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Mechanism Design and Approximation

Our world is an interconnected collection of economic and computational
systems. Within such a system, individuals optimize their actions to
achieve their own, perhaps selfish, goals; and the system combines these
actions with its basic laws to produce an outcome. Some of these systems
perform well, e.g., the national residency matching program which as-
signs medical students to residency programs in hospitals, e.g., auctions
for online advertising on Internet search engines; and some of these sys-
tems perform poorly, e.g., financial markets during the 2008 meltdown,
e.g., gridlocked transportation networks. The success and failure of these
systems depends on the basic laws governing the system. Financial reg-
ulation can prevent disastrous market meltdowns, congestion protocols
can prevent gridlock in transportation networks, and market and auc-
tion design can lead to mechanisms for allocating and exchanging goods
or services that yield higher profits or increased value to society.
The two sources for economic considerations are the preferences of

individuals and the performance of the system. For instance, bidders in
an auction would like to maximize their gains from buying; whereas, the
performance of the system could (i.e., from the perspective of the seller)
be measured in terms of the revenue it generates. Likewise, the two
sources for computational considerations are the individuals who must
optimize their strategies, and the system which must enforce its govern-
ing rules. For instance, bidders in the auction must figure out how to
bid, and the auctioneer must calculate the winner and payments from the
bids received. While these calculations may seem easy when auctioning
a painting, they both become quite challenging when, e.g., the Federal
Communications Commission (FCC) auctions cell phone spectrum for
which individual lots have a high degree of complementarities.
These economic and computational systems are complex. The space
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of individual strategies is complex and the space of possible rules for
the system is complex. Optimizing among strategies or system rules
in complex environments should lead to complex strategies and system
rules, yet the individuals’ strategies or system rules that are successful
in practice are often remarkably simple. This simplicity may be a conse-
quence of individuals and designers preference for ease of understanding
and optimization (i.e., tractability) or robustness to variations in the
scenario, especially when these desiderata do not significantly sacrifice
performance.

This text focuses on a combined computational and economic the-
ory for the study and design of mechanisms. A central theme will be
the tradeoff between optimality and other desirable properties such as
simplicity, robustness, computational tractability, and practicality. This
tradeoff will be quantified by a theory of approximation which measures
the loss of performance of a simple, robust, and practical approxima-
tion mechanism in comparison to the complicated and delicate optimal
mechanism. The theory provided does not necessarily suggest mecha-
nisms that should be deployed in practice, instead, it pinpoints salient
features of good mechanisms that should be a starting point for the
practitioner.

In this chapter we will explore mechanism design for routing and con-
gestion control in computer networks as an example. Our study of this
example will motivate a number of questions that will be addressed in
subsequent chapters of the text. We will conclude the chapter with a
formal discussion of approximation and the philosophy that underpins
its relevance to the theory of mechanism design.

Chapter 1: Topics Covered.
• mechanisms: first-price auction, ascending auction, second-price auc-
tion, lottery, posted prices;

• truthful bidding and dominant strategies;
• goals for theory of mechanism design; and
• approximation and its philosophy.
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1.1 An Example: Congestion Control and Routing
in Computer Networks

We will discuss novel mechanisms for congestion control and routing
in computer networks to give a preliminary illustration of the interplay
between strategic incentives, approximation, and computation in mech-
anism design. In this discussion, we will introduce basic questions that
will be answered in the subsequent chapters of this text.
Consider a hypothetical computer network where network users reside

at computers and these computers are connected together through a
network of routers. Any pair of routers in this network may be connected
by a network link and if such a network link exists then each router
can route a message directly through the other router. We will assume
that the network is completely connected, i.e., there is a path of network
links between all pairs of users. The network links have limited capacity;
meaning, at most a fixed number of messages can be sent across the link
in any given interval of time. Given this limited capacity, the network
links are a resource that may be over demanded. To enable the sending
of messages between users in the network we will need mechanisms for
congestion control, i.e., determining which messages to route when a
network link is over-demanded, and routing, i.e., determining which path
in the network each message should take.
There are many complex aspects of this congestion control problem:

dynamic demands, complex networks, and strategic user behavior. Let
us ignore the first two issues at first and focus on the latter: strategic
user behavior. Consider a static version of this routing problem over
a single network link with unit capacity: each user wishes to send a
message across the link, but the link only has capacity for one message.
How shall the routing protocol select which message to route?
That the resource that the users (henceforth: agents) are vying for is

a network link is not important; we will therefore cast the problem as a
more general single-item allocation problem. An implicit assumption in
this problem is that it is better to allocate the item to some agents over
others. For instance, we can model the agents as having value that each
gains for receiving the item and it would be better if the item went to
an agent that valued it highly.

Definition 1.1.1. The single-item allocation problem is given by

• a single indivisible item available,

• n strategic agents competing for the item, and
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• each agent i has a value vi for receiving the item.

The objective is to maximize the surplus, i.e., the value of the agent who
receives the item.

The surplus is maximized if the item is allocated to the agent with
the highest value, denoted v(1). If the values of the agent are publicly
known, this would be a simple allocation protocol to implement. Of
course, e.g., in our routing application, it is rather unlikely that values
are publicly known. A more likely situation is that each agent’s value
is known privately to that agent and unknown to all other parties. A
mechanism that wants to make use of this private information must
then solicit it. Consider the following mechanism as a first attempt at a
single-item allocation mechanism:

(i) Ask the agents to report their values (⇒ agent i reports bi),

(ii) select the agent i! with highest report (⇒ i! = argmaxi bi), and

(iii) allocate the item to agent i!.

Suppose you were one of the agents and your value was $10 for the
item; how would you bid? What should we expect to happen if we ran
this mechanism? It should be pretty clear that there is no reason your
bid should be at all related to your value; in fact, you should always bid
the highest number you can think of. The winner is the agent who thinks
of and reports the highest number. The unpredictability of the outcome
of the mechanism will make it hard to reason about its performance.
There are two natural ways to try to address this unpredictability. First,
we can accept that the bids are meaningless, ignore them (or not even
solicit them), and pick the winner randomly. Second, we could attempt
to penalize the agents for bidding a high amount, for instance, with a
monetary payment.

Definition 1.1.2. The lottery mechanism is:

(i) Select a uniformly random agent, and

(ii) allocate the item to this agent.

The surplus of a mechanism is total value it generates. It is easy to
calculate the expected surplus of the lottery. It is 1/n

∑

i vi. This surplus
is a bit disappointing in contrast to the surplus available in the case
where the values were publicly known, i.e., v(1) = maxi vi. In fact, by
setting v1 = 1; vi = ε (for i "= 1); and letting ε go to zero we can observe
that the surplus of the lottery approaches v(1)/n; therefore, its worst-case
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is at best an n approximation to the optimal surplus v(1). Of course, the
lