.25 The greedy-by-value algorithm selects the feasible set

with largest surplus for all valuation profiles if and only if feasible sets

are a matroid.

Proof The “only if” direction was shown above by Lemma 4.24. The

“if” direction is as follows. Let r be the rank of the matroid. Let I =

{i1, . . . , ir} be the set of agents selected in the surplus maximizing as-

signment, and let J = {j1, . . . , jr} be the set of agents selected by greedy-

by-value. The surplus from serving a subset S of the agents is
∑

i∈S vi.

Assume for a contradiction that the surplus of set I is strictly more

than the surplus of set J , i.e., greedy-by-value is not optimal. Index the

agents of I and J in decreasing order of value. With respect to this

ordering, there must exist a first index k such that vik > vjk . Let Ik =

{i1, . . . , ik} and let Jk−1 = {j1, . . . , jk−1}. Applying the augmentation

property to sets Ik and Jk−1 we see that there must exist some agent

i ∈ Ik \Jk−1 such that Jk−1∪{i} is feasible. Of course, by the ordering of

Ik, vi ≥ vik > vjk which means that agent i was considered by greedy-by-

value before it selected jk. By downward closure and feasibility of Jk−1∪

{i}, when agent i was considered by greedy-by-value it was feasible. By

definition of the algorithm, agent i should have been added; this is a

contradiction.

To verify that an environment is ordinal/matroid the most direct ap-

proach is to verify the augmentation property. As an example we show

that constrained matching markets (a.k.a., the transversal matroid) are

indeed a matroid.

Lemma 4.26 For matching agents N = {1, . . . , n} to items K =

{1, . . . , k} via bipartite graph G = (N,K,E) where an agent i ∈ N can

be matched to an item j ∈ K if edge (i, j) ∈ E, the subsets of agents N

that correspond to matchings in G are the feasible sets of a matroid on

ground set N .

Proof Consider any two subsets N † and N ‡ of N that are feasible, i.e.,
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that correspond to matching in G, with |N †| < |N ‡|. We argue that

there exists an i ∈ N ‡ \N † such that N † ∪ {i} is feasible.
A matchingM corresponds to a subset of edges E such each vertex (ei-

ther an agent in N or an item in K) in the induced subgraph (N,K,M)

has degree (i.e., number of adjacent edges in M) at most one. Denote the

matching that witnesses the feasibility of N † by M †, and likewise, M ‡

for N ‡. Consider the induced subgraph (N,K,M † ∪M ‡). The vertices

in this subgraph have degree at most two. A graph of degree at most

two is a collection of paths and cycles.

There must be a path that starts at a vertex corresponding to an agent

i ∈ N ‡ \ N † and ends with a vertex corresponding to an item j ∈ K.

This is because paths that start with agents i ∈ N ‡ \N † can only end

at items or at agents i ∈ N † \N ‡. By the assumption |N †| < |N ‡|, there
are more agents in N ‡ \ N † than N † \ N ‡ and so a path ending in an

item must exist.

This path that ends at an item must alternate between edges in M ‡

and M †. This path has an odd number of edges as it starts with an

agent and ends with an item. As it starts with an agent matched by M ‡.
It has one more edge from M ‡ than M †. In matching theory and with

respect to matching M † this path is an augmenting path as swapping the

edges between the matchings results in a new matching for M † with one

more matched edge, and consequently one more agent is matched. This

additional matched agent is i. The existence of this new matching implies

that N † ∪ {i} is feasible. Thus, the matroid augmentation property is

satisfied.

4.6.2 Monopoly Reserve Pricing

In matroid environments that are inherently asymmetric, the i.i.d. as-

sumption is unnatural and therefore restrictive. As in single-item envi-

ronments, the surplus maximization mechanism with (discriminatory)

monopoly reserves continues to be a good approximation even when the

agents’ values are non-identically distributed.

Theorem 4.27 In regular, matroid environments the revenue of the

surplus maximization mechanism with monopoly reserves is a two ap-

proximation to the optimal mechanism revenue.

There are two very useful facts about the surplus maximization mech-

anism in ordinal environments that enable the proof of Theorem 4.27.
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The first shows that the critical value (which determine an agent’s pay-

ment) for an agent is the value of the agent’s “best replacement.” The

second shows that the surplus maximization mechanism is pointwise

revenue monotone, i.e., if the values of any subset of agents increases

the revenue of the mechanism does not decrease. These properties are

summarized by Lemma 4.28 and Theorem 4.29, below. We will prove

Lemma 4.28 and leave the formal proofs of Theorem 4.27 and Theo-

rem 4.29 for Exercise 4.19 and Exercise 4.20, respectively.

Definition 4.9 If I ∪ {i} ∈ I is surplus maximizing set containing i

then the best replacement for i is j = argmax{k : I∪{k}∈I} vk.

Definition 4.10 A mechanism is revenue monotone if for all valuation

profiles v ≥ v
† (i.e., for all i, vi ≥ v†i ), the revenue of the mechanism on

v is at least its revenue on v
†.

Lemma 4.28 In matroid environments, the surplus maximization mech-

anism on valuation profile v has the critical values v̂ satisfying, for each

agent i, v̂i = vj where j is the best replacement for i.

Proof The greedy-by-value algorithm is ordinal, therefore we can as-

sume without loss of generality that the cumulative values of all subsets

of agents are distinct. To see this, add a U [0, ǫ] random perturbation to

each agent value, the event where two subsets sum to the same value

has measure zero, and as ǫ → 0 the critical values for the perturbation

approach the critical values for the original valuation profile, i.e., from

equation (4.9) below.

To proceed with the proof, consider two alternative calculations of the

critical value for player i. The first is from the proof of Lemma 3.1 where

OPT(0,v−i) and OPT−i(∞,v−i) are optimal surplus from agents other

than i with i is not served and served, respectively.

v̂i = OPT(0,v−i)−OPT−i(∞,v−i). (4.9)

The second is from the greedy algorithm. Sort all agents except i by

value, then consider placing agent i at any position in this ordering.

Clearly, i is served when placed first. Let j be the first agent after which

i would not be served. Then,

v̂i = vj . (4.10)

Now we compare these the two formulations of critical values given by

equations (4.9) and (4.10). Consider i ordered immediately before and

immediately after j and suppose that i is served in former order and not
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served in the later order. In the latter order, it must be that j is served

as this is the only possible difference between the outcomes of the greedy

algorithm for these two orderings up to the point that both i and j have

been considered. Therefore, agent j must be served in the calculation

of OPT(0,v−i). Let J ∪ {j} be the agents served in OPT(0,v−i) and

let I ∪ {i} be the agents served in OPT(∞,v−i). We can deduce from

equations (4.9) and (4.10) that,

vj = v̂i

= OPT(0,v−i)−OPT−i(∞,v−i)

= vj + v(J)− v(I),

where v(S) denotes
∑

k∈S vk. We conclude that v(I) = v(J) which, by

the assumption that the cumulative values of distinct subsets are dis-

tinct, implies that I = J . Meaning: j is a replacement for i; furthermore,

by optimality of J∪{j} for OPT(0,v−i), j must be the best, i.e., highest

valued, replacement.

Theorem 4.29 In matroid environments, the surplus maximization

mechanism is revenue monotone.

4.6.3 Oblivious and Adaptive Posted Pricings

Recall that an oblivious posted pricing predetermines prices to offer each

agent and its revenue must be guaranteed in worst case over the order

that the agents arrive. It is conjectured that oblivious posted pricing is

a constant approximation for any matroid environment. In contrast, an

adaptive posted pricing is one that, for any arrival order of the agents,

calculates the price to offer each agent when she arrives. The calculated

price can be a function of the agents identity, the agents that have pre-

viously arrived and the agents that are currently being served by the

mechanism. The proof of the following theorem is based on a matroid

prophet inequality (that we will not cover in this text).

Theorem 4.30 For (non-identical, irregular) matroid environments,

there is an adaptive posted pricing that is a two approximation to the

optimal mechanism revenue.

4.6.4 Sequential Posted Pricings

The e/e−1 approximation for single-item sequential posted pricing and its

proof via correlation gap extends to matroid environments. To present
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this extension, we first extend the definition of the optimal ex ante mech-

anism to matroids. We then relate the sequential posted pricing question

to the optimal ex ante mechanism via the correlation gap. Finally, we

conclude with a necessary extra step for adapting the pricing to irregular

distributions.

Consider a matroid set system (N, I). Previously we defined the rank

of a matroid as the maximum cardinality of any feasible set. We can

similarly define the rank of a not-necessarily-feasible subset S of the

ground set N as the maximum cardinality of any feasible subset of it. In

other words, it is the rank of the induced matroid on (S, I). Let rank(S)

denote this matroid rank function.

A profile of ex ante probabilities q̂ = (q̂1, . . . , q̂n) is ex ante feasi-

ble, if there exists a distribution D over feasible sets I of the matroid

that induces these ex ante probabilities. This definition is cumbersome;

however, it is simplified by the following characterization. For any dis-

tribution D over feasible sets and any not-necessarily-feasible set S it

must be that the expected number of agents served by D is at most the

rank of that set. I.e., for all S ⊂ N ,
∑

i∈S
q̂i ≤ rank(S). (4.11)

This inequality follows as the left-hand side is the expected number

of agents in S that are served and the right hand side is the maximum

number of agents in S that can be simultaneously served. It is impossible

for this expected number to be higher than this maximum possible. In

fact, this necessary condition is also sufficient.

Proposition 4.31 For a matroid set system (N, I), a profile of ex

ante probabilities q̂ is ex ante feasible (i.e., there is a distribution D

over feasible sets I that induces ex ante probabilities q̂) if and only if
∑

i∈S q̂i ≤ rank(S) holds for all subsets S of N .

From the above characterization of ex ante feasibility, we can write

the optimal ex ante pricing program as follows.

max
q̂

∑

i
R(q̂i) (4.12)

s.t.
∑

i∈S
q̂i ≤ rank(S), ∀S ⊂ N.

If the objective were given by linear weights instead of concave revenue

curves, this program would be optimized easily by the greedy-by-value

algorithm (with values equal to weights).5 With convex revenue curves,

5
Readers familiar with convex optimization will note that the matroid rank
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the marginal revenue approach enables this program to be optimized via

a simple greedy-by-value based algorithm.6

Suppose for now that the distribution over agent values is regular.

The revenue curve for an agent with inverse demand curve V (·) is con-

sequently given by R(q̂) = q̂ · v̂ for v̂ = V (q̂) since, for a regular distri-

bution, the q̂ optimal ex ante pricing posts price v̂. The optimal ex ante

revenue from program (4.12) is thus
∑

i q̂iv̂i.

The ex ante optimal revenue can be interpreted as the correlated value

of a set function as follows. Consider the matroid weighted rank function

rankv̂(·) for weights v̂ defined for a feasible set S ∈ I as
∑

i∈S v̂i and

in general for not-necessarily-feasible set S ⊂ N as that maximum over

feasible subsets of S of the weighted rank of that subset. As q̂ is ex ante

feasible, there exists a correlated distribution D over feasible sets which

induces ex ante probabilities q̂. The correlated value of this distribution

for the matroid weighted rank set function is exactly the optimal ex ante

revenue.

Now consider the sequential posted pricing that orders the agents by

decreasing price v̂i. When an agent i arrives in this order, if it is feasible

to serve the agent along with the set of agents who have been previously

served, then offer her price v̂i; otherwise, offer her a price of infinity (i.e.,

reject her). Consider the outcome of this process for valuation profile

v where the set of agents willing to buy at their respective price is

S = {i : vi ≥ v̂i} (which may not be feasible). The revenue from this

sequential posted pricing is given by the matroid weighted rank function

as rankv̂(S).

We conclude that the approximation factor of sequential posted pric-

ing with respect to the optimal ex ante revenue (which upper bounds

the optimal revenue for ex post feasibility) is given by the correlation

gap of the matroid weighted rank set function. Thus, it remains to an-

alyze the correlation gap of the matroid weighted rank set function. An

approach, which we will discuss here to analyze the correlation gap of

the matroid weighted rank set functions, is to observe that the matroid

function is submodular and therefore the constraint imposed by ex ante
feasibility is that of a polymatroid.

6
Discretize quantile space [0, 1] into Q evenly sized pieces. Consider the Q-wise
union of the matroid set system (the class of matroid set systems is closed under
union). Calculate marginal revenues of each discretized quantile of each agent.
Run the greedy-by-marginal-revenue algorithm. Calculate q̂i as the total quantile
of agent i that is served by algorithm, i.e., 1/Q times the number of i’s
discretized pieces that are served.
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weighted rank function is submodular and that the correlation gap of

any submodular function is e/e−1.

For ground set N , consider a real valued set function g : 2N → R.

Intuitively, submodularity corresponds to diminishing returns. Adding

an element i to a large set increases the value of the set function less

than it would for adding it to a smaller subset.

Definition 4.11 A set function g is submodular if for S† ⊂ S‡ and

i 6∈ S‡,

g(S† ∪ {i})− g(S†) ≥ g(S‡ ∪ {i})− g(S‡).

Importantly, the matroid rank and weighted-rank functions are sub-

modular (Definition 4.11). Therefore, the matroid structure imposes di-

minishing returns.

Theorem 4.32 The matroid rank function is submodular; for any real

valued weights, the matroid weighted-rank function is submodular.

Proof We prove the special case of uniform weights (equivalently: that

the matroid rank function is submodular; for the general case, see Ex-

ercise 4.21). Consider S† ⊂ S‡ and i 6∈ S‡ and the weights v−i as

vj =







4 if j ∈ S†,

2 if j ∈ S‡ \ S†,

0 otherwise.

Consider the case that vi = 1 and vi = 3. If i is added by greedy-by-value

when vi = 1 then i is certainly added by greedy-by-value when vi = 3:

moving i earlier in the greedy ordering only makes it more plausible that

it is feasible to add i at the time i is considered. Therefore, difference

in rank of S† with and without i is at least the difference in rank of S‡

with and without i. Hence, the defining equation (Definition 4.11) for

submodularity holds.

We omit the proof of the following theorem and instead refer readers

to the simpler proof that the maximum value element set function has

correlation gap e/e−1 (see Lemma 4.12, Section 4.3).

Theorem 4.33 The correlation gap for a submodular set function and

any distribution over sets is e/e−1.

For regular distributions and by the above discussion, the ex ante

service probabilities from the ex ante program (4.12) corresponds to a
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sequential posted pricing that has approximation factor bounded by the

correlation gap. The same bound can be obtained for irregular distribu-

tions as well (see Section 4.3 and Exercise 4.22).

Theorem 4.34 For matroid environments, there is a sequential posted

pricing with revenue that is a e/e−1 approximation to the optimal auction

revenue.

4.6.5 Anonymous Reserves

While Proposition 4.23 showed that anonymous reserves are optimal for

i.i.d. regular matroid environments, this is the extent to which anony-

mous reserves give good approximation for matroid environments. Of

course, all lower bounds for multi-unit environments extend to matroids

(where the k-unit auction result generalizes to rank k matroids). In addi-

tion there two new lower bounds. For i.i.d. regular matroid environments,

anonymous posted pricing does not give a constant approximation. For

(irregular) i.i.d. matroid environments, neither anonymous reserve nor

posted pricing gives a constant approximation (Exercise 4.23).

4.6.6 Beyond Ordinal Environments

Generalizing reserve and posted pricing approximation beyond ordinal

environments is difficult because in general environments (even downward-

closed ones) the optimal mechanism may choose to serve one agent over

a set of other agents, or vice versa. For example, this would happen when

the first agents virtual value exceeds the sum of the other agents’ virtual

values. Recall that the matroid property discussed previously guarantees

that tradeoffs between serving agents is always done one for one (e.g., via

Lemma 4.28). There are two, in fact opposite, effects we should be wor-

ried about when proceeding to general environments. First, in a general

downward-closed environment one agent could potentially block many

agents with each with comparable payments. Second, many agents with

minimal payments could potentially block a few agents who would have

made significant payments.

We illustrate the first effect with an impossibility result for posted

pricing mechanisms.

Lemma 4.35 For (i.i.d., regular) downward-closed environments the

approximation ratio of posted pricing (oblivious or sequential) is at best

Ω(logn/ log logn).



142 Bayesian Approximation

Proof Fix an integer h, set n = hh+1, and partition the n agents into hh

parts of size h each. Consider the one-part-only feasibility constraint that

forbids simultaneously serving agents in distinct parts, but allows and

number of agents in the same part to be served. The agents’ values are

i.i.d. from the equal revenue distribution on [1, h], i.e., with F (z) = 1−1/z

and a pointmass of 1/h at value h. Call an agent high-valued if her

value is h and, otherwise, low-valued. We show that the approximation

factor is at least h/2 · e−1/e and conclude that the approximation factor

is Ω(h) = Ω(logn/log logn).7

To get a lower bound on the optimal revenue, REF, consider the mech-

anism that serves a part only if all agents in the part are high valued,

charges each of the agents in the part h, and obtains a total revenue

of h2. As there are hh parts and each part has probability h−h of be-

ing all high valued, the probability that one or more of these parts is

all high valued is given by the correlation gap of the one-or-more set

function as e−1/e (Lemma 4.12). Thus, the optimal revenue is at least

REF ≥ h2 · e−1/e.

To get an upper bound on the revenue of any posted pricing, notice

that once one agent accepts a price, only agents in that same part as

this agent can be simultaneously served. Since the distribution is equal

revenue, the revenue from serving these remaining agents totals exactly

h− 1 (one from each of h− 1 agents). The best revenue we can get from

the first agent in the part is h. Thus, any posted pricing mechanism’s

revenue is upper bounded by 2h− 1, and so APX ≤ 2h.

Before we illustrate the second effect (many low-paying agents block-

ing a few high-paying agents), notice that the tradeoffs of optimizing

virtual values (for revenue) can be much different from the tradeoffs of

optimizing values (for social surplus). Therefore, the outcome from sur-

plus maximization could be much different from that of virtual surplus

maximization.

Example 4.2 The expected value the equal revenue distribution on

[1, h] is 1 + lnh (for the unbounded equal revenue distribution it is infi-

nite). This can be calculated from the formulaE[v] =
∫∞
0 (1−FEQR(z)) dz

with FEQR(z) = 1 − 1/z. On the other hand, the monopoly revenue for

the equal revenue distribution is one. Therefore, the optimal social sur-

7
To see the asymptotic behavior of the approximation ratio in terms of n, notice
that by definition logn = (h+ 1) log h, so (a) rearranging h = logn/log h − 1 and
(b) taking the logarithm log logn > log(h+ 1) + log log h. From (b),
log logn = Θ(log h) and plugging this into (a) h = Θ(log n/log log n).
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plus and optimal revenue for a regular single-agent environment can be

arbitrarily separated.

Because of the difference between social surplus and potential revenue

(i.e., virtual surplus) can be large, there may be a set of agents with high

social surplus that collectively block another set of agents from whom a

large revenue could be obtained. In the surplus maximization mechanism

with reserves, the payment an agent makes is either her reserve price or

the externality she imposes on the other agents. In the scenario under

consideration it may be that none of the agents in the first set is indi-

vidually responsible for other agents being rejected, consequently none

impose any externality. Therefore, the revenue they contribute need not

exceed the revenue that could have been obtained by serving the second

set. We illustrate this phenomenon with an impossibility result for sur-

plus maximization with monopoly reserves in regular downward-closed

environments.

Lemma 4.36 For (regular) downward-closed environments the approx-

imation factor of the second-price auction with monopoly reserves is

Ω(logn).

Proof Consider a one-versus-many set system on n+1 agents where it

is feasible to serve agent 1 (Alice) or any subset of the remaining agents

2, . . . , n+ 1 (the Bobs). This set system is downward closed.

A sketch of the argument is as follows. The Bobs’ values are dis-

tributed i.i.d. from an equal revenue distribution. If we decide to sell to

the Bobs the best we can get is a revenue of n total (one from each). Of

course, the social surplus of the Bobs is much bigger than the revenue

that selling to them would generate (see Example 4.2, above). We then

set Alice’s value deterministically to a large value that is Θ(n logn) but

with high probability below the social surplus of the Bobs. The opti-

mal auction could always sell to Alice at her high value; thus, REF is

Θ(n logn). Unfortunately, the monopoly reserves for the Bobs are one

and, therefore, not binding. Surplus maximization with monopoly re-

serves will with high probability not serve Alice, and therefore derive

most of its revenue from the Bobs. The maximum expected revenue ob-

tainable from the Bobs is n; thus, APX = Θ(n). See Exercise 4.24 for

the details.

In the next section we show; for a large class of important distributions

that, intuitively, do not have tails that are too heavy; that virtual values

and values are close. Consequently, maximizing surplus is similar enough
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to maximizing virtual surplus that monopoly reserve pricing gives a good

approximation to the optimal mechanism.

4.7 Monotone-hazard-rate Distributions

An important property of electronic devices, such as light bulbs or com-

puter chips, is how long they will operate before failing. If we model

the lifetime of such a device as a random variable then the failure rate,

a.k.a., hazard rate, for the distribution at a certain point in time is the

conditional probability (actually: density) that the device will fail in

the next instant given that it has survived thus far. Device failure is

naturally modeled by a distribution with a monotone (non-decreasing)

hazard rate, i.e., the longer the device has been running the more likely

it is to fail in the next instant. The uniform, normal, and exponential

distributions all have monotone hazard rate. The equal-revenue distri-

bution (Definition 4.2) does not.

Definition 4.12 The hazard rate of distribution F (with density f)

is h(z) = f(z)
1−F (z) . The distribution has monotone hazard rate (MHR) if

h(z) is monotone non-decreasing.

Intuitively distributions with monotone hazard rate are not heavy

tailed. In fact, the exponential distribution, with FEXP(z) = 1 − e−z,

fEXP(z) = e−z, and hEXP(z) = 1 is the boundary between monotone

hazard rate and non; its hazard rate is constant. Hazard rates are clearly

important for revenue-optimal auctions as the definition of virtual valu-

ations (for revenue), expressed in terms of the hazard rate, is

φ(v) = v − 1/h(v). (4.13)

It is immediately clear from equation (4.13) that monotone hazard rate

implies regularity (i.e., monotonicity of virtual value; Definition 3.4).

An important property of monotone hazard rate distributions that

will enable approximation by the surplus maximization mechanism with

monopoly reserves is that the optimal revenue is within a factor of

e ≈ 2.718 of the optimal surplus. We illustrate this bound with the

exponential distribution (Example 4.3), prove it for the case of a single-

agent environments, and defer general downward-closed environments to

Exercise 4.25. Contrast these results to Example 4.2, above, which shows

that for non-monotone-hazard-rate distributions, the ratio of surplus to

revenue can be unbounded.
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Figure 4.4 The cumulative hazard rate function (solid, black) for the uni-

form distribution is H(v) = − ln(1 − v) and it is lower bounded by its

tangent (dashed, gray) at v̂
⋆
= 1/2.

Example 4.3 The expected value the exponential distribution (with

rate one) is one. This can be calculated from the formula E[v] =
∫∞
0 (1−

FEXP(z)) dz with FEXP(z) = 1 − e−z. Since the exponential distribu-

tion has hazard rate hEXP(z) = 1, the virtual valuation formula for

the exponential distribution is φEXP(v) = v − 1. The monopoly price

is one. The probability that the agent accepts the monopoly price is

1 − FEXP(1) = 1/e so its expected revenue is 1/e. The ratio of the ex-

pected surplus to expected revenue is e.

Theorem 4.37 For any downward-closed, monotone-hazard-rate en-

vironment, the optimal expected revenue is an e ≈ 2.718 approximation

to the optimal expected surplus.

Lemma 4.38 For any monotone-hazard-rate distribution its expected

value is at most e times more than the expected monopoly revenue.

Proof Let REF = E[v] be the expected value and APX = v̂⋆ · (1 −

F (v̂⋆)) be the expected monopoly revenue. Let H(v) =
∫ v

0
h(z) dz be

the cumulative hazard rate of the distribution F . We can write

1− F (v) = e−H(v), (4.14)

an identity that can be easily verified by differentiating the natural loga-

rithm of both sides of the equation.8 Recall of course that the expectation

8
We have d

dv
ln(1 − F (v)) = −f(v)

1−F (v)
and d

dv
ln

(

e
−H(v)

)

= −h(v).
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of v ∼ F is
∫∞
0 (1−F (z)) dz. To get an upper bound on this expectation

we need to upper bound e−H(v) or equivalently lower bound H(v).

The main difficulty is that the lower bound must be tight for the ex-

ponential distribution where optimal expected value is exactly e times

more than the expected monopoly revenue. Notice that for the exponen-

tial distribution the hazard rate is constant; therefore, the cumulative

hazard rate is linear. This observation suggests that perhaps we can get

a good lower bound on the cumulative hazard rate with a linear function.

Let v̂⋆ = φ−1(0) be the monopoly price. Since H(v) is a convex func-

tion (it is the integral of a monotone function), we can get a lower bound

H(v) by the line tangent to it at v̂⋆. See Figure 4.4. I.e.,

H(v) ≥ H(v̂⋆) + h(v̂⋆)(v − v̂⋆)

= H(v̂⋆) + v−v̂
⋆

v̂
⋆ . (4.15)

The second part follows because v̂⋆ = 1/h(v̂⋆) by the choice of monopoly

price v̂⋆ and equation (4.13). Now we use this bound to calculate a bound

on the expectation.

REF =

∫ ∞

0

(1− F (z)) dz =

∫ ∞

0

e−H(z) dz

≤

∫ ∞

0

e−H(v̂
⋆
)−z/v̂⋆+1 dz = e · e−H(v̂

⋆
) ·

∫ ∞

0

e−
z/v̂⋆ dz

= e · e−H(v̂
⋆
) · v̂⋆ = e · (1 − F (v̂⋆)) · v̂⋆ = e ·APX .

The first and last lines follow from equation (4.14); the inequality follows

from equation (4.15).

Shortly we will show that the surplus maximization mechanism with

monopoly reserve prices is a two approximation to the optimal mech-

anism for monotone-hazard-rate downward-closed environments. This

result is derived from the intuition that revenue and surplus are close.

For revenue and surplus to be close, it must be that virtual values and

values are close. Notice that the monotone-hazard-rate condition, via

equation (4.13), implies that for higher values (which are more impor-

tant for optimization) virtual value is even closer to value than for lower

values (see Figure 4.5). The following lemma reformulates this intuition.

Lemma 4.39 For any monotone-hazard-rate distribution F and v ≥

v̂⋆, φ(v) + v̂⋆ ≥ v.

Proof Since v̂⋆ = φ−1(0) it solves v̂⋆ = 1/h(v̂⋆
). By MHR, v ≥ v̂⋆ implies
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Figure 4.5 The virtual value for the uniform distribution is depicted. For

v ≥ v̂
⋆
the virtual value φ(v) (solid, black) is sandwiched between the value

v (dashed, gray) and value less the monopoly price v − v̂
⋆
(dashed, gray).

h(v) ≥ h(v̂⋆). Therefore,

φ(v) + v̂⋆ = v − 1/h(v) + 1/h(v̂⋆
) ≥ v.

Theorem 4.40 For any monotone-hazard-rate downward-closed en-

vironment, the revenue of the surplus maximization mechanism with

monopoly reserves is a two approximation to the optimal mechanism

revenue.

Proof Let APX denote the surplus maximization mechanism with monopoly

reserves (and its expected revenue) and let REF denote the revenue-

optimal mechanism (and its expected revenue).We start with two bounds

on APX and then add them.

APX = E[APX’s virtual surplus] , and

APX ≥ E[APX’s winners’ reserve prices] .

Sum these two equations and let x(v) denote the allocation rule of APX,

2 ·APX ≥ E[APX’s winners’ virtual values + reserve prices]

= E
[∑

i
(φi(vi) + v̂⋆i ) · xi(v)

]

≥ E
[∑

i
vi · xi(v)

]

= E[APX’s surplus]

≥ E[REF’s surplus] ≥ E[REF’s revenue] = REF .

The second inequality follows from Lemma 4.39. By downward closure,

neither REF nor APX sells to agents with negative virtual values. Of

course, APX maximizes the surplus subject to not selling to agents with

negative virtual values. Hence, the third inequality. The final inequality

follows because the revenue of any mechanism is never more than its

surplus.
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We have seen in this section that, for monotone-hazard-rate distribu-

tions in downward closed environments, the optimal social surplus and

optimal revenue are close. We then used this fact to show that a the

monopoly-reserves auction is a good approximation to the optimal auc-

tion. Because surplus and revenue are close, the optimal surplus can be

used as an upper bound on the optimal revenue. Finally, we showed that

the monopoly-reserves auction has a revenue that approximates the opti-

mal surplus. This approach of comparing revenue to surplus is somewhat

brute-force, and there is thus a sense that these approximation bounds

could be considered trivial.

Exercises

4.1 In Chapter 1 we saw that a lottery (Definition 1.2) was an n ap-

proximation to the optimal social surplus. At the time we claimed

that this approximation guarantee was the best possible by a mech-

anism without transfers. Prove this claim.

4.2 Consider a two-agent single-item auction where agent 1 and agent 2

have values distributed uniformly on [0, 2] and [0, 3], respectively.

Calculate and compare the expected revenue of the (asymmetric)

revenue-optimal auction and the second-price auction with (asym-

metric) monopoly reserves. In other words, calculate the expected

revenues for the allocation rules of Example 3.4 which are depicted

in Figure 4.1.

4.3 Finish the proof of Lemma 4.3 by showing that for any irregular

distribution, the value of an agent is at least her virtual value for

revenue. Hint: start by observing that with respect to the price-

posting revenue curve P (q) = q ·V (q), V (q) is the slope of the line

from the origin to the point (q, P (q)) on the curve, and that the

lemma for the regular case implies that lines from the origin cross

the curve only once.

4.4 Define a distribution to be prepeak monotone if its revenue curve

is monotone non-decreasing on [0, q̂⋆], i.e., at values above the

monopoly price. Notice that prepeak monotonicity is a weaker con-

dition than regularity. First, it requires nothing of the distribution

below the monopoly price. Second, above the monopoly price the

price-posting revenue curve does not need to be concave. Reprove

Theorem 4.1 with a weaker assumption that the agents’ distribu-

tions are prepeak monotone.
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4.5 Calculate the expected revenue of the optimal auction in an n-agent

k-unit environment with values drawn i.i.d. from the equal revenue

distribution (Definition 4.2; distribution function FEQR(z) = 1 −
1/z). Express your answer in terms of n and k.

4.6 Show that the revenue from the single-item monopoly-reserves auc-

tion smoothly degrades as the distribution becomes more irregular.

To show this you will need to formally define near regularity. One

reasonable definition is as follows. A distribution F is α-nearly reg-

ular if there is a regular distribution F † such that price-posting rev-

enue curves of these distributions satisfy P (q) ≥ P †(q) ≥ 1/αP (q)

for all q.

(a) Explain why the definition above is a good definition for near

regularity.

(b) Prove an approximation bound the second-price auction with

monopoly reserves in α-nearly regular environments.

4.7 Generalize the prophet inequality theorem to the case where both

the prophet and the gambler face an ex ante constraint q̂ on the

probability that they accept any prize.

4.8 Show that another method for choosing the threshold in the prophet

inequality is to set v̂ = 1/2 · E[maxi vi]. Hint: for this choice of v̂,

prove that v̂ ≤
∑

iE[(vi − v̂)+].

4.9 Show that the prophet inequality is tight in two senses.

(a) Show that there is a distribution over prizes such that the ex-

pected prize of the optimal backwards induction strategy is half

of the prophet’s.

(b) Show that there is a distribution over prizes such that the ex-

pected prize of any uniform threshold strategy is at most half

of the optimal backwards induction strategy.

4.10 Adapt the statement and proof of Theorem 4.13 to the objective of

social surplus. Be explicit about the prices and ordering of agents

in the sequential posted pricing of your construction.

4.11 For two agents with values drawn from the uniform distribution,

calculate and compare the price postings from:

(a) the prophet inequality based oblivious posted pricing,

(b) the correlation gap based sequential posted pricing, and

(c) the optimal anonymous price posting.

4.12 For i.i.d. regular single-item environments, give a lower bound

lower bound for the approximation ratio of anonymous pricing that
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that nearly matches the upper bound. Hint: consider the regular

distribution with revenue curve R(q) = (1− 1/n)q + 1//n.

4.13 Prove Theorem 4.18 by adapting the analysis of the prophet in-

equality (Theorem 4.7) to show, for any (non-identical) regular

single-item environment, that there exists an anonymous price (i.e.,

the same for each agent) such that price-posting obtains four ap-

proximation to the optimal ex ante mechanism revenue.

4.14 Show that there exists an i.i.d. distribution and a matroid for which

the surplus maximization mechanism with an anonymous reserve is

no better than an Ω(logn/ log logn) approximation to the optimal

mechanism revenue.

4.15 Show that for (non-identical, irregular) n-agent single-item envi-

ronments the second-price auction with anonymous reserve and

anonymous posted pricing are at best n approximations to the

optimal auction revenue (i.e., prove the lower bound of Theo-

rem 4.19). To do so, analyze the revenue of the optimal auction

and the second-price auction with any anonymous reserve when

the agents values distributed as:

vi =

{

hi w.p. h−i, and

0 otherwise.

and parameter h approaches infinity. Hint: the analysis of Propo-

sition 4.5 is similar.

(a) Show that the optimal auction has an expected revenue of n in

the limit of h.

(b) Show that posting anonymous price hi (for i ∈ {1, . . . , n}) has

an expected revenue of one in the limit of h.

(c) Show that for the second-price auction and anonymous reserve

price hi (for i ∈ {1, . . . , n}) has an expected revenue of one in the

limit of h. Hint: notice that conditioned on their being exactly

one agent with a positive value, anonymous reserve pricing and

anonymous posted pricing give the same revenue.

(d) Combine the above three steps to prove the theorem.

4.16 Generalize Proposition 4.6 and Proposition 4.5 to show that for

n-agent k-unit irregular environments the (k + 1)st-price auction

with monopoly reserves is a n/k approximation and give a matching

lower bound, respectively.

4.17 Prove Proposition 4.21, i.e., for k-unit environments that there is
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a sequential posted pricing that is a (1− 1/
√
2πk)−1 approximation

to the optimal auction, by completing the following steps.

(a) Reduce the correlation gap of the k-maximum-weight-elements

set function, i.e., for weights v̂ = (v̂1, . . . , v̂n) the value of g
kMWE(S)

for subset S is the sum of the k largest weight elements of S,

and arbitrary correlated distributions to correlated distributions

over sets of cardinality exactly k.

(b) Reduce the correlation gap of the k-maximum-weight-elements

set function on correlated distributions over sets of cardinality

k to the correlation gap of the k-capped-cardinality set function

gkCC(S) = min(k, |S|) (over the same class of distributions).

(c) Show that the correlation gap of the k-capped-cardinality set

function on correlated distributions over sets of cardinality k is

(1 − k/e)k · 1/k!)−1.

(d) Apply the correlation gap to obtain a bound on the approx-

imation ratio of the revenue of a uniform virtual pricing for

(non-identical, irregular) k-unit environments with respect to

the optimal auction revenue. Explain exactly how to find an

appropriate pricing.

4.18 Recall that a feasible set of a matroid is maximal if there is no

element that can be added to it such that the union is feasible. It

is easy to see that the augmentation property implies that all max-

imal feasible sets of a matroid have the same cardinality. Rederive

this result directly from the fact that greedy-by-value is optimal.

4.19 Show that in regular, matroid environments the surplus maximiza-

tion mechanism with monopoly reserves gives a two approximation

to the optimal mechanism revenue, i.e., prove Theorem 4.27. Hint:

This result can be proved using Lemma 4.28 and Theorem 4.29

and a similar argument to the proof of Theorem 4.1.

4.20 A mechanismM is revenue monotone if for all pairs of valuation

profiles v and v
† such that for all i, vi ≥ v†i , the revenue ofM on v

is at least its revenue on v
†. It is easy to see that the second-price

auction is revenue monotone.

(a) For single-dimensional linear agents, give a downward-closed

environment for which the surplus maximization mechanism

(Mechanism 3.3) is not revenue monotone.

(b) Prove that the surplus maximization mechanism is revenue mono-

tone in matroid environments.

4.21 Prove, directly from the fact that greedy-by-value is optimal for
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matroid set systems, that the matroid rank function is submodular.

I.e., complete the proof of Theorem 4.32.

4.22 Consider sequential posted pricings for irregular matroid environ-

ments.

(a) Show that there is a sequential posted pricing that is an e/e−1

approximation to the revenue optimal auction.

(b) Give an algorithm for finding such a sequential posted pricing.

Assume you are given the ex ante service probabilities q̂ that

optimizes program (4.12). Assume you are given oracle access to

the single-agent optimal ex ante pricing problems for each agent,

i.e., for any agent i and service probability q̂i the oracle will tell

you the revenue-optimal lottery pricing that this agent with ex

ante probability q̂i. Finally, assume you have blackbox access

to a procedure that for any sequential posted pricing v̂ will tell

you the sequential posted pricing’s expected revenue (assuming

prices are offered to agents in decreasing order). Your algorithm

should run in linear time in the number n of agents, i.e., it should

have at most a linear number of basic computational steps and

calls to any of the above oracles.

4.23 Show the following inapproximability results for anonymous re-

serve and posted pricing in i.i.d. matroid environments.

(a) For i.i.d. regular matroid environments, anonymous posted pric-

ing does not give a constant approximation.

(b) For (irregular) i.i.d. matroid environments, neither anonymous

reserve nor posted pricing gives a constant approximation.

4.24 Complete the proof of Lemma 4.36 by showing that there is a

family of regular downward-closed environments that demonstrates

that the surplus maximization mechanism with monopoly reserves

is an Ω(logn) approximation to the optimal revenue. Hint: to set

the value of Alice such that with high probability the social sur-

plus of the Bobs exceeds Alice’s value you can truncate the equal

revenue distribution to a finite value h and then employ a stan-

dard Chernoff-Hoeffding concentration bound that shows that the

sum of i.i.d. random variables on [0, h] is concentrated around its

expectation. For a sum S of i.i.d. random variables on [0, h]:

Pr[|S −E[S]| ≥ δ] ≤ 2e
−2δ

2
/nh

2

.

4.25 Consider the following surplus maximization mechanism with lazy
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monopoly reserves where, intuitively, we run the surplus maximiza-

tion mechanism SM and then reject any winner i whose value is

below her monopoly price v̂⋆i :

(a) (x†,p†)← SM(v),

(b) xi =

{

x†
i if vi ≥ v̂⋆i

0 otherwise, and

(c) pi = max(v̂⋆i , p
†
i ).

Prove that the revenue of this mechanism is an e approximation

to the optimal social surplus in any downward-closed, monotone-

hazard-rate environment. Conclude Theorem 4.37 as a corollary.

Chapter Notes

For non-identical, regular, single-item environments, the proof that the

second-price auction with monopoly reserves is a two approximation is

from Chawla et al. (2007). The generalization of monopoly reserve pric-

ing to general environments is from Hartline and Roughgarden (2009).

They showed that it is a two approximation for regular matroid envi-

ronments and for monotone-hazard-rate downward-closed environments.

For single-item environments, the second-price auction with an anony-

mous reserve was shown to be between and two and four approximation

by Hartline and Roughgarden (2009).

The prophet inequality theorem was proven by Samuel-Cahn (1984)

and the connection between prophet inequalities and mechanism design

was first made by Taghi-Hajiaghayi et al. (2007). Chawla et al. (2010)

studied approximation of the optimal mechanism via oblivious and se-

quential posted pricings. They showed, via the prophet inequality, that

a uniform virtual pricing is a two approximation for single-item environ-

ments. For k-unit environments, Taghi-Hajiaghayi et al. (2007) give a

generalized prophet inequality with an upper bound of (1+
√

8/k ln k) for

sufficiently large k; an analogous approximation bound for uniform vir-

tual pricing holds. Beyond single- and multi-unit environments, Chawla

et al. (2010) showed that oblivious posted pricings give a three approxi-

mation for graphical matroid environments and upper bounded the ap-

proximation factor for general matroids of rank k as logarithmic in k.

As of this writing, it is unknown whether there is an oblivious posted

pricing give constant approximations for general matroids. On the other

hand, Kleinberg and Weinberg (2012) show that there is an adaptive
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posted pricing that obtains a two approximation for any arrival order of

the agents. This adaptive posted pricing determines the price to offer an

agent when it arrives and this price can be based on the set of agents who

have previously arrived and potentially been served.9 See Alaei (2011)

for a general framework for adaptive posted pricing.

The usage of the optimal ex ante mechanism as an upper bound on the

optimal mechanism is from Chawla et al. (2007) and Alaei (2011). The

approximation factor of sequential posted pricings were first studied by

Chawla et al. (2010) they proved the e/e−1 approximation for single-item

environments, a two approximation for matroid environments, and con-

stant approximations for several other environments. The connection to

correlation gap and the e/e−1 approximation for matroid environments

was observed by Yan (2011) by way of the correlation gap theorem of

Agrawal et al. (2010) for submodular set functions. Yan also gave the im-

proved analysis for multi-unit auctions which shows that as the number

k of available units increases the approximation factor from sequential

posted pricing converges to one.

The non-game-theoretic analysis of the optimality of the greedy-by-

value algorithm under matroid feasibility was initiated by Joseph Kruskal

(1956) and there are books written solely on the structural properties

of matroids, see e.g., Oxley (2006) or Welsh (2010). Mechanisms based

on the greedy-by-value algorithm were first studied by Lehmann et al.

(2002) who showed that even when these algorithms are not optimal,

mechanisms derived from them are incentive compatible (cf. Chapter 8).

The first comprehensive study of the revenue of the surplus maximizing

mechanism in matroid environments was given by Talwar (2003); for

instance, he proved critical values for matroid environments are given

by the best replacement. The revenue monotonicity for matroid environ-

ments and non-monotonicity for non-matroids is discussed by Ausubel

and Milgrom (2006), Day and Milgrom (2007), and Dughmi et al. (2009).

The amenability to approximation of environments with value distri-

butions satisfying the monotone hazard rate as been observed several

times, e.g., by Hartline et al. (2008), Hartline and Roughgarden (2009),

and Bhattacharya et al. (2010). The structural comparison that shows

that the optimal revenue is an e ≈ 2.718 approximation to the optimal

social surplus for for downward-closed, monotone-hazard-rate environ-

ments was given by Dhangwatnotai et al. (2010).

9
Note that both the sequential posted pricings and oblivious posted pricings
considered in this chapter fix the prices that each agent will receive before the
mechanism is run.
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Prior-independent Approximation

In the last two chapters we discussed mechanism that performed well

for a given Bayesian prior distribution. Assuming the existence of such

a Bayesian prior is natural when deriving mechanisms for games of in-

complete information as the Bayes-Nash equilibrium concept requires

a prior distribution that is common knowledge. In this chapter we will

relax the assumption the designer has knowledge of the prior distribu-

tion and is able to tune the parameters of her mechanism with it. The

goal of prior-independent mechanism design is to identify a single mech-

anism that has good performance for all distributions in a large family

of relevant distributions, e.g., the family of i.i.d. regular distributions.

As is evident from our analysis of Bayesian optimal auctions, e.g.,

for profit maximization, for any auction that one might consider good

for one prior, there is another prior for which another auction performs

strictly better. This consequence is obvious because optimal auctions for

distinct distributions are generally distinct. So, while no single auction

is optimal for all value distributions, there may be a single auction that

is approximately optimal across a wide range of distributions.

In this chapter we will take two approaches to prior-independent mech-

anism design. The first approach considers “resource” augmentation. We

will show that in some environments the (prior-independent) surplus

maximization mechanism with increasing competition, e.g., by recruiting

more agents, earns more revenue than the revenue-optimal mechanism

without the increased competition. The second approach is to design

mechanisms that do a little market analysis on the fly. Via this second

approach, we will show that for a large class of environments there is a

single mechanism that approximates the revenue of the optimal mecha-

nism.

Copyright c© 2011–2014 by Jason D. Hartline.
Source: http://jasonhartline.com/MDnA/
Manuscript Date: September 2, 2014.
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5.1 Motivation

Since prior-independence is not without loss it is important to consider

its motivation; however, before doing so recall the original justification

for the common prior assumption (see Section 2.3). Auctions and mech-

anisms are games of incomplete information and in such games, in order

to argue about strategic choice, we needed to formalize how players deal

with uncertainty. We did this by assuming a Bayesian prior. In a Stack-

elberg game, instead of moving simultaneously, players make actions in a

prespecified order. We can view mechanism design as a two stage Stack-

elberg game where the designer is a player who moves first and the

agents are players who (simultaneously) move second. To analyze the

Bayes-Nash equilibrium in such a Stackelberg game, the designer bases

her strategy on the common prior. Without such prior knowledge, the

problem of predicting the designer’s strategy is ill posed. Thus, in so

far as the theory of mechanism design should describe (or predict) the

outcome of a game, within the standard equilibrium concept for games

of incomplete information, a prior assumption is necessary.

As discussed in Chapter 1, in addition to being descriptive, the the-

ory of mechanism design should be prescriptive. It should suggest to a

designer how to solve a given mechanism design problem that she may

confront. If the designer does not have prior information, then she can-

not directly employ the suggestions of Bayesian mechanism design. The

Bayesian theory of mechanism design is, thus, incomplete in so far as

it would require the designer to acquire distribution information from

“outside the system.” In contrast, a prior-independent mechanism is re-

quired to solve both information acquisition and incentive problems and,

therefore, must insure that loses due to inaccuracies in information ac-

quisition the interplay between information acquisition and incentives

are properly accounted for.

It is important to consider the incentives of information acquisition

within the mechanism design problem; even if the designer has knowledge

of a prior distribution, it may be problematic to employ this knowledge

in a mechanism. Suppose the designer obtained her prior knowledge from

previous market experience. The problem with designing the mechanism

with this knowledge is that the earlier agents may strategize so that

information about their preferences is not exploited by the designer later.

For example, a monopolist who cannot commit not to lower the sale price

in the future cannot sell at a high price now (see Exercise 5.1).

It is similarly important to consider the loses due to inaccuracies in in-
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formation acquisition within the mechanism design problem. To learn the

prior a designer could perform a market analysis, for example, by hiring

a marketing firm to survey the market and provide distributional esti-

mates of agent preferences. This mode of operation is quite reasonable in

large markets. However, in large markets mechanism design is not such

an interesting topic; each agent will have little impact on the others and

therefore the designer may as well stick to posted-pricing mechanisms.

Indeed, for commodity markets posted prices are standard in practice.

Mechanisms, on the other hand, are most interesting in small, a.k.a.,

thin, markets. Contrast the large market for automobiles to the thin

market for spacecrafts. There may be five organizations in the world in

the market for spacecrafts; how would a designer optimize a mechanism

for selling them? First, even if the agents’ values do come from a distri-

bution, the only way to sample from the distribution is to interview the

agents themselves. Second, even if we did interview the agents, we could

obtain at most five data points. This sample size is hardly enough for

statistical approaches to be able to estimate the distribution of agent

values. A motivating question this perspective raises, and one that is

closely tied to prior-independent mechanism design, is: How many sam-

ples from a distribution are sufficient for the design of an approximately

optimal mechanism?

There are other reasons to consider prior-independent mechanism de-

sign besides the questionable origin of prior information. Perhaps the

most striking of which is the frequent inability of a designer to redesign

a new mechanism for each scenario in which she wishes to run a mech-

anism. This is not just a concern; in many settings, it is a principle.

Consider the standard Internet routing protocol IP. This is the proto-

col responsible for sending emails, browsing web pages, streaming video,

etc. Notice that the workloads for each of these tasks is quite different.

Emails are small and can be delivered with several minutes delay without

issue. Web pages are small, but must be delivered immediately. Com-

parably, video streaming permits high latency but requires continuous

bandwidth. It would be impractical to install new protocols in Internet

routers each time a new network usage pattern arises. Instead, a proto-

col for computer networks, such as IP, should work pretty well in any

setting, even ones well beyond the imaginations of the original designers.
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5.2 “Resource” Augmentation

In this section we describe a classical result from auction theory that

shows that a little more competition in a surplus maximizing mech-

anism revenue dominates the revenue maximizing mechanism without

the increased competition. From an economic point of view this result

questions the exogenous-participation assumption, i.e., that there a cer-

tain number of agents, say n, that will participate in the mechanism. If,

for instance, agents only participate in the mechanism when their utility

from doing so is large enough, i.e., with endogenous participation, then

running an optimal mechanism may decrease participation and thus re-

sult in a lower revenue than the surplus maximizing mechanism.

On the other hand, the suggestion of this result, that slightly increas-

ing competition can ensure good revenue, is inherently prior indepen-

dent. The designer does not need to know the prior distribution to mar-

ket her service so as to attract more agent participation.

5.2.1 Single-item Environments

The following theorem is due to Jeremy Bulow and Peter Klemperer and

is known as the Bulow-Klemperer Theorem.

Theorem 5.1 For i.i.d. regular single-item environments, the expected

revenue of the second-price auction with n+ 1 agents is at least that of

the optimal auction with n agents.

Proof First consider the following question. What is the optimal single-

item auction for n+1 agents that always sells the item? The requirement

that the item always be sold implies that, even if all virtual values are

negative, a winner must still be selected. Clearly the optimal such auc-

tion is the one that assigns the item to the agent with the highest virtual

value (cf. Corollary 3.8). Since the distribution is i.i.d. and regular, the

agent with the highest virtual value is the agent with the highest value.

Therefore, this optimal auction that always sells the item is the second-

price auction.

Now consider an (n + 1)-agent mechanism LB that runs the optimal

auction on agents 1, . . . , n and if this auction fails to sell the item, it gives

the item away for free to agent n+1. Obviously, LB’s expected revenue

is equal to the expected revenue of the optimal n-agent auction. It is,

however, an (n+1)-agent auction that always sells the item. Therefore,
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its revenue is a lower bound on that of the optimal (n+1)-agent auction

that always sells.

We conclude that the expected revenue of the second-price auction

with n + 1 agents is at least that of LB which is equal to that of the

optimal auction for n agents.

This resource augmentation result provides the beginning of a prior-

independent theory for mechanism design. For instance, we can easily

obtain a prior-independent approximation result as a corollary to The-

orem 5.1 and Theorem 5.2, below.

Theorem 5.2 For i.i.d. single-item environments the optimal (n− 1)-

agent auction is an n/n−1 approximation to the optimal n-agent auction.

Proof See Exercise 5.2.

Corollary 5.3 For i.i.d. regular single-item environments with n ≥ 2

agents, the second-price auction is an n/n−1 approximation to the optimal

auction revenue.

5.2.2 Multi-unit and Matroid Environments

Unfortunately, the “just add a single agent” result fails to generalize

beyond single-item environments. Consider a multi-unit environment; is

the revenue of the (k+1)st-price auction (i.e., the one that sells a unit to

each of the k highest-valued agents at the (k + 1)st highest value) with

n+ 1 agents at least that of the optimal k-unit auction with n agents?

No.

Example 5.1 For large n consider an n-unit environment and agents

with uniformly distributed values on [0, 1]. With n + 1 agents, the ex-

pected revenue of the (n + 1)st-price auction on n + 1 agents is about

one as there are n winners and the (n + 1)st value is 1/n+2 ≈ 1/n in

expectation.1 On the other hand, the optimal auction with n agents will

post a price of 1/2 to each agent and achieve an expected revenue of n/4.

The resource augmentation result does extend, and in a very natural

way, but more than a single agent must be recruited. For k-unit environ-

ments we have to recruit k additional agents. Notice that to extend the

proof of Theorem 5.1 to a k-unit environment we can define the auction

LB for n+k agents to run the optimal n-agent auction on agents 1, . . . , n

1
In expectation, uniform random variables evenly divide the interval they are over.
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and to give any remaining units to agents n+ 1, . . . , n+ k. The desired

conclusion follows. In fact, this argument can be extended to matroid

environments. Of course matroid set systems are generally asymmetric,

so we have to be specific as to the role with respect to the feasibility con-

straint of the added agents. The result is more intuitive when stated in

terms of removing agents from the optimal mechanism instead of adding

agents to surplus maximization mechanism, though the consequence is

analogous. Recall from Section 4.6 that a base of a matroid is a feasible

set of maximal cardinality.

Theorem 5.4 For any i.i.d. regular matroid environment the expected

revenue of the surplus maximization mechanism is at least that of the

optimal mechanism in the environment obtained by removing any set of

agents that corresponds to a base of the matroid.

Recall that by the augmentation property of matroids, all bases are the

same size. Notice that the theorem implies the aforementioned result for

k-unit environments as any set of k agents forms a base of the k-uniform

matroid. Similarly, for transversal matroids, which model constrained

matching markets, recruiting a new base requires one additional agent

for each of the items.

5.3 Single-sample Mechanisms

While the assumption that it is possible to recruit an additional agent

seems not to be too severe, once we have to recruit k new agents in k-

unit environments or a new base for matroid environments, the approach

seems less actionable. In this section we will show that a single additional

agent is enough to obtain a good approximation to the optimal auction

revenue. We will not, however, just add this agent to the market; instead,

we will use this agent for market analysis.

In the opening of this chapter we discussed the need to connect the

size of the sample for market analysis with the size of the actual market.

In this context, the assumption that the prior distribution is known

is tantamount to assuming that an infinitely large sample is available

for market analysis. In this section we show that this impossibly large

sample can be approximated by a single sample from the distribution.

Definition 5.1 The surplus maximization mechanism with lazy re-

serves v̂ is the following:
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(i) simulate the surplus maximization mechanism on the bids,

(x†,p†)← SM(v),

(ii) serve the winners of the simulation who exceed their reserve prices,

xi =

{

x†
i if vi ≥ v̂i

0 otherwise, and

(iii) charge the winners (with xi = 1) their critical values pi = max(v̂i, p
†
i ),

where SM denotes the surplus maximization mechanism.

The lazy single-sample-reserve mechanism sets v̂ = (v̂, . . . , v̂) for v̂ ∼

F . The lazy monopoly-reserve mechanism sets v̂ = v̂
⋆.

Proposition 5.5 The surplus maximization mechanism with lazy re-

serves is dominant strategy incentive compatible.

In comparison to the surplus maximization mechanism with reserve

prices discussed in Chapter 4, where the reserve prices are used filter

out low-valued agents before finding the surplus maximizing set (i.e.,

eagerly), lazy reserve prices filter out low-valued agents after finding

the surplus maximizing set. It is relatively easy to find examples of

downward-closed environments for which the order in which the reserve

is applied affects the outcome (see Exercise 5.3). On the other hand,

matroid environments, which include single-item and multi-unit envi-

ronments, are distinct in that the order in which an anonymous reserve

price is imposed does not change the auction outcome. Thus, for i.i.d.

matroid environments we will not specify the order, i.e., lazy versus ea-

ger, of the reserve pricing.

5.3.1 The Geometric Interpretation

Consider a single-agent environment. The optimal auction in such an

environment is simply to post the monopoly price as a take-it-or-leave-it

offer. In comparison, the single-sample-reserve mechanism would post a

random price that is drawn from the same distribution as the agent’s

value is drawn. We will give a geometric proof that shows that for regular

distributions, the revenue from posting such a random price is within a

factor of two of that of the (optimal) monopoly price.

This statement can be viewed as the n = 1 special case of the Theo-

rem 5.1, i.e., that the two-agent second-price auction obtains at least the

(one-agent) monopoly revenue. In a two-agent second-price auction each
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Figure 5.1 The revenue curve (black line) for the uniform distribution is

depicted. REF is the area of the rectangle (gray); by geometry the area of

the inscribed triangle (white striped) is 1/2REF. APX is the area under the

revenue curve (gray); by convexity it is lower bounded by the area of the

inscribed triangle (white striped). Thus, REF ≥ APX ≥ 1/2REF.

agent is offered the a price equal to the value of the other, i.e., a ran-

dom price from the distribution. Therefore, the two-agent second-price

auction obtains twice the revenue of a single sample reserve. The result

showing that the single-sample revenue is at least half of the monopoly

revenue then implies that the two-agent second-price auction obtains at

least the (one-agent) monopoly revenue.

Lemma 5.6 For a regular single-agent environment, posting a random

price from the agent’s value distribution obtains at least half the revenue

from posting the (optimal) monopoly price.

Proof Let R(·) be the agent’s revenue curve. Let q̂⋆ be the quantile

corresponding to the monopoly price, i.e., q̂⋆ = argmaxq̂ R(q̂). The

expected revenue from (optimal) monopoly pricing is REF = R(q̂⋆);

this revenue is represented in Figure 5.1(a) by the area of the rectan-

gle (grey) of width one and height R(q̂⋆). Recall that drawing a ran-

dom value from the distribution is equivalent to drawing a uniform

quantile. The expected revenue from the corresponding random price is

APX = Eq̂[R(q̂)] =
∫ 1

0
R(q̂) dq̂; this revenue is depicted in Figure 5.1(b)

by the area below the revenue curve (grey). This area is convex be-

cause the revenue curve is concave; therefore, by geometry it contains

an inscribed triangle with vertices corresponding to 0, q̂⋆, and 1 on the

revenue curve (Figure 5.1, white striped). This triangle has width one,

height REF = R(q̂⋆), and therefore its area is equal to 1/2REF. Thus,

APX ≥ 1/2REF.

Example 5.2 For the uniform distribution where R(q̂) = q̂ − q̂2, the
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quantities in the proof of Lemma 5.6 can be easily calculated:

REF = R(q̂⋆) = 1/4

≥ APX = Eq̂∼U [0,1][R(q̂)] = 1/6

≥ 1/2REF = 1/8.

5.3.2 Monopoly versus Single-sample Reserves

The geometric interpretation above is almost all that is necessary to show

that the lazy single-sample-reserve mechanism is a good approximation

to the optimal mechanism. We will show the result in two steps. First

we will show that the lazy single-sample-reserve mechanism is a good

approximation to the lazy monopoly-reserve mechanism. Then we argue

that this lazy monopoly-reserve mechanism is approximately optimal.

Theorem 5.7 For i.i.d. regular downward-closed environments, the

expected revenue of the lazy single-sample-reserve mechanism is at least

half of that of the lazy monopoly-reserve mechanism.

Proof With the values v−i of the other agents fixed, we will argue the

stronger result that the contribution to the expected revenue from any

agent i (Alice) in the lazy single-sample-reserve mechanism is at least

half of that in the lazy monopoly-reserve mechanism (in expectation over

her value and the sampled reserve). Let REF denote the lazy monopoly-

reserve mechanism and Alice’s contribution to its revenue, and let APX

denote the lazy single-sample-reserve mechanism and her contribution

to its revenue (again, both for fixed v−i).

Denote the monopoly quantile by q̂⋆, denote the critical quantile for

Alice in the surplus maximization mechanism with no reserve by q̂SMi ,

and denote the quantile of a lazy reserve by q̂. Alice’s wins in the surplus

maximization mechanism with this lazy reserve when her quantile is be-

low min(q̂, q̂SMi ). For a fixed q̂SMi , the revenue from Alice, in expectation

over her own quantile and as a function of the lazy reserve quantile q̂,

induces the revenue curve R†(q̂) = R(min(q̂, q̂SMi )). Figure 5.2 depicts

Alice’s original revenue curve R(·) and this induced revenue curve R†(·)
in the cases that q̂SMi ≤ q̂⋆ and q̂SMi ≥ q̂⋆.

Alice’s expected payment in the lazy monopoly-reserve mechanism

is REF = R†(q̂⋆) which is geometrically the maximum height of the

revenue curve R†; and her expected payment in the lazy single-sample-

reserve mechanism, where q̂ ∼ U [0, 1], is APX = Eq̂[R
†(q̂)]. We conclude

with the same geometric argument as in Lemma 5.6 that relates REF
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Figure 5.2 In each diagram, the revenue curve R(·) (thick, dashed, grey

line) of the uniform distribution and the induced revenue curve R
†
(·) =

R(max(·, q̂SMi )) (thin, solid, black line). On the left is the case that q̂
SM
i ≤

q̂
⋆
; on the right is the case that q̂

SM
i ≥ q̂

⋆
. On the top the revenue of REF

is shaded grey; on the bottom the revenue of APX is shaded in gray. The

inscribed triangles (white striped) have area 1/2REF. Both on the left and

on the right REF ≥ APX ≥ 1/2REF.

to a rectangle, APX to the area under the induced revenue curve, and
1/2REF to the area of an inscribed triangle (see Figure 5.2).

5.3.3 Optimal versus Lazy Single-sample-reserve

Mechanism

We have shown that lazy single-sample reserve pricing is almost as good

as lazy monopoly reserve pricing. We now connect lazy monopoly reserve

pricing to the revenue-optimal mechanism to show that the lazy single-

sample mechanism is a good approximation to the optimal mechanism.

For i.i.d. matroid environments, as discussed above, lazy monopoly

reserve pricing is identical to (eager) monopoly reserve pricing. More-

over, surplus maximization with the monopoly reserve is revenue optimal

(Proposition 4.23). We conclude the following corollary. Recall that ma-

troid environments include multi-unit environments as a special case.
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Corollary 5.8 For any i.i.d. regular matroid environment, the revenue

of the single-sample-reserve mechanism is a two approximation to that

of the revenue-optimal mechanism.

Theorem 4.40 shows that for monotone-hazard-rate distributions the

surplus maximization mechanism with (eager) monopoly reserves is a

two approximation to the optimal mechanism; however, as in downward-

closed environments eager and lazy reserve pricing are not identical (see

Exercise 5.3), we have slightly more work to do. Recall Theorem 4.37

which states that for MHR distributions the optimal revenue and opti-

mal social surplus are within an e factor of each other. One way to prove

this theorem is, in fact, by showing that the revenue of the surplus max-

imization mechanism with lazy monopoly reserve prices is an e approxi-

mation to the optimal social surplus and hence so is the optimal revenue

(see Exercise 4.25). Combining this observation with Theorem 5.7 it is

evident that the lazy single-sample-reserve mechanism is a 2e approxi-

mation. The approximation bound can be improved to four via a more

careful analysis that we omit.

Theorem 5.9 For any i.i.d. monotone-hazard-rate downward-closed

environment, the revenue of the lazy single-sample-reserve mechanism

is a four approximation to that of the revenue-optimal mechanism.

5.4 Prior-independent Mechanisms

We now turn to mechanisms that are completely prior independent. Un-

like the mechanisms of the preceding section, these mechanisms will not

require any distributional information, not even a single sample from the

distribution. We will, however, still assume that there is a distribution.

Definition 5.2 A mechanism APX is a prior-independent β approxi-

mation if

∀F , Ev∼F [APX(v)] ≥
1
βEv∼F [REFF (v)]

where REFF is the optimal mechanism for distribution F and “∀F ”

quantifies over all distributions in a given family.

The central idea behind the design of prior-independent mechanisms is

that a small amount of market analysis can be done while the mechanism

is being run. For example, the bids of some agents can be used as a

market analysis to calculate the prices to be offered to other agents.
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Consider the following k-unit auction:

(i) Solicit bids,

(ii) randomly reject an agent j, and

(iii) run the (k + 1)st-price auction with reserve vj on v−j .

This auction is clearly incentive compatible. Furthermore, it is easy

to see that it is a 2n/n−1 approximation for n ≥ 2 agents with values

drawn i.i.d. from a regular distribution. This follows from the fact that

rejecting a random agent loses at most a 1/n fraction of the optimal rev-

enue (Theorem 5.2), and from the previous single-sample-reserve result

(Corollary 5.8). This approximation bound is clearly worst for n = 2

where it guarantees a four approximation. The same approach can be

applied to matroid and downward-closed environments as well; instead,

we will discuss a slightly more sophisticated approach.

5.4.1 Digital Good Environments

An important single-dimensional agent environment is that of a digital

good, i.e., one where there is little or no cost for duplication. In terms of

single-dimensional environments for mechanism design, the cost function

for digital goods is c(x) = 0 for all x; in other words, all outcomes are

feasible. Digital goods can also be viewed as the special case of k-unit

auctions where k = n. Therefore the mechanism above obtains a 2n/n−1

approximation.

There are a number of approaches for improve this mechanism to

remove the n/n−1 from the approximation factor. The following two ap-

proaches are natural.

Definition 5.3 For digital-good environments,

• the (digital good) pairing auction arbitrarily pairs agents and runs the

second-price auction on each pair (assuming n is even), and

• the (digital good) circuit auction orders the agents arbitrarily (e.g.,

lexicographically) and offers each agent a price equal to the value of

the preceding agent in the order (the first agent is offered the last

agent’s value).

The random pairing auction and the random circuit auction are the

variants where the pairing or circuit is selected randomly.
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Theorem 5.10 For i.i.d. regular digital-good environments, any auc-

tion wherein each agent is offered the price of another random or ar-

bitrary (but not value dependent) agent is a two approximation to the

optimal auction revenue.

The proof of this theorem follows directly from the geometric analysis

of single-sample pricing (Lemma 5.6). Clearly, the pairing and circuit

auctions satisfy the conditions of the above theorem. In conclusion, in

i.i.d. environments it is relatively easy to obtain samples from the dis-

tribution while running a mechanism.

5.4.2 General Environments

We now adapt the results for digital goods to general environments.

Consider the surplus maximizing mechanism with a lazy reserve price.

First, the surplus maximizing set is found. Second, the agents that do

not meet the reserve are rejected. We can view this second step as a

digital good auction as, once we have selected a surplus maximizing

feasible set, downward closure requires that any subset is feasible. The

main idea of this section is to replace the lazy reserve part of the single-

sample mechanism with any approximately optimal digital good auction

(e.g., the circuit or pairing auction).

Consider the following definition of mechanism composition (cf. Ex-

ercise 5.9). Notice that the mechanisms we have been discussing can all

be interpreted as calculating a critical value for each agent, serving each

agent whose value exceeds her critical value, and charging each served

agent her critical value. In fact, by Corollary 2.14, any randomization

over deterministic dominant strategy incentive compatible mechanisms

admits such an interpretation.

Definition 5.4 The parallel compositeM of two (randomizations over)

deterministic DSIC mechanisms,M† andM‡ is as follows:

(i) Calculate the critical values v̂† and v̂
‡ ofM† andM‡, respectively.

(ii) The critical values ofM are v̂i = max(v̂†i , v̂
‡
i ) for each agent i.

(iii) Allocation and payments are xi = x†
ix

‡
i and pi = v̂ixi for all i, re-

spectively.

Notice that in the parallel composite,M, the set of agents served is the

intersection of those served byM† andM‡. By downward closure, then,

the outcome of the composition is feasible as long as the outcome of one
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ofM† orM‡ is feasible. The mechanism is dominant strategy incentive

compatible by its definition via critical values and Corollary 2.14.

Proposition 5.11 The parallel composite of two (randomizations over)

deterministic dominant strategy incentive compatible mechanisms is dom-

inant strategy incentive compatible and, if one of the mechanisms is fea-

sible, feasible.

Notice that the surplus maximization mechanism with a lazy reserve

price is the composition, in the manner above, of the surplus maximiza-

tion mechanism with a (digital good) uniform posted pricing. Consider

composing the surplus maximization mechanism with either the pair-

ing or circuit auctions. Both of the theorems below follow from analyses

similar to that of the single-sample-reserve mechanism.

Definition 5.5 For downward-closed environments,

• the pairing mechanism is the parallel composite of the surplus maxi-

mization mechanism with the (digital goods) pairing auction, and

• the circuit mechanism is the parallel composite of the surplus maxi-

mization mechanism with the (digital goods) circuit auction.

Theorem 5.12 For i.i.d. regular matroid environments, the revenues

of the pairing and circuit mechanisms are two approximations to the

optimal mechanism revenue.

Theorem 5.13 For i.i.d. monotone-hazard-rate downward-closed en-

vironments, the revenues of the pairing and circuit mechanisms are four

approximations to the optimal mechanism revenue.

The results presented in this chapter are representative of the tech-

niques for the design and analysis of prior-independent approximation

mechanisms; however, a number of extensions are possible. If we use

more that one samples from the distribution, bounds for regular distri-

butions can be improved and bounds for irregular distributions can be

obtained. Both of these directions will be taken up during our discus-

sion of prior-free mechanisms in Chapter 6. Finally, the i.i.d. assumption

can be relaxed, either by assuming that agents are partitioned by demo-

graphic (see Exercise 5.10) or by an ordering assumption.
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Exercises

5.1 Consider the sale of a magazine subscription over two periods to

a single agent who has a linear uniform additive value for each

period’s issue of the magazine. Her value v is drawn from a regular

distribution F and if x1, x2, p1, and p2 denote her allocation and

payments in each period then her utility is v(x1 +x2)− p1− p2. In

each period, the designer publishes her mechanism and then the

agent bids for receiving that period’s issue of the magazine.

(a) Suppose that the designer can commit to the mechanism to be

used in period two before the agent bids in period one, describe

the revenue optimal mechanisms and the equilibrium behavior

of the agent.

(b) Suppose that the designer cannot commit to the mechanism

to be used in period two before the agent bids in period one,

describe the revenue optimal mechanisms and the equilibrium

behavior of the agent.

(c) Compare the revenues from the previous steps for the uniform

distribution.

5.2 Prove Theorem 5.2: For i.i.d. single-item environments the optimal

auction with n−1 agents auction is an n/n−1 approximation to the

optimal auction with n agents.

5.3 Consider the surplus maximization mechanism with an anonymous

reserve that is either lazy or eager.

(a) Find a valuation profile, downward-closed feasibility constraint,

and anonymous reserve price such that different outcomes result

from lazy and eager reserve pricing.

(b) Prove that for anonymous reserve pricing in matroid environ-

ments, lazy and eager reserve pricing give the same outcome.

5.4 Consider a regular single-agent environment. Show that posting the

median price from the agent’s value distribution obtains at least

half the revenue from posting the monopoly price. The median

price for an agent with inverse demand function V (·) is v̂ = V (1/2).

5.5 In Example 5.2 it is apparent that the approximation bound of

a sample reserve to the monopoly reserve for a uniform distribu-

tion is 3/2. Use this bound to derive better bounds for the lazy

single-sample-reserve mechanism versus the lazy monopoly-reserve

mechanism. In particular, show that if the single-agent approxima-

tion of sample reserve to monopoly reserves is β then the the same
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bound holds in general for the lazy single-sample-reserve and lazy

monopoly reserve mechanism.

5.6 Consider the surplus maximization mechanism with lazy monopoly

reserve prices in downward-closed monotone-hazard-rate environ-

ments.

(a) Show that in a single-agent environment, that its expected sur-

plus is at most twice its expected revenue.

(b) Show that in a downward-closed environment, that its expected

surplus is at most twice its expected revenue.

5.7 Suppose we are in a non-identical environment, i.e., agent i’s value

is drawn from independently from distribution Fi, and suppose the

mechanism can draw one sample from each agent’s distribution.

(a) Give a constant approximation mechanism for regular, matroid

environments (and give the constant).

(b) Give a constant approximation mechanism for monotone-hazard-

rate, downward-closed environments (and give the constant).

5.8 This chapter has been mostly concerned with the profit objective.

Suppose we wished to have a single mechanism that obtained good

surplus and good profit.

(a) Show that surplus maximization with monopoly reserves is not

generally a constant approximation to the optimal social surplus

in regular, single-item environments.

(b) Show that the lazy single sample mechanism is a constant ap-

proximation to the optimal social surplus in i.i.d., regular, ma-

troid environments.

(c) Investigate the Pareto frontier between prior-independent ap-

proximation of surplus and revenue. I.e., if a mechanism is an

α approximation to the optimal surplus and a β approximation

to the optimal revenue, plot it as point (1/α, 1/β) in the positive

quadrant.

5.9 Define the sequential compositeM of two mechanismM† andM‡

as first simulating M†, second simulating M‡ on the winners of

M†, and serving the agents served by the second mechanism at

the maximum of their prices in the two mechanisms.

(a) Give an example of deterministic DSIC mechanisms M† and

M‡ such that the sequential compositeM is not DSIC.

(b) Show that ifM† is the surplus maximizing mechanism (andM‡

is any randomization over DSIC mechanisms) then the compo-

sition is DSIC.
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(c) Describe a property of the surplus maximizing mechanism as

M† that enables the incentive compatibility of the sequential

compositeM.

5.10 Suppose the agents are divided into k markets where the value of

agents in the same market are identically distributed, e.g., by de-

mographic. Assume that the partitioning of agents into markets is

known, but not the distributions of the markets. Assume there are

at least two agents in each market. Unrelated to the markets, as-

sume the environment has a downward-closed feasibility constraint.

(a) Give a prior-independent constant approximation to the revenue-

optimal mechanism for regular matroid environments.

(b) Give a prior-independent constant approximation to the revenue-

optimal mechanism for monotone-hazard-rate downward-closed

environments.

Chapter Notes

The resource augmentation result that shows that recruiting one more

agent to a single-item auction raises more revenue than setting the opti-

mal reserve price is due to Bulow and Klemperer (1996). The proof of the

Bulow-Klemperer Theorem that was presented in this text is due to René

Kirkegaard (2006). A generalization of the Bulow-Klemperer Theorem

to non-identical distributions was given by Hartline and Roughgarden

(2009).

The single-sample mechanism and the geometric proof of the Bulow-

Klemperer theorem are due to Dhangwatnotai et al. (2010). They also

considered a relaxation of the i.i.d. assumption where there is a known

partitioning of the agents into markets, e.g., by demographic or zip code,

where there are at least two agents in each market. The pairing auction

for digital good environments was proposed by Goldberg et al. (2001);

however, in the possibly irregular environments that they considered it

does not have good revenue guarantees.
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Prior-free Mechanisms

In Chapter 3 we derived optimal mechanisms for social surplus and

profit. For social surplus, the surplus maximization mechanism (Defini-

tion 3.3, page 58) is optimal pointwise on all valuation profiles. For profit,

the virtual surplus maximization mechanism (Definition 3.5, page 65) is

optimal in expectation for values drawn from the given distribution. The

difference between the statement of these results is significant: for social

surplus there is a pointwise optimal mechanism whereas optimal mech-

anisms for expected profit are parameterized by the distribution from

which values are drawn. The goal of this chapter is to design mechanisms

that obtain approximately optimal profit pointwise on all valuation pro-

files.

As an example, consider a digital good environment with n = 100

agents. Consider first the valuation profile where agent i has value vi = i

for all i. How much revenue could a mechanism hope to obtain in such

an environment? For example, this valuation profile seems similar to the

uniform distribution on [0, 100] for which the Bayesian optimal mech-

anism would post a price of 50 and obtain an expected revenue of

2500 = 50 × 50. Consider second the valuation profile where all agents

have value one. This valuation profile seems similar to a pointmass dis-

tribution where the Bayesian optimal mechanism post a price of one for

a revenue of 100. Can we come up with one mechanism that on the first

profile obtains revenue close to 2500 and on the second profile obtains

revenue close to 100? Moreover, what is an appropriate target revenue

in general and is there an auction that approximates this target? These

are the questions we address in this chapter.

The main difficulty in prior-free mechanism design for non-trivial

objectives like profit (or, e.g., social surplus with a balanced budget,

see Section 3.5) is that there is no pointwise, i.e., for all valuation pro-

Copyright c© 2011–2014 by Jason D. Hartline.
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Manuscript Date: September 2, 2014.
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files, optimal mechanism. Recall that incentive constraints in mechanism

design bind across all valuation profiles. For example, the payment of

an agent depends on the what the mechanism would have done had the

agent possessed a lower value (Theorem 2.2). Therefore, mechanisms for

the profit objective must trade off performance on one input for another.

In Chapter 3 this tradeoff was optimized in expectation with respect to

the prior distribution from which the agents’ values are drawn; without

a prior another method for navigating this tradeoff is needed.

This challenge can be resolved with approximation by comparing the

performance of a mechanism to an economically meaningful prior-free

benchmark. A mechanism approximates a prior-free benchmark if, for

all valuation profiles, the mechanism’s performance approximates the

benchmark performance. A benchmark is economically meaningful if, for

a large class of distributions, the expected value of the benchmark is at

least the expected performance of the Bayesian optimal mechanism. If a

mechanism approximates an economically meaningful benchmark then,

as a corollary, the mechanism is also a prior-independent approximation

(as defined in Chapter 5). Notice that this approach gives a purely prior-

free design and analysis framework, but still requires returning to the

Bayesian setting for economic justification of the benchmark.

A final concern is the equilibrium concept. Recall from Chapter 2 that

we introduced the common prior assumption (Definition 2.5, page 28) so

that strategic choice in games of incomplete information is well defined.

Recall also that most of the optimal and approximately optimal mech-

anisms that we discussed in previous chapters were dominant strategy

incentive compatible. In this chapter we resolve the issue of strategic

choice absent a common prior by requiring that the designed mech-

anisms satisfy this stronger dominant-strategy incentive-compatibility

condition.

The chapter begins by formalizing the framework for design and anal-

ysis of prior-free mechanisms via an economically meaningful prior-free

benchmark. This framework is instantiated first in the structurally sim-

ple environment of a digital good and then subsequently generalized to

environments with richer structure. The prior-free mechanism discussed

will all be based a natural market analysis metaphor.

Topics Covered.

• prior-free benchmarks,

• envy-free optimal pricings,
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• random sampling auctions,

• profit extraction as a decision problem for mechanism design, and

• stochastic analysis of random walks and the gamblers ruin.

6.1 The Framework for Prior-free Mechanism

Design

A main challenge for prior-free mechanism design is in identifying an

economically meaningful method for evaluating a mechanism’s perfor-

mance. While the prior-independent mechanisms (of Chapter 5) can be

compared to the optimal mechanism for the unknown distribution, ab-

sent a prior, there is no optimal mechanism with which to compare.

This challenge can be resolved by decomposing the prior-independent

analysis into two steps. Fix a large, relevant class of prior distributions.

In the first step a prior-free benchmark is identified and normalized

so that for all distributions in the class the expected benchmark is at

least the Bayesian optimal performance. In the second step an auction

is constructed and proven to approximate the benchmark pointwise on

all valuation profiles. These steps combine to imply a prior-independent

approximation and are formalized below.

Definition 6.1 A prior-free benchmark maps valuation profiles to tar-

get performances. A prior-free benchmark (APX) is normalized for a

class of distributions if for all distributions in the class, in expecta-

tion the benchmark is at least the performance of the Bayesian opti-

mal mechanism (REFF ) for the distribution. I.e., for all F in the class,

Ev∼F [APX(v)] ≥ Ev∼F [REFF (v)].

Definition 6.2 A mechanism (APX) is a prior-free β approximation to

prior-free benchmark (REF) if for all valuation profiles, its performance

is at least a β fraction of the benchmark. I.e., for all v, APX(v) ≥
1/β REF(v).

Proposition 6.1 For any prior-free mechanism, class of distributions,

and prior-free benchmark, if the benchmark is normalized for the class

of distributions and the mechanism a prior-free β approximation to the

benchmark, then the mechanism is a prior-independent β approximation

for the class of distributions.

We can distinguish good prior-free benchmarks from bad prior-free

benchmarks by how much they overestimate the performance. (Note:
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a normalized prior-free benchmark never underestimates performance.)

The extent to which a prior-free benchmark overestimates performance

can be quantified by again considering the benchmark relative to a class

of prior distributions. As the benchmark is normalized, for any distri-

bution the expected benchmark exceeds the expected performance of

the Bayesian optimal mechanism. Of course, the performance of any

mechanism is no better than the Bayesian optimal mechanism for the

distribution; therefore, the extent to which the Bayesian optimal mecha-

nism approximates the benchmark gives a lower bound on the prior-free

approximation of any mechanism to the benchmark. This is formalized

in the following definition and proposition.

Definition 6.3 The resolution γ of a prior-free benchmark (REF) is

the largest ratio of the benchmark to the performance of the Bayesian

optimal mechanism (APXF ) for any prior-distribution F . I.e., γ satisfies

Ev∼F [REF(v)] ≥ 1/γEv∼F [APXF (v)] for all F .

Proposition 6.2 For any class of distributions and any prior-free

benchmark, the prior-free approximation β of any mechanism is at least

the benchmark’s resolution γ.

This prior-free design and analysis framework turns the question of

approximation into one of optimization. There is some mechanism that

obtains the optimal prior-free approximation relative to the benchmark.

In most of the cases we will discuss in this chapter the optimal mech-

anism has an approximation factor that matches the resolution of the

benchmark.

Definition 6.4 The optimal prior-free approximation β⋆ for a prior-

free benchmark (REF) satisfies

β⋆ = minAPXmaxv
REF(v)
APX(v)

where APX ranges over all dominant strategy incentive compatible mech-

anisms for the given environment.

In summary, we need a normalized benchmark so that its approx-

imation has economic meaning, and we need a benchmark with fine

resolution as its resolution lower bounds the best prior-free approxima-

tion. Intuitively, a benchmark with finer resolution will be better for

distinguishing good mechanisms from bad mechanisms. A first and fun-

damental task in prior-free mechanism design is to identify a benchmark

with fine resolution.
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Example: Prior-free Monopoly Pricing

We conclude this section by instantiating the framework for design and

analysis of prior-free mechanisms for the single-agent monopoly pricing

problem. This is the problem of selling a single item to a single agent

to maximize revenue. When the agent’s value is drawn from a known

distribution F , the seller’s optimal mechanism, is to post the monopoly

price v̂⋆ = argmax v̂ (1− F (v̂)) for the distribution (see Section 3.3.3).

Consider the class of distributions over a single agent’s value with

support [1, h]. The surplus gives a normalized prior-free benchmark and

is defined by the identity function. Notice that (a) for any distribution

the expected value of the benchmark exceeds the monopoly revenue

and (b) and this inequality is tight for pointmass distributions. The

latter observation implies that the surplus is the smallest normalized

benchmark (hence, it obtains the finest resolution).

We approach the problem of analyzing the resolution of a benchmark

in tandem with its optimal prior-free approximation. First, we give a

lower bound on the resolution by considering the expected benchmark

on the distribution for which all mechanisms attain the same perfor-

mance. For the revenue objective, this distribution is the equal-revenue

distribution. Second, we give a mechanism with a prior-free approxima-

tion factor that matches the lower bound. As, by Proposition 6.2, the

optimal prior-free approximation factor is at least the resolution this

upper bound implies that the lower bound on resolution is tight.

Lemma 6.3 For single-agent environments, the class of distributions

with support [0, h], and the objective of profit, the surplus benchmark has

resolution γ at least 1 + lnh.

Proof Consider the equal revenue distribution (truncated to the range

[1, h] with a pointmass at h with probability 1/h). The monopoly rev-

enue for the equal-revenue distribution is one and the expected surplus

(and therefore the expected benchmark) is 1 + lnh (as also calculated

in Example 4.2, page 142); therefore, the resolution γ of the benchmark

is at least 1 + lnh.

Now consider the purely prior-free question of posting a price to ob-

tain a revenue that approximates the surplus benchmark. It should be

clear that no deterministic price v̂ will do: if v̂ > 1 the prior-free ap-

proximation is infinite for value v = 1, and if v̂ = 1 then the prior-free

approximation is h for value v = h. On the other hand, picking a ran-

domized price uniformly from the powers of two on the [1, h] interval
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gives a logarithmic approximation to the surplus. For such a random-

ized pricing, with probability 1/log h the power of two immediately below

v is posted and when this happens the revenue is at least half of the sur-

plus benchmark. This approach and analysis can be tightened to give an

approximation ratio that exactly matches the resolution of the bench-

mark.

Lemma 6.4 For values in the interval [1, h] there is a prior-free dis-

tribution over posted prices with revenue that is a 1+lnh approximation

to the surplus benchmark.

Proof Consider the distribution over prices G with cumulative distri-

bution function G(z) = 1+ln z/1+lnh and a pointmass at one with prob-

ability 1/1+lnh. For any particular value v ∈ [1, h], the expected revenue

from a random price drawn from G is v/1+lnh.

Theorem 6.5 For single-agent environments, values in [1, h], and the

objective of profit, the resolution of the surplus benchmark and the opti-

mal prior-free approximation are 1 + lnh.

Notice that the resolution of the surplus benchmark, which is optimal

among all normalized benchmarks, is not constant. In particular, it grows

logarithmically with h and, when the agent’s value is not bounded within

some interval [1, h], it is infinite. We will address this deficiency in the

subsequent section where a benchmark with constant resolution and

prior-free mechanisms with constant approximation ratios are derived

(for n ≥ 2 agents).

6.2 The Digital-good Environment

Our foray into prior-free mechanism design begins with the benevolent

digital-good environment. In a digital-good environment any subset of

agents can be simultaneously served. The absence of a feasibility con-

straint will enable us to focus directly on the main challenge of prior-free

mechanism design which is in overcoming the lack of a prior.

We begin by deriving a benchmark with constant resolution. This

benchmark is based on a theory of envy-free pricing and we will refer to

it as the envy-free benchmark. The resolution of the envy-free benchmark

and the prior-free optimal approximation are 2.42 (in the limit with n).

In the remainder of the section, we will focus on the design of simple

mechanisms that approximate this envy-free benchmark (but are not
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optimal). First, we show that anonymous deterministic auctions cannot

give good prior-free approximation. Second, we describe two approaches

for designing randomized prior-free auctions for digital goods. The first

auction is based on a straightforward market analysis metaphor: use a

random sample of the agents to estimate the distribution of values, and

run the optimal auction for the estimated distribution on the remain-

ing agents. The approximation ratio of this auction is upper bounded

by 4.68. The second auction is based on a standard algorithmic design

paradigm: reduction to the a “decision version” of the problem. It gives a

four approximation. These mechanisms are randomizations over deter-

ministic dominant strategy incentive compatible (DSIC) mechanisms,

the characterization of which is restated from Corollary 2.14 as follows.

Theorem 6.6 A direct, deterministic mechanism M is DSIC if and

only if for all i and v,

(i) (step-function) xM
i (vi,v−i) steps from 0 to 1 at some v̂i(v−i), and

(ii) (critical value) pMi (vi,v−i) =

{

v̂i(v−i) if xM
i (vi,v−i) = 1

0 otherwise
+ pMi (0,v−i).

6.2.1 The Envy-free Benchmark

Consider the following definition of and motivation for the envy-free

benchmark. Recall that, when the agents’ values are drawn from an

i.i.d. distribution, the Bayesian optimal digital-good auction would sim-

ply post the monopoly price for the distribution as a take-it-or-leave-it

offer independently to each agent. For such a posted pricing, the agents

with values above the monopoly price would choose to purchase the item

and the agents with values below the monopoly price would not. As each

agent selects her preferred outcome, this outcome is envy free no agent

is envious of the outcome obtained by any other agent.

Without a prior, the monopoly price is not well defined. Instead, the

empirical monopoly price for valuation profile v = (v1, . . . , vn) is the

monopoly price of the empirical distribution; it is calculated as v(i⋆) with

i⋆ = argmaxi iv(i) and v(i) denoting the ith highest value in v. It is easy

to see that the empirical monopoly revenue maxi iv(i) is an upper bound

on the revenue that would be obtained by monopoly pricing if there were

a known prior distribution on values. While it is not incentive compatible

to inspect the valuation profile, calculate the empirical monopoly price

v(i⋆), and offer it to each agent; it is envy free. Furthermore, as we will see
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subsequently, for digital good environments empirical monopoly pricing

gives the envy-free optimal revenue which we will denote by EFO(v).

For the class of i.i.d. distributions, the envy-free optimal revenue is

a normalized benchmark. Unfortunately, the resolution of the envy-free

optimal revenue, as a benchmark, is super constant. When there is n = 1

agent the optimal envy-free revenue is the surplus and, from the dis-

cussion of the monopoly pricing problem in the preceding section, its

resolution is 1 + lnh for values in [1, h] and unbounded in general. The

only thing, however, preventing EFO(v) = max iv(i) from being a good

benchmark is the case where the maximum is obtained at i⋆ = 1 by sell-

ing to the highest value agent at her value. This discussion motivates the

definition of an envy-free benchmark that explicitly excludes the i⋆ = 1

case.

Definition 6.5 The envy-free benchmark EFO(2)(v) for digital goods

is the optimal revenue from posting a uniform price that is bought by

two or more agents. I.e., EFO(2)(v) = maxi≥2 iv(i).

Our discussion will distinguish between the envy-free optimal rev-

enue, EFO, and the envy-free benchmark, EFO(2). The difference be-

tween them is that the latter excludes the possibility of selling to just the

highest-valued agent. While the envy-free optimal revenue (as a bench-

mark) is normalized for all i.i.d. distributions, the envy-free benchmark

is not. The envy-free benchmark is, however, normalized for a large class

of distributions; we omit a precise characterization of this class, though

subsequently in Section 6.3, we show that it includes all i.i.d. regular

distributions on n ≥ 2 agents.

Analysis of resolution of the envy-free benchmark is difficult because

we must quantify over all distributions. We follow the same high-level

approach as for bounding the benchmark resolution in the monopoly

pricing problem. First, we analyze the ratio between the expected bench-

mark and the Bayesian optimal auction revenue for the equal revenue

distribution to get a lower bound on the resolution. Second, we observe

that an auction exists with prior-free approximation that matches this

resolution. Proposition 6.2, which states that any prior-free approxima-

tion is an upper bound on the resolution, implies that the resolution

and optimal prior-free approximation are equal. The following theorem

summarizes this analysis.

Theorem 6.7 In digital good environments, the resolution and optimal

prior-free approximation of the envy-free benchmark are equal. For n =
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2, 3, and 4, the resolution and optimal prior-free approximation are 2,
13/6 ≈ 2.17, and 215/96 ≈ 2.24, respectively; in the limit with n it is 2.42.

We give the complete two-step proof of the n = 2 special case of The-

orem 6.7: Lemma 6.8 proves a lower bound of two on the resolution,

and Lemma 6.9 proves an upper bound of two on the optimal prior-free

approximation. Proposition 6.2, then, implies the equality. The gener-

alization of this proof to n ≥ 3 agents is technical and the subsequent

discussion will treat it only at a high level.

Lemma 6.8 For two-agent digital-good environments, the resolution

of the envy-free benchmark is at least two.

Proof We give a lower bound on the resolution by comparing the ex-

pected envy-free benchmark (REF) to the expected revenue of the Bayesian

optimal auction (APX) for the equal revenue distribution. Recall that

the equal-revenue distribution (Definition 4.2, page 106) is given by dis-

tribution FEQR(z) = 1 − 1/z and the revenue from posting any price

v̂ ≥ 1 is one. Therefore, the expected revenue of the Bayesian optimal

digital-good auction for n = 2 agents is APX = n = 2.

It remains to calculate the expected value of the envy-free benchmark

REF = Ev

[
EFO(2)(v)

]
. In the case that n = 2, the envy-free benchmark

EFO(2)(v) simplifies to 2v(2). The expectation of a non-negative random

variable X can be calculated as E
[
X
]
=

∫∞
0 Pr

[
X > z

]
dz; to employ

this formula we calculate Pr
[
2v(2) > z

]
. For z ≥ 2 we have:

Prv
[
2v(2) > z

]
= Prv

[
v1 > z/2 ∧ v2 > z/2

]

= Prv
[
v1 > z/2

]
Prv

[
v2 > z/2

]

= 4/z2.

For z < 2 we have: Pr
[
2v(2) > z

]
= 1. The calculation the envy-free

benchmark’s expected value concludes as follows.

REF = Ev

[
2v(2)

]
=

∫ ∞

0

Pr
[
2v(2) > z

]
dz = 2 +

∫ ∞

2

4/z2 dz = 4.

The resolution of the envy-free benchmark is thus at least REF/APX =
4/2 = 2.

The generalization of Lemma 6.8 to n > 2 follows same proof struc-

ture. The main difficulty of the analysis is in calculating the expectation

of the benchmark. This is complicated because it becomes the maximum

of many terms. E.g., for n = 3 agents, EFO(2)(v) = max(2v(2), 3v(3)).
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Nonetheless, for general n its expectation can be calculated exactly; in

the limit with n it is about 2.42.

Lemma 6.9 For two-agent digital-good environments, the second-price

auction is a prior-free two approximation of the envy-free benchmark.

Proof For n = 2 agents the the envy-free benchmark is 2v(2) which is

twice the revenue of the second-price auction. Therefore, the second-price

auction is a prior-free two approximation to the envy-free benchmark.

The generalization of Lemma 6.9 beyond n = 2 agents is technical

and does not give a natural auction. For example, the n = 3 agent

optimal auction offers each agent a price drawn from a probability dis-

tribution with a pointmass at each of the other two agents’ values and

continuous density at prices strictly higher than these values. The prob-

abilities depend on the ratio of the two other agents’ values. For larger

n ≥ 4 no closed-form expression is known; though, the prior-free opti-

mal auction can be seen to match the lower bound on the resolution by

a brute-force construction. This prior-free optimal auction suffers from

the main drawback of optimal mechanisms: it is quite complicated. In

the next sections, we will derive simple mechanisms that approximate

the prior-free optimal digital-good auction.

6.2.2 Deterministic Auctions

The main idea that enables approximation of the envy-free benchmark is

that when selecting a price to offer agent i we can use statistics from the

values of all other agents as given by their reports v−i. This motivates

the following mechanism which differs from empirical monopoly pricing

in that the price to agent i is from the empirical distribution for v−i not

v.

Definition 6.6 The deterministic optimal price auction offers each

agent i the take-it-or-leave-it price of v̂i set as the monopoly price for

the profile of other agent values v−i.

The deterministic optimal price auction is dominant strategy incentive

compatible. It is possible to show that the auction is a prior-independent

constant approximation (cf. Chapter 5); however it is not a prior-free

approximation. In fact, this deficiency of the deterministic optimal price

auction is one that is fundamental to all anonymous (a.k.a., symmetric)

deterministic auctions.
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Example 6.1 Consider the valuation profile with ten high-valued

agents, with value ten, and 90 low-valued agents, with value one. What

does the auction do on such a valuation profile? The offer to a high-

valued agent is v̂h = 1, as v−h consists of 90 low-valued agents and 9

high-valued agents. The revenue from the high price is 90; while the rev-

enue from the low price is 99. The offer to a low-valued agent is v̂1 = 10,

as v−1 consists of 89 low-valued agents and 10 high-valued agents. The

revenue from the high price is 100; while the revenue from the low price

is 99. With these offers all high-valued agents will win and pay one, while

all low-valued agents will lose. The total revenue of ten is far from the

envy-free benchmark revenue of EFO(2)(v) = 100.

Theorem 6.10 No n-agent anonymous deterministic dominant-strategy

incentive-compatible digital-good auction is better than an n approxima-

tion to the envy-free benchmark.

Proof Consider valuation profiles v with values vi ∈ {1, h}. Let nh(v)

and n1(v) denote the number of h values and 1 values in v, respectively.

By Theorem 6.6, any deterministic and dominant strategy incentive com-

patible auction APX has a critical value at which each agent is served.

That APX is anonymous implies that the critical value for agent i, as a

function of the reports of other agents, is independent of the index i and

only a function of nh(v−i) and n1(v−i). Thus, we can let v̂(nh, n1) repre-

sent the offer price of APX for any agent i when we plug in nh = nh(v−i)

and n1 = n1(v−i). Finally, we assume that v̂(nh, n1) ∈ {1, h} as this re-

striction cannot hurt the auction profit on the valuation profiles we are

considering.

We assume for a contradiction that the auction is a good approxima-

tion and proceed in three steps.

(i) Observe that for any auction that is a good approximation, it must

be that for all m, v̂(m, 0) = h. Otherwise, on the n = m + 1 agent

all h’s input, the auction only achieves profit n while the envy-free

benchmark is hn. Thus, the auction would be at most an h ≥ n

approximation on profiles with h ≥ n.

(ii) Likewise, observe that for any auction that is a good approximation,

it must be that for all m, v̂(0,m) = 1. Otherwise, on the n = m+ 1

agent all 1’s input, the auction achieves no profit and is clearly not

an approximation of the envy-free benchmark n.

(iii) We now identify a bad valuation profile for the auction. Take m

sufficiently large and consider v̂(k,m − k) as a function of k. As



6.2 The Digital-good Environment 183

we have argued for k = 0, v̂(k,m − k) = 1. Consider increasing k

until v̂(k,m − k) = h. This must occur since at k = m we have

v̂(k,m − k) = h. Let k⋆ = min{k : v̂(k,m − k) = h} > 1 be this

transition point. Now consider an n = m + 1 agent valuation profile

with nh(v) = k⋆ and n1(v) = m− k⋆ + 1.

• For low-valued agents: v̂(nh(v−1), n1(v−1)) = v̂(k⋆,m − k⋆) = h.

Thus, all low-valued agents are rejected and contribute nothing to

the auction profit.

• For high-valued agents: v̂(nh(v−h), n1(v−h)) = v̂(k⋆ − 1,m− k⋆ +

1) = 1. Thus, all high-valued agents are are offered a price of one

which they accept. Thus, the contribution to the auction profit

from such agents is 1× nh(v) = k⋆.

Thus, the total auction profit for this valuation profile is APX = k⋆.

(iv) For h = n, the envy-free benchmark on this valuation profile is REF =

n k⋆. There are to cases. If k⋆ = 1 then the benchmark is n (from

selling to all agents at price 1); of course, for k⋆ = 1 then n = n k⋆. If

k⋆ ≥ 2 the benchmark is also n k⋆ (from selling to the k⋆ high-valued

agents at price h = n).

In conclusion, we have identified a valuation profile where the auction

revenue is APX = k⋆ and the envy-free benchmark is REF = n k⋆; the

auction is at best a prior-free n approximation.

Theorem 6.10 implies that either randomization or asymmetry is nec-

essary to obtain good prior-free mechanisms. While either approach will

permit the design of good mechanisms, all deterministic asymmetric

auctions known to date are based on derandomizations of randomized

auctions. This text will discuss only these randomized auctions.

6.2.3 The Random Sampling Auction

We now discuss a prior-free auction based on a natural market-analysis

metaphor. Notice that the problem with the deterministic optimal price

auction in the preceding section is that it may simultaneously offer high-

valued agents a low price and low-valued agents a high price. Of course,

either of these prices would have been good if it were offered consistently

to all agents. One approach for combating this lack of coordination is to

coordinate using random sampling. The idea is roughly to partition the

agents into a market and sample and then use the sample to estimate a

good price and then offer that price to the agents in the market. With a
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random partition we expect a fair share of high- and low-valued agents

to be in both the market and the sample; therefore, a price that is good

for the sample should also be good for the market.

Definition 6.7 The random sampling (optimal price) auction works

as follows:

(i) randomly partition the agents into sample S and market M (by flip-

ping a fair coin for each agent),

(ii) compute (empirical) monopoly prices v̂⋆S and v̂⋆M for S and M respec-

tively, and

(iii) offer v̂⋆S to M and v̂⋆M to S.

We first, and easily, observe that the random sampling auction is

dominant strategy incentive compatible.

Theorem 6.11 The random sampling auction is dominant strategy

incentive compatible.

Proof Fix a randomized partition of the agents into a market and sam-

ple. For this partitioning, each agent faces a critical value that is a func-

tion only of other agent reports. Theorem 6.6 then implies that the auc-

tion for this partitioning is dominant strategy incentive compatible. Of

course, if it is dominant strategy for any fixed partitioning it is certainly

dominant strategy in expectation over the random partitioning.

The following example, as a warm up exercise, demonstrates that the

random sampling auction is not better than a four approximation to the

envy-free benchmark.

Example 6.2 Consider the 2-agent input v = (1.1, 1) for which the

envy-free benchmark is EFO(2)(v) = 2. To calculate the auction’s rev-

enue on this input, notice that these two agents are in the same partition

with probability 1/2 and in different partitions with probability 1/2. In

the former case, the auction’s revenue is zero. In the latter case it is

the lower value, i.e., one. The auction’s expected profit is therefore 1/2,

which is a four approximation to the benchmark.1

1
It is natural to think this example could be improved if the auction were to
partition half of the agents into the market and half into the sample. However in
worst case, this improved partitioning cannot help. Pad the valuation profile
with agents who have zero value for the item and then observe that the same
analysis on this padded valuation profile gives a lower bound of four on the
auction’s approximation ratio.
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Theorem 6.12 For digital good environments and all valuation pro-

files, the random sampling auction is at most a 4.68 approximation to

the envy-free benchmark.

This theorem is technical and it is generally believed that the bound

it provides is loose and the random sampling auction is in fact a worst-

case four approximation. Below we will prove the weaker claim that it

is at worst a 15 approximation. This weaker claim highlights the main

techniques involved in proving that variants and generalizations of the

random sampling auction are constant approximations.

Lemma 6.13 For digital good environments and all valuation profiles,

the random sampling auction is at most a 15 approximation to the envy-

free benchmark.

Proof Assume without loss of generality that the highest-valued agent

is in the market M . This terminology comes from the fact that if the

highest agent value is sufficiently large then all agents in other partition

(in this case S) will be rejected; the role of S is then only as a sample

for statistical analysis. There are two main steps in the proof. Step (i)

is to show that the optimal envy-free revenue from the sample EFO(vS)

is close to the envy-free benchmark EFO(2)(v). Step (ii) is to show that

the revenue from price v̂⋆S on M is close to the envy-free optimal revenue

from the sample which is, recall, the revenue from price v̂⋆S on S.

We will use the following definitions. First sort the agents by value so

that vi is the ith largest valued agent. Define yi as an indicator variable

for the event that i ∈ S (the sample). Notice that E[yi] = 1/2 except

for i = 1; y1 = 0 by the assumption that the highest valued agent is in

the market. Define Yi =
∑

j≤i yj as the number of the i highest-valued

agents who are in the sample. Let EFO(2)(v) = i⋆v̂⋆ where i⋆ is the

number of winners in the benchmark and v̂⋆ = vi⋆ is the benchmark

price.

(i) With good probability, the optimal envy-free revenue for the sample,

EFO(vS), is close to the envy-free benchmark, EFO(2)(v).

Define B as the event that the sample contains at least half of the i⋆

highest-valued agents, i.e., Yi
⋆ ≥ i

⋆

/2. Of course the envy-free optimal

revenue for the sample is at least the revenue from posting price v̂⋆

(which is envy-free), i.e., EFO(vS) ≥ Yi
⋆ v̂⋆. Event B then implies

that Yi
⋆ v̂⋆ ≥ 1/2 i⋆v̂⋆, or equivalently EFO(vS) ≥ 1/2EFO(2)(v).

We now show that Pr[B] = 1/2 when i⋆ is even. Recall that the
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highest valued agent is always in the market. Therefore there are

i⋆ − 1 (an odd number) of agents which we partition between the

market and the sample. One partition receives at least i
⋆

/2 of these

and half the time it is the sample; therefore, Pr[B] = 1/2.

When i⋆ is odd Pr[B] < 1/2, and a slightly more complicated ar-

gument is needed to complete the proof. A sketch of the argument

is as follows. Define C as the event that Yi
⋆ ≥ i

⋆−1/2. When this

event occurs, by a similar analysis as in the even case, EFO(vS) ≥
1/2 (1− 1/i⋆) EFO(2)(v). The implied bound is worse than the analo-

gous bound for the even case by an 1−1/i⋆ factor. The probability that

the event C holds improves over event B, however, and this improve-

ment more than compensates for the loss. Notice that strictly more

of the top i⋆− 1 agents are in the sample or market with equal prob-

ability but event C also occurs when the numbers are equal. Thus,

Pr[C] > 1/2 = Pr[B]. The intuition that these bounds combine to

improve over the even case, above, is that the probability that the

i⋆−1 top agents are split evenly grows as Θ(
√

1/i⋆) and the loss from

the event providing a weaker bound grows as Θ(1/i⋆).

(ii) With good probability, the revenue from price v̂⋆S on M is close to

EFO(vS).

Define E as the event that for all indices i that the market contains

at least a third as many of the i highest-valued agents as the sample,

i.e., ∀i, i− Yi ≥ 1/3Yi. Notice that the left hand side of this equation

is the number of agents with value at least vi in the market, while the

right hand side is a third of the number of such agents in the sample.

Importantly, this event implies that the partitioning of agents is not

too imbalanced in favor of the sample. We refer to this event as the

balanced sample event; though, note that it is only a one-directional

balanced condition.

Let the envy-free optimal revenue for the sample be EFO(vS) =

Yi
⋆
S
v̂⋆S where i⋆S is the index of the agent whose value is used as

its price, v̂⋆S = vi⋆S is its price, and Yi
⋆
S
is its number of winners. The

profit of the random sampling auction is equal to (i⋆S−Yi
⋆
S
) v̂⋆S . Under

the balanced sample condition this is lower bounded by 1/3Yi
⋆
S
v̂⋆S =

1/3 EFO(vS).

Subsequently, we will prove a balanced sampling lemma (Lemma 6.14)

that shows that Pr[E ] ≥ 0.9.

We combine the two steps, above, as follows. If both good events E

and B hold, then the expected revenue of random sampling auction is
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at least 1/6 EFO(2)(v). By the union bound, the probability of this good

fortune is Pr[E ∧ B] ≥ 1 − Pr[¬E ] − Pr[¬B] ≥ 0.4.2 We conclude that

the random sampling auction is a 15 = 6 × 1/0.4 approximation to the

envy-free benchmark.

Lemma 6.14 (Balanced Sampling) For y1 = 0, yi for i ≥ 2 an in-

dicator variable for a independent fair coin flipping to heads, and sum

Yi =
∑

j≤i yj,

Pr[∀i, (i− Yi) ≥ 1/3Yi] ≥ 0.9.

Proof We relate the condition of the lemma to the probability of ruin

in a random walk on the integers. Notice that (i − Yi) ≥ 1/3Yi if and

only if, for integers i and Yi, 3i− 4Yi + 1 > 0. So let Zi = 3i − 4Yi + 1

and view Zi as the position, in step i, of a random walk on the integers.

Since Y1 = y1 = 0 this random walk starts at Zi = 4. Notice that at

step i in the random walk with is in position Zi, so at step i+1 we have

Zi+1 =

{

Zi − 1 if yi+1 = 1, and

Zi + 3 if yi+1 = 0;

i.e., the random walk either takes three steps forward or one step back.

We wish to calculate the probability that this random walk never touches

zero. This type of calculation is known as a probability of ruin analysis

in reference to a gambler’s fate when playing a game with such a payoff

structure.

Let rk denote the probability of ruin from position k. This is the

probability that the random walk eventually takes k steps backwards.

Clearly r0 = 1, as at position k = 0 we are already ruined, and rk = rk1 ,

as taking k steps back is equivalent to stepping back k times. By the

definition of the random walk, we have the recurrence,

rk = 1/2 (rk−1 + rk+3).

Plugging in the above identities for k = 1 we have,

r1 = 1/2 (1 + r41).

2
We denote the event that E does not occur by ¬E, which should be read as “not
E.” The probabilities of any event E and its complement ¬E satisfy
Pr[¬E] = 1−Pr[E]. A typical approach for bounding the probability of the
conjunction (i.e., the “and”) of two events is by the disjunction (i.e., the “or”) of
their negations, i.e., Pr[E ∧ B] = 1−Pr[¬(E ∧ B)] = 1−Pr[¬E ∨ ¬B]. The union
bound states that the probability of the disjunction of two events is at most the
sum of the probabilities of each event. (This bound is tight for disjoint events,
while for events that may simultaneously occur, it double counts the probability
of outcomes that satisfy both events.) Thus, Pr[E ∧ B] ≥ 1−Pr[¬E]−Pr[¬B].
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This is a quartic equation that can be solved, e.g., by Ferarri’s formula

(though we omit the details). Since our random walk starts at Z1 = 4 we

calculate r4 = r41 ≤ 0.1, meaning that the probability that the balanced

sampling condition is satisfied is at least 0.9.

The proof of Theorem 6.12 follows a very similar structure to that of

Lemma 6.13. The main additional idea is that, instead of fixing the level

of imbalance to be tolerated, it is a random variable. In Lemma 6.13 the

imbalance is fixed to 1/3. Notice that the performance bound constructed

in the lemma scales linearly with the imbalance. Thus, the expected

bound can factored into the the expected imbalance times the worst

case performance for imbalance one.

6.2.4 Decision Problems for Mechanism Design

Decision problems play a central role in computational complexity and

algorithm design. Where as an optimization problem is to find the opti-

mal solution to a problem, a decision problem is to decide whether or not

there exists a solution that meets a given objective criterion. While it

is clear that decision problems are no harder to solve than optimization

problems, the opposite is also true, for instance, we can search for the

optimal objective value of any feasible solution by making repeated calls

to an algorithm that solves the decision problem. This search is single-

dimensional and can be effectively solved, e.g., by binary search. In this

section we develop a similar theory for prior-free mechanism design.

Profit Extraction

For profit maximization in mechanism design, recall, there is no point-

wise optimal mechanism. Therefore, we define the mechanism design

decision problem in terms of the envy-free optimal revenue EFO. The

decision problem for profit target Π is to design a mechanism that ob-

tains profit at least Π on any valuation profile v with EFO(v) ≥ Π. We

call a mechanism that solves the decision problem a profit extractor.

Definition 6.8 The digital good profit extractor for target Π and valu-

ation profile v finds the largest k such that v(k) ≥ 1/kΠ, sells to the top

k agents at price 1/kΠ, and rejects all other agents. If no such k exists,

it rejects all agents.

Lemma 6.15 The digital good profit extractor is dominant strategy

incentive compatible.
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Proof Consider the following ascending auction. See if all agents can

evenly split the target Π. If some agents cannot afford to pay their fair

share, reject them. Repeat with the remaining agents. Notice that the

number of remaining agents in this process is decreasing, and thus, the

fair share of each remaining agent is increasing. Therefore, each agent

faces an ascending price until she drops out. It is a dominant strategy

for her to drop out when the ascending price exceeds her value (c.f. the

single-item ascending-price auction of Definition 1.5, page 5).

The outcome selected by this ascending auction is identical to that

of the profit extractor. Therefore, we can interpret the profit extrac-

tor as the revelation principle (Theorem 2.11) applied to the ascending

auction. The dominant strategy equilibrium of the ascending auction,

then, implies that the profit extractor is dominant strategy incentive

compatible.

Lemma 6.16 For all valuation profiles v, the digital good profit extrac-

tor for target Π obtains revenue Π if EFO(v) ≥ Π and zero otherwise.

Proof Recall, EFO(v) = i⋆ v(i⋆). If Π ≤ EFO(v) then there exists a k

such that v(k) ≥ 1/kΠ, e.g., k = i⋆. In this case its revenue is exactly

Π. On the other hand, if Π > EFO(v) = maxk k v(k) then there is no

such k for which v(k) ≥ 1/kΠ and the mechanism has no winners and no

revenue.

Approximate Reduction to Decision Problem

We now employ random sampling to approximately reduce the mecha-

nism design problem of optimizing profit to the decision problem. The

key observation in this reduction is an analogy. Notice that given a single

agent with value v, if we offer this agent a threshold v̂ the agent buys

and pays v̂ if and only if v ≥ v̂. Analogously a profit extractor with

target Π on a subset S of the agents obtains revenue Π if and only if

EFO(vS) ≥ Π. We can thus view the subset S of agents like a single

“meta agent” with value EFO(vS). The idea then is to randomly par-

tition the agents into two parts, treat each part as a meta agent, and

run the second-price auction on these two meta agents. The last step

is accomplished by attempting to profit extract the envy-free optimal

revenue for one part from the other part, and vice versa.

Definition 6.9 The random sampling profit extraction auction works

as follows:
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(i) randomly partition the agents into S and M (by flipping a fair coin

for each agent),

(ii) Calculate ΠM = EFO(vM ) and ΠS = EFO(vS), the benchmark

profit for each part.

(iii) Profit extract ΠS from M and ΠM from S.

Notice that the intuition from the analogy to the second-price auction

implies that the revenue of the random sampling profit extraction auc-

tion is exactly the minimum of ΠM and ΠS . Since the profit extractor

is dominant strategy incentive compatible, so is the random sampling

profit extraction auction.

Lemma 6.17 The random sampling profit extraction auction is dom-

inant strategy incentive compatible.

Before we prove that the random sampling profit extraction auction

is a four approximation to the envy-free benchmark, we give a simple

proof of a lemma that will be important in the analysis.

Lemma 6.18 With k ≥ 2 fair coin flips, the expected minimum of the

number of heads or tails is at least 1/4 k.

Proof Let Wi be a random variable for the minimum number of heads

or tails in the first i coin flips. The following calculations are elementary:

E[W1] = 0,

E[W2] = 1/2, and

E[W3] = 3/4.

We now obtain a general bound on E[Wi] for i > 3. Let wi = Wi −

Wi−1 representing the change to the minimum number of heads or tails

when we flip the ith coin. Notice that linearity of expectation implies

that E[Wi] =
∑k

i=1 E[wi]. Thus, it will suffice to calculate E[wi] for all

i. We consider this calculation in three cases:

Case 1 (i even): This implies that i − 1 is odd, and prior to flipping

the ith coin it was not the case that there was a tie. Assume

without loss of generality that there were more tails than heads.

Now when we flip the ith coin, there is probability 1/2 that it is

heads and we increase the minimum by one; otherwise, we get

tails have no increase to the minimum. Thus, E[wi] = 1/2.

Case 2 (i odd): Here we use the crude bound that E[wi] ≥ 0. Note

that this is actually the best we can claim in worst case since
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i−1 is even so before flipping the ith coin it could be that there

is a tie. If this were the case then regardless of the ith coin flip,

wi = 0 and the minimum number of heads or tails would be

unchanged.

Case 3 (i = 3): This is a special case of Case 2; however we can get a

better bound using the calculations of E[W2] = 1/2 and E[W3] =
3/4 above to deduce that E[w3] = E[W3]−E[W2] = 1/4.

Finally we are ready to calculate a lower bound on E[Wk].

E[Wk] =
∑k

i=1
E[wi]

≥ 0 + 1/2 + 1/4 + 1/2 + 0 + 1/2 + 0 + 1/2 + · · ·

= 1/4 + 1/2 ⌊k/2⌋

≥ 1/4 k.

Theorem 6.19 For digital good environments and all valuation pro-

files, the random sampling profit extraction auction is a four approxima-

tion to the envy-free benchmark.

Proof For valuation profile v, let REF be the envy-free benchmark

and its revenue and APX be the random sampling profit extraction

auction and its expected revenue. From the analogy to the second-price

auction on meta-agents, the expected revenue of the auction is APX =

E[min(ΠM ,ΠS)] (where the expectation is taken over the randomized of

the partitioning of agents).

Assume that the envy-free benchmark sells to i⋆ ≥ 2 agents at price

v̂⋆, i.e., REF = i⋆ v̂⋆. Of the i⋆ winners in REF, let i⋆M be the number

of them that are in M and i⋆S the number that are in S. Since there are

i⋆M agents in M above price v̂⋆, then ΠM ≥ i⋆M v̂⋆. Likewise, ΠS ≥ i⋆S v̂⋆.

APX
REF = E[min(ΠM,ΠS)]

i
⋆
v̂
⋆ ≥

E[min(i
⋆
M v̂

⋆
, i

⋆
M v̂

⋆
)]

i
⋆
v̂
⋆ =

E[min(i
⋆
M , i

⋆
S)]

i
⋆ ≥ 1

4 .

The last inequality follows by applying Lemma 6.18 when we consider

i⋆ ≥ 2 coins and heads as putting an agent in S and a tails as putting

the agent in M .

This bound is tight by an adaptation of the analysis of Example 6.2

from which we concluded that the random sampling optimal price auc-

tion is at best a four approximation.

One question that should seem pertinent at this point is whether par-

titioning into two groups is optimal. We could alternatively partition
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into three parts and run a three-agent auction on the benchmark rev-

enue of these parts. Of course, the same could be said for partitioning

into ℓ parts for any ℓ. In fact, the optimal partitioning comes from ℓ = 3,

though we omit the proof and full definition of the mechanism.

Theorem 6.20 For digital good environments and all valuation pro-

files, the random three-partitioning profit extraction auction is a 3.25

approximation to the envy-free benchmark.

6.3 The Envy-free Benchmark

The first step in generalizing the framework for prior-free approximation

from the preceding sections is to generalize the envy-free benchmark. In

this section we consider envy-free optimal pricing in general environ-

ments. We will give characterizations of envy-free pricings and envy-

free optimal pricings that mirror those of incentive compatibility. These

characterizations will promote the viewpoint that envy freedom is is a

relaxation of incentive compatibility that admits pointwise optimization.

The section will conclude with the general definition and discussion of

the envy-free benchmark.

Definition 6.10 For valuation profile v, an outcome with allocation

x and payments p is envy free if no agent prefers the outcome of another

agent to her own, i.e.,

∀i, j, vi xi − pi ≥ vi xj − pj.

Example 6.3 As a running example for this section consider an n = 90

agent, k = 20 unit environment with a valuation profile v that consists

of ten high-valued agents each with value ten and 80 low-valued agents

each with value two. The following three pricings are envy free (and

feasible for the environment).

(i) Post a price of ten. Serve the ten high-valued agents at this price,

reject the low-valued agents. This pricing is envy free: the high-valued

agents weakly prefer buying and the low-valued agents prefer not

buying. The total revenue is 100 = 10× 10.

(ii) Post a price of two. Serve the ten high-valued agents and ten of the

low-valued agents at this price. This pricing is envy free: the high-

valued agents prefer buying and the low-valued agents are indifferent

between buying and not buying. The total revenue is 40 = 20× 2.
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(iii) Post a price of nine to buy the item with certainty and a price of 1/4

to buy the item with probability 1/8 (equivalently, a probability 1/8

chance to buy at price of two). Serve the ten high-valued agents with

the certainty outcome, and serve the 80 low-valued agents with the

probabilistic outcome. By an elementary analysis this pricing is envy

free: the high-valued agents weakly prefer to buy the certainty out-

come and the low-valued agents weakly prefer to buy the probabilistic

outcome (over nothing). The total revenue is 110 = 10× 9+ 80× 1/4.

6.3.1 Envy-free Pricing

The definition of envy freedom can be contrasted to definition of incen-

tive compatibility as given by the revelation principle and the defining

inequality of Bayes-Nash equilibrium (Proposition 2.1, page 30). Impor-

tantly, incentive compatibility constrains the outcome an agent would

receive upon a unilateral misreport where as envy freedom constrains

the outcome she would receive upon swapping with another agent. The

similarity of envy freedom and incentive compatibility enables an anal-

ogous characterization (cf. Section 2.5, page 31) and optimization (cf.

Section 3.3, page 59) of envy-free pricings. However, unlike the incentive-

compatibility constraints, envy-freedom constraints bind pointwise on

the given valuation profile; therefore, there is always a pointwise opti-

mal envy-free outcome.

Theorem 6.21 For valuation profile v (sorted with v1 ≥ . . . ≥ vn),

an outcome (x,p) is envy free if and only if

• (monotonicity) x1 ≥ . . . ≥ xn.

• (payment correspondence) there exists a p0 and monotone function

y(·) with y(vi) = xi such that for all i

pi = vixi −

∫ vi

0

y(z) dz + p0,

where usually p0 = 0.

Notice that the envy-free payments are not pinned down precisely by

the allocation; instead, there is a range of appropriate payments. As

these payment can be interpreted as the “area above the curve y(·),”

the maximum payments are given when y(·) is the smallest monotone

function consistent with the allocation. Given our objective of profit

maximization, for any monotone allocation rule, we focus on the maxi-

mum envy-free payments. These maximum envy-free payments are thus
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Figure 6.1 The allocation is depicted as points (vj , xj) for each agent j.

The envy-free payment of agent i is depicted as the total shaded area. The

jth term in the sum of equation (6.1) is the dark shaded rectangle. The

effective allocation rule y from Theorem 6.21 is the stair function depicted

by a solid line.

given by the following formula and depicted in Figure 6.1:

pi =
∑n

j≥i
vj (xj − xj+1), (6.1)

again, with v sorted as v1 ≥ . . . ≥ vn.

Proof of Theorem 6.21 We prove the theorem for the maximum envy-

free payments as specified by (6.1) and leave the general payment cor-

respondence as an exercise.

Monotonicity and the payment identity of equation 6.1 imply envy

freedom: Suppose x is swap monotone. Let p be given as by equation 6.1.

We verify that (x,p) is envy-free. There are two cases: if i ≤ j, we have:

pi − pj =

j−1
∑

k=i

vk · (xk − xk+1) ≤ vi ·

j−1
∑

k=i

(xk − xk+1) = vi · (xi − xj),

and if i ≥ j, we have:

pi − pj = −
i−1∑

k=j

vk · (xk − xk+1) ≤ −vi ·
i−1∑

k=j

(xk − xk+1) = vi · (xi − xj).

Each equation above can be rearranged to give the definition of envy

freedom.

Envy freedom implies monotonicity: Suppose x admits p such that

(x,p) is envy-free. By definition, vixi − pi ≥ vixj − pj and vjxj −

pj ≥ vjxi − pi. By summing these two inequalities and rearranging,

(xi − xj) · (vi − vj) ≥ 0, and hence x is monotone.

The maximum envy-free prices satisfy the payment identity of equa-

tion 6.1: Agent i does not envy i + 1 so vixi − pi ≥ vixi+1 − pi+1, or
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rearranging: pi ≤ vi(xi − xi+1) + pi+1. Given pi+1 the maximum pi sat-

isfies this inequality with equality. Letting pn = vnxn (the maximum

individually rational payment) and induction gives the payment iden-

tity: pi =
∑n

j=i vj · (xj − xj+1).

6.3.2 Envy-free Optimal Revenue

Definition 6.11 Given any symmetric environment and valuation pro-

file v, the envy-free optimal revenue, denoted EFO(v), is the maximum

revenue attained by a feasible envy-free outcome.

In Section 6.2 we discussed the envy-free optimal revenue for digital

good environments and observed that it can be viewed as the revenue

from the monopoly pricing of the empirical distribution for the valuation

profile. The empirical distribution for a valuation profile v is the discrete

distribution with probability 1/n at value vi.

Consider envy-free optimal pricing in multi-unit environments where,

unlike digital goods, there is a constraint on the number of agents that

can be be simultaneously served (see Example 6.3). Recall that for irreg-

ular multi-unit auction environments the Bayesian optimal auction is not

just the second-price auction with the monopoly reserve (in particular,

it may iron). For these environments the envy-free optimal pricing also

may iron. In particular, it corresponds to a virtual value optimization

for virtual values given by the empirical distribution. Below we define

the empirical revenue and empirical marginal revenue from which the

envy-free optimal revenue can be calculated (cf. Definition 3.11, Defini-

tion 3.12, and Definition 3.15 in Section 3.3, page 59).

Definition 6.12 For valuation profile v sorted as v1 ≥ . . . ≥ vn, the

empirical price-posting revenues are P = (P0, . . . , Pn) with P0 = 0 and

Pi = i vi for all i ∈ [n]. The empirical price-posting revenue curve is

the piece-wise linear function connecting the points (0, P0), . . . , (n, Pn).

The empirical revenue curve is the smallest concave function that up-

per bounds the empirical price-posting revenue curve; i.e., the empirical

revenue curve is given by ironing the empirical price-posting revenue

curve. The empirical revenues are R = (R0, . . . , Rn) with Ri obtained

by evaluating the empirical revenue curve at i. Empirical marginal rev-

enues and empirical marginal price-posting revenues are given by the

left slope of their respective empirical revenue curves, or equivalently, as

P ′
i = Pi − Pi−1 and R′

i = Ri −Ri−1.
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Figure 6.2 The empirical revenue and empirical price-posting revenue

curves corresponding to the n = 90 agent valuation profile with ten high-

valued agents and 80 low-valued agents (Example 6.3). The three envy-free

pricings of the example are depicted as P10, P20, and R20.

Example 6.4 The empirical marginal revenues for Example 6.3 (n =

90 agents, ten with value ten and 80 with value two). The empirical

revenues and price-posting revenues for this valuation profile are given

in Figure 6.3.2; The empirical marginal revenues are:

R′
i =

{

10 i ∈ {1, . . . , 10}, and

1 i ∈ {11, . . . , 90}.

Analogously to the Bayesian optimal incentive compatible auction,

the envy-free optimal pricing is a virtual value maximizer for virtual

values defined by the empirical marginal revenue. The proofs of The-

orem 6.22 and Corollary 6.23, below, are essentially the same as the

proofs of Theorem 3.12 and Corollary 3.15.

Theorem 6.22 The maximal envy-free revenue for monotone alloca-

tion x is
∑

i
P ′
i xi =

∑

i
Pi (xi − xi+1) ≤

∑

i
Ri (xi − xi+1) =

∑

i
R′

i xi

with equality if and only if Ri 6= Pi ⇒ xi = xi+1.

Corollary 6.23 In symmetric environments, with virtual values de-

fined as the empirical marginal revenues, virtual surplus maximization
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(with random tie-breaking) gives the envy-free outcome with the maxi-

mum profit.

Proof of Theorem 6.22 The inner inequality holds by the following se-

quence of inequalities:
∑n

i=1
pi =

∑n

i=1

∑n

j=i
vj · (xj − xj+1)

=
∑n

i=1
ivi · (xi − xi+1) =

∑n

i=1
Pi · (xi − xi+1)

=
∑n

i=1
Ri · (xi − xi+1)−

∑n

i=1
(Ri − Pi) · (xi − xi+1)

≤
∑n

i=1
Ri · (xi − xi+1),

where the final inequality follows from the facts that Ri ≥ Pi and xi ≥

xi+1. Clearly the inequality holds with equality if and only if xi = xi+1

whenever Ri > Pi.

The outer equalities hold by collecting like terms in the summation

as follows,
∑n

i=1
Pi · (xi − xi+1) =

∑n

i=1
(Pi − Pi−1) · xi =

∑n

i=1
P ′
i · xi,

with the analogous equations relating Ri and R′
i.

6.3.3 Envy freedom versus Incentive Compatibility

Optimal envy-free pricing and Bayesian optimal mechanisms are struc-

turally similar; they are both virtual value maximizers. In this section

we observe that their optimal revenues are also similar.

An empirical virtual value function can be defined from a valuation

profile v with empirical marginal revenues R′ as follows (recall vn+1 =

0):

φ(v) =

{

R′
i+1 if v ∈ [vi+1, vi) for some i ∈ [n], and

v otherwise.
(6.2)

This definition is true to the geometric revenue curve interpretation

where the value v can be represented as a diagonal line from the ori-

gin with slope v and the marginal revenue for v is the left slope of the

revenue curve at its intersection with this line.

For any virtual value function, symmetric environment, and valuation

profile; virtual surplus maximization gives an allocation that is mono-

tone, i.e., vi > vj ⇒ xi ≥ xj , as well as an allocation rule that is mono-

tone, i.e., z > z† ⇒ xi(z) ≥ xi(z
†). From this allocation and allocation
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rule the incentive-compatible and envy-free revenues can be calculated

and compared. Recall that the maximal envy-free payment of agent i for

this allocation comes from equation (6.1) whereas the payment of the

incentive compatible mechanism with this allocation rule comes from

Corollary 2.13. These payments are related but distinct.

Example 6.5 Compare the envy-free revenue and incentive-compatible

revenue corresponding to Example 6.3 (k = 20 units, n = 90 agents, ten

with value ten, and 80 with value two). The virtual value function from

equation (6.2) is:

φ(v) =







−180 v < 2,

1 v ∈ [2, 10), and

v v ∈ [10,∞).

We now calculate the revenue of the incentive compatible mechanism

that serves the 20 agents with the highest virtual value. In the virtual-

surplus-maximizing auction, on the valuation profile v, the high-valued

agents win with probability one and the low-valued agents win with

probability 1/8 (as there are ten remaining units to be allocated ran-

domly among 80 low-valued agents). To calculate payments we must

calculate the allocation rule for both high- and low-valued agents. Low-

valued agents, by misreporting a high value, win with probability one.

The allocation rule for low-valued agents is depicted in Figure 6.3(a).

High-valued agents, by misreporting a low value, on the other hand,

win with probability 11/81. Such a misreport leaves only nine high-

value-reporting agents and so there are 11 remaining units to allocate

randomly to the 81 low-value-reporting agents. The allocation rule for

high-valued agents is given in Figure 6.3(b). Payments can be deter-

mined from the allocation rules: a high-valued agent pays about 8.9 and

a low-valued agent (in expectation) pays 1/4. The total incentive com-

patible revenue is about 109. Notice that this revenue is only slightly

below the envy-free optimal revenue of 110.

The revenue calculation in Example 6.5 is complicated by the fact

that when a high-valued agent reports truthfully there are ten remaining

units to allocate to the 80 low-valued agents; whereas when misreport-

ing a low value, there are 11 remaining units to allocate to 81 low-value

reporting agents. Importantly: the allocation rule for high-valued agents

and low-valued agents are not the same (compare Figure 6.3(a) and

Figure 6.3(b)). The envy-free payments for both high- and low-valued
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2 10

10/80
0

1

(a) Allocation rule xlow(v) and payment plow(2)

2 10

11/81
0

1

(b) Allocation rule xhigh(v) and payment phigh(10)

Figure 6.3 The allocation rules for high- and low-valued agents induced by

the valuation profile and mechanism with virtual values given in Exam-

ple 6.5. The incentive compatible payments are given by the area of the

shaded region.

agents, on the other hand, are calculated from the same “allocation

rule” (denoted as y(·) in Theorem 6.21) which is, in fact, identical to

the incentive-compatible allocation rule of the low-value agents (Fig-

ure 6.3(a)). Thus, the envy-free revenue can be viewed as a relaxation

of the incentive-compatible revenue that is simpler and, therefore, more

analytically tractable.

We now formalize the fact that the envy-free optimal revenue is an

economically meaningful benchmark by showing that it is pointwise nor-

malized (which implies that it is normalized for any i.i.d. distribution).

Theorem 6.24 For multi-unit environments and any virtual value

function φ(·), the envy-free revenue of virtual surplus maximization is

at least its incentive-compatible revenue.

Proof We show that the envy-free payment of agent i is at least her

incentive-compatible payment. In particular if we let xi(v) be the alloca-

tion rule of the virtual surplus optimizer, then for z ≤ vi, xi(z,v−i) (as a

function of z) is at most the smallest y(z) that satisfies the conditions of

Theorem 6.21. Since the incentive-compatible and envy-free payments,
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respectively, correspond to the area “above the allocation curve” this

inequality implies the desired payment inequality.

Since xi(z,v−i) is monotone, we only evaluate it at vj ≤ vi and show

that xi(vj ,v−i) ≥ xj(v). In particular,

xi(vj ,v−i) = xj(vj ,v−i) ≥ xj(v).

The equality above comes from the symmetry of the environment and

the fact that agent i and j have the same value in profile (vj ,v−i). The

inequality comes from greedy maximization with random tie breaking

for multi-unit auctions: when agent i reduces her bid to tie agent j’s

value vj the probability that j receives a unit does not decrease as agent

i is only less competitive.

We will see later that this theorem generalizes beyond multi-unit en-

vironments (see Section 6.5). In particular, the only properties of multi-

unit environments that we employed in the proof were symmetry and

that the greedy algorithm is optimal.

6.3.4 Permutation Environments

Envy freedom is less natural in asymmetric environments such as those

given by matroid or downward-closed feasibility constraints. To extend

the envy-free benchmark to asymmetric environments we assume a sym-

metry imposing prior-free analog of the (standard) Bayesian assump-

tion that the agents’ value distribution is independent and identically

distributed. Specifically, the valuation profile can be arbitrary, but the

roles the agents play with respect to the environment (e.g., feasibility

constraint or cost function) are assigned by random permutation.

Definition 6.13 Given an environment, specified by cost function c(·),

the permutation environment is the environment with the identities of

the agents uniformly permuted. I.e., for permutation π drawn uniformly

at random from all permutations, the permutation environment has cost

function c(π(·)).

Our goal is a prior-free analysis framework for which approxima-

tion implies prior-independent approximation in i.i.d. environments. Of

course the expected revenue of the optimal auction in an i.i.d. envi-

ronment is unaffected by a random permutation of the identities of

the agents. Therefore, with respect to the goal of obtaining a prior-

independent corollary from a prior-free analysis (by Proposition 6.1),
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it is without loss to assume a permutation environment. Importantly,

while a matroid or downward-closed environment may be asymmetric,

a matroid permutation or downward-closed permutation environment

is inherently symmetric. This symmetry admits a meaningful study of

envy freedom.

The environments considered heretofore have been given determinis-

tically, e.g., by a cost function or set system (Chapter 3, Section 3.1).

A generalization of this model would be to allow randomized environ-

ments. We view a randomized environment as a probability distribution

over deterministic environments, i.e., as a convex combination. For the

purpose of incentives and performance, we will view mechanism design in

randomized environments as follows. First, the agents report their pref-

erences; second, the designer’s cost function (or feasibility constraint) is

realized; and third, the mechanism for the realized cost function is run

on the reported preferences. The performance in such probabilistic envi-

ronment is measured in expectation over both the randomization in the

mechanism and the environment. Agents act before the set system is re-

alized and therefore from their perspective the game they are playing in

is the composition of the randomized environment with the (potentially

randomized) mechanism.

An example of such a probabilistic environment comes from display

advertising. Banner advertisements on web pages are often sold by auc-

tion. Of course the number of visitors to the web page is not precisely

known at the time the advertisers bid; instead, this number can be rea-

sonably modeled as a random variable. Therefore, the environment is a

convex combination of multi-unit auctions where the supply k is ran-

domized.

6.3.5 The Envy-free Benchmark

We are now ready to formally define the envy-free benchmark. To do

so we must address the potential asymmetry in the environment and

the technicality that the envy-free revenue itself may have unbounded

resolution (recall the discussion above Definition 6.5 on 179). Finally, we

must give economic justification to the benchmark by showing that it is

normalized.

Definition 6.14 For any environment and valuation profile v, the

envy-free benchmark, denoted EFO(2)(v), is the optimal envy-free rev-

enue in the permutation environment on the valuation profile v(2) where
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the highest value v(1) is replaced with twice the second highest value

2v(2), i.e., v
(2) = (2v(2), v(2), v(3), . . . , v(n)).

Theorem 6.25 For i.i.d., regular, n ≥ 2 agent, multi-unit environ-

ments, the envy-free benchmark is normalized.

Proof Recall that for i.i.d. regular distributions F , the n-agent k-unit

Bayesian optimal auction REFF is the k + 1st-price auction with the

monopoly reserve v̂⋆ for the distribution. We will show a stronger claim

than the statement of the lemma. The anonymous-reserve benchmark

APX for valuation profile v is the revenue of the k-unit auction with the

best reserve price for the valuation profile v
(2) = (2v(2), v(2), . . . , v(n)).

For k = 1, APX(v) = 2v(2) and in general APX(v) = max2≤i≤k i v(i).

The outcome of the anonymous-reserve benchmark is envy-free for v(2);

therefore, it lower bounds the envy-free optimal revenue for v
(2); and

therefore, the normalization of the anonymous-reserve benchmark im-

plies normalization of the envy-free benchmark.

We first argue the n = 2 agent, k = 2 unit special case (a.k.a., the

two-agent digital good environment). Fix an i.i.d. regular distribution F

over valuation profiles. We show that the expected anonymous-reserve

benchmark (APX) is at least the performance of the Bayesian optimal

mechanism (REFF ) for the distribution, i.e., that Ev∼F [APX(v)] ≥

Ev∼F [REFF (v)].

Recall Theorem 5.1 (also Lemma 5.6) which states that for i.i.d. reg-

ular distributions that the revenue of the two-agent second-price auc-

tion exceeds that of the single-agent monopoly pricing. Thus, twice the

second-price revenue exceeds twice the monopoly pricing revenue. For

n = k = 2, the former is equal to the expected anonymous-reserve bench-

mark and the latter is equal to the expected Bayesian optimal revenue.

Under the regularity assumption, the normalization of the anonymous-

reserve benchmark for the two-agent digital good environment implies

its normalization for multi-unit environments with general n ≥ 2 agents

and k units. To show this extension, consider any k ≥ 2 and any n ≥ 2

and condition on the third-highest value v(3). The following argument

shows that E
[
APX(v) | v(3)

]
≥ E

[
REFF (v) | v(3)

]
for v(3) < v̂⋆ and

v(3) ≥ v̂⋆ considered as separate cases.

When the third-highest value v(3) is less than the monopoly price v̂⋆,

then all agents except for the top two are rejected. The conditional dis-

tribution on of the two highest valued agents is regular (the conditioning

only truncates and scales the revenue curve; therefore, its convexity is
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preserved), moreover, the remaining feasibility constraint is that of a

digital good. Hence, the normalization for the two-agent digital good

environment implies normalization for this conditional environment.

When the third-highest value v(3) is more than the monopoly price

v̂⋆, then the Bayesian optimal auction REFF on v sells at least two

units at a uniform price and the empirical anonymous-reserve revenue

from selling the same number of units is pointwise no smaller. Thus, the

desired bound holds pointwise.

Now consider the final case of k = 1 unit, n ≥ 2 agent environments.

We will reduce normalization of the anonymous-reserve benchmark in

this environment to that of the k = 2 unit environment. The benchmark

in the two environments is the same: the one-unit benchmark is 2v(2);

the two-unit benchmark is 2v(2). The Bayesian optimal revenue is only

greater for two units than with one unit. Therefore, normalization for

two units implies normalization for one unit.

It is evident from this proof that the anonymous-reserve benchmark

is also normalized for multi-unit environments. We will prefer to use the

envy-free benchmark for three reasons. First, the envy-free benchmark

remains normalized for a larger class of distributions which admit a large

degree of irregularity (though not arbitrary irregular distributions). Sec-

ond, the envy-free benchmark is easier to work with as it is structurally a

virtual surplus optimization. Third, for position environments discussed

subsequently, the envy-free benchmark is linear in the position weights,

while the anonymous reserve benchmark is not. This linearity will be

important for our analysis.

6.4 Multi-unit Environments

In this section we will discuss two approaches for multi-unit environ-

ments. In the first, we will give an approximate reduction to digital good

environments. This reduction will give a β+1 approximation mechanism

for multi-unit environments from any β approximation mechanism for

digital goods. Applied to the prior-free optimal digital good auction,

a 2.42 approximation, this approach yields a multi-unit 3.42 approxi-

mation. The second approach will be to directly generalize the random

sampling optimal price auction to multi-unit environments. This gener-

alization randomly partitions the agents into a market and sample, cal-

culates the empirical distribution of the sample, and then runs optimal
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multi-unit auction on the market according to the empirical distribution

for the sample.

6.4.1 Reduction to Digital Goods

Our first approach is an approximate reduction. For i.i.d. irregular single-

item environments, Corollary 4.16 shows that the second-price auction

with anonymous reserve is a two approximation to the optimal auc-

tion. I.e., the loss in performance from not ironing when the distribution

is irregular is at most a factor of two. In fact, this result extends to

multi-unit environments (as does the prophet inequality from which it

is proved) and the approximation factor only improves. Given the close

connection between envy-free optimal outcomes and Bayesian optimal

auctions, it should be unsurprising that this result translates between

the two models.

Consider the revenue of the surplus maximization mechanism with

the best (ex post) anonymous reserve price. For instance, for the k-unit

environment and valuation profile v, this revenue is maxi≤k iv(i). It is

impossible to approximate this revenue with a prior-free mechanism so,

as we did for the envy-free benchmark, we exclude the case that it sells

to only the highest-valued agent at her value. Therefore, for k-unit envi-

ronments the anonymous-reserve benchmark is max2≤i≤k iv(i) for k > 2

(and 2v(2) for k = 1), i.e., it is the optimal anonymous reserve revenue

for the valuation profile v(2) = (2v(2), v(2), . . . , v(n)). Notice that for dig-

ital goods, i.e., k = n, the anonymous-reserve benchmark is equal to the

envy-free benchmark. Of course, an anonymous reserve is envy free so

the envy-free benchmark is at least the anonymous-reserve benchmark.

We now give an approximate reduction from multi-unit environments

to digital-good environments in two steps. We first show that the envy-

free benchmark is at most twice the anonymous-reserve benchmark in

multi-unit environments. We then show an approximation preserving re-

duction from multi-unit to digital-good environments with respect to the

anonymous-reserve benchmark. In the next section a more sophisticated

approach that attains a better bound is given.

Theorem 6.26 For any valuation profile, in multi-unit environments,

the envy-free benchmark (resp. optimal revenue) is at most the sum of

the anonymous-reserve benchmark (resp. optimal revenue) and k + 1st-

price auction revenue, which is at most twice the anonymous-reserve

benchmark (resp. optimal revenue).
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Figure 6.4 Depiction of ironed revenue curve R for the geometric proof of

Theorem 6.26. The solid piece-wise linear curve is R, the convex hull of

P , and contains the line-segment connecting point A = (i, Pi) and point

D = (j, Pj). The envy-free benchmark is achieved at point C = (k,Rk).

The parallel dashed lines have slope v(j), the other dashed line has slope

v(i).

Proof We prove the statement with respect to the optimal revenues

and any valuation profile v and then apply the theorem to the valuation

profile v
(2) to obtain the statement with respect to the benchmarks.

If the envy-free optimal revenue sells fewer than k units or the revenue

curve is not ironed at k then the anonymous-reserve revenue equals the

envy-free revenue and the theorem trivially holds. Otherwise, assume

that the envy-free optimal revenue sells all k units and irons between

index i < k and j > k (see Figure 6.4). In terms of empirical revenue

curves (Definition 6.12), the envy-free optimal revenue for v is REF =

Rk = C. Note that the AC line has slope R′
k, i.e., C = A+(k−i)R′

k. The

line from the origin to D has slope v(j). By geometry v(j) > R′
k. Thus,

extending a line from A = Ri with slope v(j) to point B = A+(k−i) v(j)
satisfies B > C.

The anonymous-reserve revenue exceeds the k+1st-price auction rev-

enue; thus, twice the anonymous-reserve revenue exceeds the sum of the

anonymous-reserve revenue and the k + 1st-price auction revenue. The

anonymous-reserve revenue is at least Ri and the k + 1st-price revenue
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is k v(k+1) ≥ (k − i) v(j) (as j ≥ k + 1 and i ≥ 1); thus the sum of

their revenues exceeds Ri + (k − i) v(j) = B > C = REF. The theorem

follows.

Theorem 6.26 reduces the problem of approximating the envy-free

benchmark to that of approximating the anonymous-reserve benchmark.

There is a general construction for converting a digital good auction

A into a limited supply auction and if A is a β approximation to

the anonymous-reserve benchmark (which is identical to the envy-free

benchmark for digital goods) then so is the resulting multi-unit auction.

Definition 6.15 The k ≥ 2 unit restriction Ak of digital good auction

A is the following:

(i) Simulate the k + 1st-price auction (i.e., the k highest valued agents

win and pay v(k+1)).

(ii) Simulate A on the k winners v(1), . . . , v(k).

(iii) Serve the winners from the second simulation and charge them the

higher of their prices in the two simulations.

The 1-unit restriction A1 is the second-price auction.

Implicit in this definition is a new notion of mechanism composition

(cf. Chapter 5, Section 5.4.2). It is easy to see that this mechanism com-

position is dominant strategy incentive compatible. In general such a

composition is DSIC whenever no winner of the first mechanism can

manipulate her value to change the set of winners while simultaneously

remaining a winner (see Exercise 6.3); mechanisms that satisfy this prop-

erty are said to be non-bossy.

Theorem 6.27 If A is a β approximation to the envy-free benchmark

in digital good environments then its multi-unit restriction Ak is a 2β

approximation in multi-unit environments.

Proof For 1-unit environments, the second-price auction (with revenue

v(2)) is a 2-approximation to the 1-unit envy-free benchmark EFO(2)(v) =

2v(2). For k ≥ 2 unit environments, the k-unit restriction is a β approx-

imation to the envy-free benchmark restricted to the k highest-valued

agents. This benchmark is equal to the anonymous-reserve benchmark

on the full set of agents. This benchmark, by Theorem 6.26, is at least

half the envy-free benchmark on the full set of agents. Thus, the k-unit

restriction is a 2β approximation to the envy-free benchmark.
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This theorem can be applied to any digital good auction; for instance,

from Theorem 6.7 we can conclude that there is a multi-unit auction

that is a 4.84 approximation to the envy-free benchmark.

6.4.2 Combination of Benchmarks and Auctions

Theorem 6.26, which shows that the envy-free benchmark is bounded

by the sum of the anonymous-reserve benchmark and the k + 1st-price

auction revenue, can be employed to construct a β + 1 approximation

for multi-unit environments from a β approximation for digital goods.

Applied to the prior-free optimal auction for digital goods, this yields

an multi-unit 3.42 approximation. The approach is to view the envy-

free benchmark as the sum of two benchmarks, design prior-free mech-

anisms for each benchmark, and then consider an appropriate convex

combination of the two mechanisms to optimize the approximation with

respect to the original benchmark. This approach provides two conclu-

sions. First, it gives a modular approach to prior-free mechanism design.

Second, it suggests that, even in pursuit of prior-free approximation with

respect to the economically motivated envy-free benchmark, it may be

useful to understand prior-free approximation for other benchmarks.

Definition 6.16 For benchmark G(v) = GA(v) + GB(v), mechanism

MA giving a prior-free βA approximation to benchmark GA, and mech-

anismMB giving a prior-free βB approximation to benchmark GB; the

prior-free combinationM runsMA with probability βA/βA+βB andMB

with probability βB/βA+βB.

Theorem 6.28 With respect to Definition 6.16, the prior-free com-

bination M is a prior-free β = βA + βB approximation to benchmark

G(v) = GA(v) + GB(v).

Proof

M(v) =
βA

βA + βB

MA(v) +
βB

βA + βB

MB(v)

≥
βA

βA + βB

GA(v)

βA

+
βB

βA + βB

GB(v)

βB

=
GA(v) + GB(v)

βA + βB

.

As described above, the k-unit restriction Ak of β approximate digi-

tal good auction A is an β approximation to the multi-unit anonymous

reserve benchmark. The k + 1st-price auction is, obviously, a one ap-

proximation to the k + 1st-price auction revenue. Thus, we can invoke

Theorem 6.26 and Theorem 6.28 to obtain the following corollary. The
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best multi-unit auction via this construction is attained by instantiating

the reduction with the prior-free optimal digital good auction which is

a 2.42 approximation (Theorem 6.7).

Corollary 6.29 For prior-free β-approximate digital-good auction A,

the prior-free combination of the multi-unit restriction Ak (with prob-

ability β/β+1) and the k + 1st-price auction (with probability 1/β+1) is

a prior-free β + 1 approximation to the envy-free benchmark in multi-

unit environments. For the prior-free optimal digital-good auction, this

multi-unit auction is a prior-free 3.42 approximation.

6.4.3 The Random Sampling Auction

An alternative approach to the multi-unit auction problem is to directly

generalize the random sampling optimal price auction. Intuitively, the

random sampling auction partitions the agents into a market and sample

and then runs the optimal auction for the empirical distribution of the

sample on the market. For digital goods the optimal auction for the

empirical distribution sample is just the to post the empirical monopoly

price. For multi-unit environments, the optimal auction irons when the

empirical distribution of the sample is irregular.

Definition 6.17 The random sampling (virtual surplus maximization)

auction for the k-unit environment

(i) randomly partitions the agents into market M and sample S by as-

signing the highest-valued agent to M and flipping a fair coin for all

other agents,

(ii) computes virtual valuation function φS for the empirical distribution

of S, and

(iii) maximizes virtual surplus of selling at most k units to S with respect

to φM .

The proof of the following theorem can be derived similarly to the

proof of Lemma 6.13 (page 185); we omit the details.

Theorem 6.30 For multi-unit environments and all valuation profiles,

the random sampling auction is a constant approximation to the envy-

free benchmark.

The random sampling auction shares some good properties with op-

timal mechanisms. The first is that the mechanism on the market is a

virtual-surplus optimization. I.e., it sorts the agents in the market by
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virtual value and allocates to the agents greedily in that order. This

property is useful for two reasons. First, in environments where the sup-

ply k of units is unknown in advance, the mechanism can be implemented

incrementally. Each unit of supply is allocated in to the agent remaining

in the market with the highest virtual valuation. Second, as we will see

in the next section, it can be applied without specialization to matroid

permutation and position environments.

6.5 Matroid Permutation and Position

Environments

Position environments are important as they model auctions for selling

advertisements on Internet search engines such as Google andMicrosoft’s

Bing. In these auctions agents bid for positions with higher positions

being better. The feasibility constraint imposed by position auctions is

a priori symmetric.

Definition 6.18 A position environment is one with n agents, n po-

sitions, each position j described by weight wj . An auction assigns each

position j to an agent i which corresponds to setting xi = wj . Posi-

tions are usually assumed to be ordered in non-increasing order, i.e.,

wj ≥ wj+1. (Often w1 is normalized to one.)

Position auctions correspond to advertising on Internet search engines

as follows. Upon each search to the search engine, organic search results

appear on the left-hand side and sponsored search results, a.k.a., ad-

vertisements, appear on the right-hand side of the search results page.

Advertiser i receives a revenue of vi in expectation each time her ad is

clicked (e.g., if the searcher buys the advertiser’s product) and if her ad

is shown in position j it receives click-through rate wj , i.e., the proba-

bility that the searcher clicks on the ad is wj . If the ad is not clicked

on the advertiser receives no revenue. Searchers are more likely to click

on the top slots than the bottom slots, hence wj ≥ wj+1. An adver-

tiser i shown in slot j receives value viwj . Understandably, this model

of Internet search advertising omits many details of the environment;

nonetheless, it has proven to be quite relevant.

We now show that mechanism design for matroid permutation envi-

ronments can be reduced to that for position environments which can

be reduced to that for multi-unit environments. These reductions follow,

essentially, because each of these environments are ordinal, i.e., because
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surplus is maximized by the greedy algorithm. The greedy algorithm

does not compare magnitudes of the values of agents, it only consid-

ers their relative order. This intuition is summarized by the following

definition.

Definition 6.19 The characteristic weights w for a matroid are de-

fined as follows: Set vi = n − i + 1, for all i, and consider the surplus

maximizing allocation when agents are assigned roles in the set system

via random permutation and then the maximum feasible set is calcu-

lated, e.g., via the greedy algorithm. Let wi be the probability of serving

agent i, i.e., the ith highest-valued agent.

To see why the characteristic weights are important, notice that since

the greedy algorithm is optimal for matroids, the cardinal values of the

agents do not matter, just the sorted order. Therefore, e.g., when maxi-

mizing virtual value, wi is the probability of serving the agent with the

ith highest virtual value.

Theorem 6.31 The problem of revenue maximization (or approxima-

tion) in matroid permutation environments reduces to the problem of

revenue maximization (or approximation) in position environments.

Proof We show two things. First, we show that for any matroid permu-

tation environment with characteristic weights w, the position environ-

ment with weights w has the same optimal expected revenue. Second,

for any such environments any position auction can be converted into an

auction for the matroid permutation environment that achieves the same

expected revenue as the position auction in the position environment

given by the characteristic weights of the matroid. These two results im-

ply that any Bayesian, prior-independent, or prior-free approximation

results for position auctions extend to matroid permutation environ-

ments.

(i) Revenue optimal auctions are virtual surplus optimizers. Letw be the

characteristic weights for the given matroid environment. By the def-

inition of w, the optimal auctions for both the matroid permutation

and position environments serve the agent with the jth highest posi-

tive virtual value with probability wj . (In both environments agents

with negative virtual values are discarded.) Expected revenue equals

expected virtual surplus; therefore, the optimal expected revenues in

the two environments are the same.

(ii) Consider the following matroid permutation mechanism which is based
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on the position auction with weights w. The input is v. First, simu-

late the position auction and let j be the assignment where ji is the

position assigned to agent i, or ji = ⊥ if i is not assigned a slot. Re-

ject all agents i with ji = ⊥. Now run the greedy matroid algorithm

in the matroid permutation environment on input v†i = n− ji+1 and

output its outcome.

Notice that any agent i is allocated in the matroid permutation

setting with probability equal to the expected weight of the position

it is assigned in the position auction. Therefore the two mechanisms

have the exact same allocation rule (and therefore, the exact same

expected revenue).

We are now going to reduce the design of position auctions to that of

multi-unit auctions. This reduction implies that the prior-free approxi-

mation factor for multi-unit environments extends to matroid permuta-

tion and position environments. Furthermore, the mechanism that gives

this approximation can be derived from the multi-unit auction.

Theorem 6.32 The problem of revenue maximization (or approxima-

tion) in position auctions reduces to the problem of revenue maximization

(or approximation) in k-unit auctions.

Proof This proof follows the same high-level argument as the proof of

Theorem 6.31.

Let w′
j = wj − wj+1 be the difference between successive position

weights. Recall that without loss of generality w1 = 1 so
∑

j w
′
j = 1 and

w
′ can be interpreted as a probability measure over [m].

(i) The expected revenue of an optimal position auction is equal to the

expected revenue of the convex combination of optimal j-unit auc-

tions under measure w′. In the optimal position auction and the opti-

mal auction for the above convex combination of multi-unit auctions

the agent with the jth highest positive virtual value is served with

probability wj . (In both settings agents with negative virtual values

are discarded.) Therefore, the expected revenues in the two environ-

ments are the same.

(ii) Now consider the following position auction which is based on a multi-

unit auction. Simulate a j-unit auction on the input v for each j ∈ [m]

and let x
(j)
i be the (potentially random) indicator for whether agent

i is allocated in simulation j. Let xi =
∑

j x
(j)
i w′

j be the expected al-

location to j in the convex combination of multi-unit auctions given
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by measure w
′. The vector of position weights w majorizes the allo-

cation vector x in the sense that
∑k

i wi ≥
∑k

i xi (and with equality

for k = m). Therefore we can write x = Sw where S is a doubly

stochastic matrix. Any doubly stochastic matrix is a convex combi-

nation of permutation matrices, so we can write S =
∑

ℓ ρℓPℓ where
∑

ℓ ρℓ = 1 and each Pℓ is a permutation matrix (Birkhoff–von Neu-

mann Theorem). Finally, we pick an ℓ with probability ρℓ and assign

the agents to positions according to the permutation matrix Pℓ. The

resulting allocation is exactly the desired x.

Let β be the worst case, over number of units k, approximation

factor of the multi-unit auction in the Bayesian, prior-independent,

or prior-free sense. The position auction constructed is at worst a β

approximation in the same sense.

We conclude that matroid permutation auctions reduce to position

auctions which reduce to multi-unit auctions. But multi-unit environ-

ments are the simplest of matroid permutation environments, i.e., the

uniform matroid (Section 4.6.1, page 131), where even the fact that the

agents are permuted is irrelevant because uniform matroids are inher-

ently symmetric. Therefore, from the perspective of optimization and

approximation all of these problems are equivalent.

It is important to note, however, that this reduction may not preserve

non-objective aspects of the mechanism. For instance, we have discussed

that anonymous reserve pricing is a two approximation to virtual sur-

plus maximization in multi-unit environments (e.g., Corollary 4.16 and

Theorem 6.26). The reduction from matroid permutation and position

environments does not imply that surplus maximization with an anony-

mous reserve gives a two approximation in these more general envi-

ronments. This is because in the multi-unit two approximation via an

anonymous reserve, the reserve is tailored to k, the number of units.

Therefore, constructing a position auction or matroid mechanism would

require simulating the multi-unit auction with potentially distinct re-

serve prices for each supply constraint; the resulting mechanism will not

generally be an anonymous-reserve mechanism.

In fact, for i.i.d., irregular, position and matroid permutation environ-

ments the surplus maximization mechanism with anonymous reserve is

not generally a constant approximation to the optimal mechanism. The

approximation factor via the anonymous reserve in these environments

is Ω(logn/ log logn), i.e., there exists a distribution and matroid per-

mutation and position environments such that the anonymous-reserve
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mechanism has expected revenue that is a Θ(logn/ log log n) multiplica-

tive factor from the optimal mechanism revenue (Exercise 6.4). The same

inapproximation result holds with comparison between the anonymous-

reserve and envy-free benchmarks.

Theorem 6.33 There exists an i.i.d. distribution (resp. valuation pro-

file), a matroid permutation environment, and position environment such

that the (optimal) anonymous-reserve mechanism (resp. benchmark) is a

Θ(logn/ log logn) approximation the Bayesian optimal mechanism (resp. envy-

free benchmark).

Implicit in the above discussion (and reductions) is the assumption

that the characteristic weights for a matroid permutation setting can be

calculated, or fundamentally, that the weights in the position auction are

precisely known. Notice that in our application of position auctions to

advertising on Internet search engines the position weights were the like-

lihood of a click for an advertisement in each position. These weights can

be estimated but are not known exactly. The general reduction from ma-

troid permutation and position auctions to multi-unit auctions requires

foreknowledge of these weights.

Recall from the discussion of the multi-unit random sampling auction

(Definition 6.17) that, as a virtual surplus maximizer, it does not require

foreknowledge of the supply k of units. Closer inspection of the reduc-

tions of Theorem 6.32 reveals that if the given multi-unit auction is a

virtual surplus maximizer then the weights do not need to be known to

calculate the appropriate allocation. Simply maximize the virtual sur-

plus for the realized environment.

In the definition of permutation environments, it is assumed that the

agents are unaware of their roles in the set system, i.e., the agents’ in-

centives are taken in expectation over the random permutation. A mech-

anism that is incentive compatible in this permutation model may not

generally be incentive compatible if agents do know their roles. There-

fore, matroid permutation auctions that result from the above reductions

are not generally incentive compatible without the uniform random per-

mutation. Of course the random sampling auction is a virtual surplus

maximizer for the market and virtual surplus maximizers are dominant

strategy incentive compatible (Theorem 3.14). Thus, the reduction ap-

plied to the random sampling auction is incentive compatible even if the

permutation is known.

Corollary 6.34 For any matroid environment and valuation profile,
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the random sampling auction is dominant strategy incentive compatible

and when the values are randomly permuted, its expected revenue is a β

approximation to the envy-free benchmark where β is its approximation

factor for multi-unit environments.

6.6 Downward-closed Permutation Environments

In this section we consider downward-closed permutation environments.

In multi-unit, position, and matroid permutation environments, virtual

surplus maximization is ordinal, i.e., it depends on the relative order

of the virtual values and not their magnitudes. In contrast, the main

difficulty of more general downward-closed environments is that virtual

surplus maximization is not generally ordinal. Nonetheless, variants of

the random sampling (virtual surplus maximization) and the random

sampling profit extraction auctions give constant approximations to the

envy-free benchmark in downward-closed environments. We will describe

only the latter result, which can be viewed as transforming the non-

ordinal environment into an ordinal one.

The first step in this construction is to generalize the notion of a

profit extractor (from Section 6.2.4). Our approach to profit extraction

in downward-closed permutation environments will be the following. The

true (and unknown) valuation profile is v. Suppose we knew a profile

v
† that was a coordinate-wise lower bound on v, i.e., v(i) ≥ v†(i) for all i

(short-hand notation: v ≥ v
†). A natural goal with this side-knowledge

would be to design an incentive compatible mechanism that obtains at

least the envy-free optimal revenue for v
†. We refer to mechanism that

obtains this revenue, in expectation over the random permutation and

whenever the coordinate-wise lower-bound assumption holds, as a profit

extractor.

Definition 6.20 The downward-closed profit extractor for v
† is the

following:

(i) Sort v and v
† in decreasing order.

(ii) Reject all agents if there exists an i with vi < v†i .

(iii) Calculate the empirical virtual values φ† for v†.

(iv) For all i, assign the ith highest-valued agent the ith highest virtual

value φ†
i .

(v) Serve the agents to maximize the virtual surplus.
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Theorem 6.35 For any downward-closed environment and valuation

profiles v and v
†, the downward-closed profit extractor for v† is dominant

strategy incentive compatible and if v ≥ v
† then its expected revenue

under a random permutation is at least the envy-free optimal revenue

for v
†.

Proof See Exercise 6.5.

To make use of this profit extractor we need to find a v
† that sat-

isfies the assumption of the theorem and that is non-manipulable. The

idea is to use biased random sampling. In particular, if the agents are

partitioned into a sample with probability p < 1/2 and market with

probability 1 − p, then there is a high probability the valuation profile

of the sample is a coordinate-wise lower bound on that of the market.

Furthermore, we will show that even conditioned on this event, the ex-

pected optimal envy-free revenue of the sample approximates the envy-

free benchmark. The approximate optimality of the mechanism follows.

Definition 6.21 The biased (random) sampling profit extractionmech-

anism for downward-closed environments (with parameters p ∈ (0, 1/2)

and ℓ ∈ {0, 1, 2, . . .}) is:

(i) Assign the top ℓ agents to the market M .

(ii) Randomly partition the remaining agents into S (with probability p)

and M (with probability 1− p).

(iii) Reject agents in S.

(iv) Run the downward-closed profit extractor for vS on M .3

Lemma 6.36 The biased sampling profit extraction mechanism is dom-

inant strategy incentive compatible.

Proof Fix any outcome of the n coins. Each agent i faces a critical

value. Pretend the agent is in the market, and simulate the rest of the

auction. The profit extractor is deterministic and dominant strategy

incentive compatible; thus by Theorem 6.6, it induces a critical value v̂i.

Now consider i’s coin. If the coin puts i in the market then she is offered

critical value v̂i; if the coin puts i in the sample, then she is offered

max(v(ℓ+1), v̂i), i.e., she wins only if she is in the top ℓ and would win

in the profit extractor.

3
The payments of the top ℓ agents are adjusted as follows. Flipping a biased coin
for each such agent, but if she ends up in the sample (with probability p), she
can buy her way into the market by agreeing to pay at least v(ℓ+1). In such a
case, her final payment is the maximum of her payment in the profit extraction
mechanism and v(ℓ+1).
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The following lemma, which is key to the analysis, shows that the

probability that vM ≥ vS in the biased sampling profit extraction auc-

tion is at least 1− (p/1−p)ℓ+1.

Lemma 6.37 The probability of ruin of a biased random walk on the

integers;4 that steps back with probability p < 1/2, steps forward with

probability 1 − p, and starts from position one; is exactly p/1−p. If it

starts at position k the probability of ruin is (p/1−p)k.

Proof The proof is similar to that of Lemma 6.14. See Exercise 6.6.

The remainder of this section follows the the approach of prior-free

combination developed in Section 6.4.2. Lemma 6.39 will bound the

envy-free benchmark by the sum of two benchmarks, the envy-free bench-

mark restricted to the two highest-valued agents and the envy-free op-

timal revenue excluding these two agents. Lemma 6.40 will show that

the second-price auction (to serve at most one agent) is a two approxi-

mation to the first benchmark and Lemma 6.41 will show that a biased

sampling profit extraction auction is a 4.51 approximation to the second

benchmark. We will conclude by Theorem 6.28 that the prior-free com-

bination (Definition 6.16) of the two auctions is a 6.51 approximation to

the envy-free benchmark.

Theorem 6.38 In downward-closed permutation environments, the

prior-free combination of the second-price auction with a biased sam-

pling profit extraction auction is a 6.51 approximation to the envy-free

benchmark.

Lemma 6.39 For any valuation profile v, the envy-free optimal rev-

enue for a subset S of agents is a subadditive function S. In particular,

EFO(v) ≤ EFO(v1, v2) + EFO(v−1,2).

Proof Observe for disjoint sets A and B of agents,

EFO(vA∪B) = EFOA(vA∪B) + EFOB(vA∪B)

≤ EFO(vA) + EFO(vB).

The first line follows by definition where EFOA(vA∪B) denotes the con-

tribution to the envy-free optimal revenue of A ∪ B from the agents in

A, likewise for B. Of course, the envy-free optimal outcome for A∪B is

envy free with respect to subset A. However, if we are only to consider

4
Recall, the probability of ruin of a random walk is the probability that it ever
reaches position zero
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envy-freedom constraints of A, then this outcome for A∪B is not neces-

sarily optimal. Thus, EFOA(vA∪B) ≤ EFO(vA); likewise for B; and the

second line follows. The left- and right-hand side of this equation give

the definition of subadditivity.

Lemma 6.40 For any downward-closed environment, the second-price

auction is a 2-approximation to the envy-free benchmark restricted to

the two highest-valued agents.

Proof Assume all singleton sets are feasible with respect to the downward-

closed environment and the two highest valued agents have values v1 ≥

v2. The second-price auction, which always only serves a single agent,

is feasible and its revenue is v2. For the valuation profile v
† = (2v2, v2),

the revenues are R† = (2v2, 2v2) and the marginal revenues are (2v2, 0).

Thus, the envy-free optimal revenue is obtained by only serving the first

agent at a price of 2v2.

Lemma 6.41 For any downward-closed permutation environment and

any valuation profile, the biased sampling profit extraction auction with

p = .29 and ℓ = 2 is a 4.51 approximation to the envy-free optimal

revenue on the valuation profile without the two highest-valued agents.

Proof Index the two highest-valued agents by 1 and 2. Let REF(v) =

EFO(v−1,2) be the envy-free optimal revenue on the valuation profile

without the two highest valued agents, and APX(v) be the expected

revenue of the biased sampling profit extraction mechanism. We have,

REF(v) ≥ E[EFO(vS) | vM ≥ vS ] Pr[vM ≥ vS ]

= E[EFO(vS)]−E[EFO(vS) | vM 6≥ vS ] Pr[vM 6≥ vS ] .

≥ p EFO(v−1,2)− EFO(v−1,2)Pr[vM 6≥ vS ]

≥
(
p− ( p

1−p )
3) REF(v).

The first line is by the definition of the mechanism and Theorem 6.35.

The second line is by the definition of conditional expectation. The first

and second part of the third line are by subadditivity (Lemma 6.39) and

monotonicity of the envy-free optimal revenue, respectively. The last

line is from Pr[vM 6≥ vS ] ≤ (p/1−p)3 as guaranteed by Lemma 6.37 for

a random walk starting at position ℓ+ 1 = 3.

The expression p − (p/1−p)3 is maximized at p ≈ 0.29 giving an ap-

proximation of about 4.51 with respect to REF(v).
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Exercises

6.1 Complete the prior-free analysis framework for the objective of

residual surplus in a two-agent single-item environment. The resid-

ual surplus is the sum of the values of the winners less any payments

made.

(a) Identify a normalized benchmark.

(b) Identify a distribution for which all auctions have the same

residual surplus.

(c) Give a lower bound on the resolution of your benchmark.

(d) Give an upper bound on the prior-free optimal approximation

with respect to your benchmark.

Ideally, your lower bound on resolution should match your upper

bound on prior-free optimal approximation.

6.2 Consider the design of prior-free incentive-compatible mechanisms

with revenue that approximates the (optimal) social-surplus bench-

mark, i.e., OPT(v), when all values are known to be in a bounded

interval [1, h]. For downward-closed environments, give a Θ(log h)

approximation mechanism.

6.3 Consider a generalization of the mechanism composition from the

construction of the multi-unit variant of a digital good auction,

i.e., where the k + 1st-price auction and the given digital good

auction are composed (Definition 6.15). Two dominant strategy

incentive compatible mechanisms A and B can be composed as

follows: Simulate mechanism A; run mechanism B on the winners

of mechanism A; and charge the winners of B the maximum of

their critical values for A and B. A deterministic mechanism is

non-bossy if there are no two values for any agent i such that the

sets of winners of the mechanism are distinct but contain i.

(a) Show that the composite mechanism is dominant strategy in-

centive compatible when mechanism A is non-bossy.

(b) Show that the surplus maximization mechanism in any single-

dimensional environment is non-bossy.

6.4 Prove the envy-free variant of Theorem 6.33, i.e., that there ex-

ists a valuation profile and a position environment for which the

anonymous-reserve benchmark is a Ω(log n/ log logn) approxima-

tion to the envy-free benchmark.

6.5 Show that for any downward-closed environment and valuation

profiles v and v
†, the downward-closed profit extractor for v

† is
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dominant strategy incentive compatible and if v ≥ v
† then its

expected revenue under random permutation is at least the envy-

free optimal revenue for v†. I.e., prove Theorem 6.35.

6.6 Prove Lemma 6.37: The probability of ruin of a biased random

walk on the integers; that steps back with probability p < 1/2,

steps forward with probability 1− p, and starts from position one;

is exactly p/1−p. If it starts at position k the probability of ruin is

(p/1−p)k.

Chapter Notes

The prior-free auctions for digital good environments were first studied

by Goldberg et al. (2001) where the deterministic impossibility theorem

and the random sampling optimal price auction were given. The random

sampling optimal price auction was shown to be a constant approxima-

tion by Goldberg et al. (2006). The proof that the random sampling

auction is a prior-free 15 approximation is from Feige et al. (2005); the

bound was improved to 4.68 by Alaei et al. (2009). The profit extrac-

tion mechanism and the random sampling profit extraction mechanism

were given by Fiat et al. (2002). The extension of this auction to three

partitions was studied by Hartline and McGrew (2005).

The lower-bound on the approximation factor of prior-free auctions

for digital goods of 2.42 was given by Goldberg et al. (2004); this bound

was proven to be tight by Chen et al. (2014b). For the special cases of

n = 2 and n = 3 agents the form of the optimal auction is known. For

n = 2, Fiat et al. (2002) showed that the second-price auction is optimal

and its approximation ratio is β⋆ = 2. For n = 3, Hartline and McGrew

(2005) identified the optimal three-agent auction and showed that its

approximation ratio is β⋆ = 13/6 ≈ 2.17.

The formal prior-free design and analysis framework for digital good

auctions was given by Goldberg et al. (2006). This framework was refined

for general symmetric auction problems and grounded in the theory of

Bayesian optimal auctions by Hartline and Roughgarden (2008). The

connection between prior-free mechanism design and envy-freedom was

given by Devanur et al. (2014) (originally as Hartline and Yan, 2011).

The 2-approximate reduction from multi-unit to digital-good environ-

ments combines results from Fiat et al. (2002) and Devanur et al. (2014).

The improved reduction via “prior-free combination” that gives a multi-
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unit β + 1 approximation from a digital-good β approximation is from

Chen et al. (2014a).

Analysis of the random sampling auction for limited supply, position,

matroid permutation, and downward-closed permutation environments

was given was given by Devanur et al. (2014) (originally as Devanur and

Hartline, 2009). For multi-unit auctions they prove the random sampling

auction is a 9.6 approximation to the envy-free benchmark (i.e., Theo-

rem 6.30) by extending the analysis of Alaei et al. (2009). They prove the

equivalence between distributions over multi-unit environments, position

environments, and matroid permutation environments which allows the

9.6 approximation bound for multi-unit environments to extend. For

downward-closed permutation environments they give a variant of the

random sampling auction that is a prior-free 189 approximation.

The downward-closed profit extractor is from Ha and Hartline (2011).

Devanur et al. (2013) study the random sampling profit extraction auc-

tion, similar to the one described in this chapter, and show that it

is a 7.5 approximation in downward-closed permutation environments.

(They also give a variant of the auction for the case that the agents

have a common budget.) The biased sampling profit extraction auction

(Definition 6.21) and its analysis (Theorem 6.38) are from Chen et al.

(2014a).

This chapter omitted discussion of a very useful technique for design-

ing prior-free mechanisms using a “consensus mechanism” on statisti-

cally robust characteristics of the input. In this vein the consensus esti-

mates profit extraction mechanism from Goldberg and Hartline (2003)

obtains a 3.39 approximation for digital goods. This approach is also cen-

tral in obtaining an asymmetric deterministic auction that gives a good

approximation (Aggarwal et al., 2005). Ha and Hartline (2011) extend

the consensus approach to downward-closed permutation environments.

This chapter omitted asymptotic analysis of the random sampling

auction which is given Balcan et al. (2008). This analysis allows agents

to be distinguished by publicly observable attributes and agents with

distinct attributes may receive distinct prices.



Appendix

Mathematical Reference

Contained herein is reference to mathematical notations and conventions

used throughout the text.

A.1 Big-oh Notation

We give asymptotic bounds using big-oh notation. Upper bounds are

given with O, strict upper bounds are given with o, lower bounds are

given with Ω, strict lower bounds are given with ω, and exact bounds

are given with Θ. Formal definitions are given as follows:

Definition A.1 Function f(n) is O(g(n)) if there exists a c > 0 and

n0 > 0 such that

∀n > n0, f(n) ≤ c g(n).

Definition A.2 Function f(n) is Ω(g(n)) if there exists a c > 0 and

n0 > 0 such that

∀n > n0, f(n) ≥ c g(n).

Definition A.3 Function f(n) is Θ(g(n)) if it is O(g(n)) and Ω(g(n)).

Definition A.4 Function f(n) is o(g(n)) if it is O(g(n)) but not

Θ(g(n)).

Definition A.5 Function f(n) is ω(g(n)) if it is Ω(g(n)) but not

Θ(g(n)).

Copyright c© 2011–2014 by Jason D. Hartline.
Source: http://jasonhartline.com/MDnA/
Manuscript Date: September 2, 2014.
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A.2 Common Probability Distributions

Common continuous probability distributions are uniform and exponen-

tial. Continuous distributions can be specified by their cumulative dis-

tribution function, denoted by F , or its derivative f = F ′, the probability
density function.

Definition A.6 The uniform distribution on support [a, b], denoted

U [a, b], is defined as having a constant density function f(z) = 1/(b−a)

over [a, b].

For example, the distribution U [0, 1] has distribution F (z) = z and

density f(z) = 1. The expectation of the uniform distribution on [a, b]

is a+b
2 . The monopoly price for the uniform distribution is max(b/2, a)

(see Definition 3.7).

Definition A.7 The exponential distribution with rate λ has distri-

bution F (z) = 1 − e−λz and density f(z) = λe−λz . The support of the

exponential distribution is [0,∞).

The exponential distribution with rate λ has expectation 1/λ and

monopoly price 1/λ. The exponential distribution has constant hazard

rate λ.

A.3 Expectation and Order Statistics

The expectation of a random variable v ∼ F is its “probability weighted

average.” For continuous random variables this expectation can be cal-

culated as

E[v] =

∫ ∞

−∞
z f(z) dz. (A.1)

For continuous, non-negative random variables this expectation can be

reformulated as

E[v] =

∫ ∞

0

(1 − F (z)) dz (A.2)

which follows from (A.1) and integration by parts.

An order statistic of a set of random variables is the value of the

variable that is at a particular rank in the sorted order of the variables.

For instance, when a valuation profile v = (v1, . . . , vn) is drawn from a

distribution then the ith largest value, which we have denoted v(i), is an
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order statistic. A fact that is useful for working out examples with the

uniform distribution.

Fact A.1 In expectation, i.i.d. random variables chosen uniformly

from a given interval will evenly divide the interval.

A.4 Integration by Parts

Integration by parts is the integration analog of the product rule for

differentiation. We will denote the derivative of a function d
dz g(z) by

g′(z). The product rule for differentiation is:

[g(z)h(z)]
′
= g′(z)h(z) + g(z)h′(z). (A.3)

The formula for integration by parts can be derived by integrating both

sides of the equation and rearranging.
∫

g′(z)h(z) dz = g(z)h(z)−

∫

g(z)h′(z) dz. (A.4)

As an example we will derive (A.2) from (A.1). Plug g(z) = 1− F (z)

and h(z) = z into equation A.4.

E[v] =

∫ ∞

0

z f(z) dz

= −

∫ ∞

0

h(z) g′(z) dz

= −
[

h(z) g(z)
]∞

0
+

∫ ∞

0

h′(z) g(z) dz

= −
[

z (1− F (z))
]∞

0
+

∫ ∞

0

1 (1− F (z)) dz

=

∫ ∞

0

(1− F (z)) dz.

The last equality follows because z (1 − F (z)) is zero at both zero and

∞.

A.5 Hazard Rates

The hazard rate of distribution F (with density f) is h(z) = f(z)
1−F (z) (see

Definition 4.12). The distribution has a monotone hazard rate (MHR) if

h(z) is monotone non-decreasing.
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A distribution is completely specified by its hazard rate via the fol-

lowing formula.

F (z) = 1− e−
∫ z

−∞
h(z) dz.
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adaptive posted pricing, 137

AdWords, 49ex

all or none (environment), 89

all-pay auction, 41

allocated marginal revenue, 82

allocation rule, 30

quantile space, 72

amortized analysis, 62, 74

anonymous reserve

auction, 123–127

benchmark, 202, 204

approximation, 17

prior-free, 174

ascending-price auction, 5

augmentation

matroid property, 132

backwards induction, 111

base (matroid), 132

Bayes-Nash equilibrium (BNE), 28

Bayesian incentive compatible (BIC), 46

Bayesian optimal (mechanism), 59

best replacement

matroid, 136

biased sampling profit extraction
(mechanism), 215

big-oh notation, 221

bimatrix game, 25

bimodal (value distribution), 60

budget balanced, 89

chicken (game), 25

circuit

auction, 166

mechanism, 168

click-through rate, 49ex, 209

common knowledge, 27

common prior, 27

complete information game, 24

composition

parallel, 167

sequential, 170ex

computational payments, 10

correlated (distribution), 27

correlation gap, 119–121

critical value, 9, 36, 37, 48

cumulative allocation rule, 81

cumulative distribution function, 12,
222

decision problem, 188

density function, 222

deterministic optimal price (auction),
181

digital good (environment), 177

direct revelation (mechanism), 46

display advertising, 201

dominant strategy equilibrium (DSE),
25, 27

dominant strategy incentive compatible
(DSIC), 46

downward closed

environment, 54

matroid property, 132

efficient

computational, 55

economic, 55

empirical

distribution, 195

monopoly price, 178

price-posting revenue, 195

revenue, 195

virtual value function, 197

230
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English auction, 5

envy freedom, 49ex, 192
envy-free benchmark, 201

digital goods, 178–181

general, 201–203
envy-free optimal revenue, 178

envy-free pricing, 193–195

digital goods, 178
equal-revenue distribution, 106, 176

equilibrium, 24

dominant strategy (DSE), 25, 27
Nash, 26

ex ante, 12

feasibility, 138
game stage, 29

relaxation, 117

ex ante pricing, 80

problem, 79
ex post

game stage, 29

exchange (environment), 89, 98ex
expectation, 222

exponential distribution, 222

externality, 58
externality pricing, 58

feasible sets (matroid), 132

first-price auction, 5

general cost (environment), 54
general feasibility (environment), 54

graphical matroid, 133

ground set (matroid), 132

harmonic numbers, 129
hazard rate, 144, 223

incentive compatible

Bayesian (BIC), 46
dominant strategy (DSIC), 46

incomplete information game, 26

independent (distribution), 28
independent set (matroid), 132

informative, 16

integration by parts, 223

interim, 30
game stage, 29

interim lottery pricing (problem), 82

interim pricing
problem, 79

inverse demand curve, 71

ironed
interval, 95

virtual value, 64

ironed virtual surplus maximization
(mechanism), 78

ironing
partial, 95
procedure, 64, 75

irregular (distribution), 64, 75

Kruskal’s algorithm, 133

Lagrangian virtual values, 90
lazy monopoly reserves, 152ex
lottery (mechanism), 4
lottery pricing, 79

interim, 81

marginal revenue, 81–82
allocated, 82
empirical, 195
price posting, 73

matroid, 132
base, 132
best replacement, 136
graphical, 133
rank, 132
revenue monotonicity, 136
transversal, 133–135
uniform, 133
weighted rank, 139

mechanism design, 15
minimum spanning tree, 56
mixed strategy, 26, 48ex
monopoly price, 66, 176

empirical, 178
monopoly pricing, 102–110, 176–177
monotone hazard rate, 144
monotone hazard rate (MHR), 223
multicast auction, 55

Nash equilibrium, 26
non-bossy, 206, 218ex
non-excludable public project

(environment), 89
normalization (for prior-free

benchmarks), 174
NP-complete, 15
NP-hard, 15

oblivious posted pricing, 114
onto (strategy), 30
ordinal (environment), 130

pairing
auction, 166
mechanism, 168

parallel composition, 167
partial ironing, 95
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payment rule, 30
permutation environment, 200
position

auction, 49ex

environment, 209
posted pricing

adaptive, 137
oblivious, 114
sequential, 116

predictive, 16

prescriptive, 16
price posting revenue curve, 72
pricing

ex ante, 79, 80
interim, 79

lottery, 79
prior distribution, 27
prior-free approximation, 174
prior-free benchmark, 174
prior-free combination, 207

prior-independent approximation, 165
prisoner’s dilemma (game), 25
probability of ruin (analysis), 187, 216,

219ex
procurement, 98ex
product distribution, see independent

(distribution)
profit, 55

profit extractor, 188
digital goods, 188
downward closed environments, 214

prophet inequality, 111–114
public project, 97ex

pure strategy, 26

quantile, 71

random sampling auction, 184
random sampling profit extraction

auction
digital goods, 189

random sampling virtual surplus
maximization (auction), 208

random walk (process), 187, 216
rank (matroid), 132

function, 138
weighted, 139

regular, 74
regular (distribution), 64

residual surplus, 55, 96ex, 218ex
resolution (for prior-free benchmarks),

175
revelation principle, 46

revenue curve, 80
empirical, 195
price posting, 72

revenue linearity, 79, 83
revenue monotonicity, 136, 151ex
reverse auction, 98ex
routing environment, 55

second-price auction, 7
with agent-specific reserves, 102
with reserve price, 67

second-price routing mechanism, 14
sequential composition, 170ex
sequential posted pricing, 116, 121–123
single-dimensional

agent, 29
utility, 29

single-item
auction, 5, 66–70
environment, 55

social surplus, 55
sponsored search, 209
Stackelberg game, 156
Steiner tree, 56
strategy, 26
strategy profile, 25, 27
surplus maximization (mechanism), 58

tractable, 16
transfers, 7
transversal matroid, 133–135
truthtelling, 46
two-price lottery, 87

uniform distribution, 28, 60, 222
uniform matroid, 133
uniform virtual pricing, 115

Vickrey-Clarke-Groves (mechanism), see
surplus maximization

virtual surplus, 62
virtual value, 62

empirical, 197
for revenue, 74
Lagrangian, 90

winner determination, 15
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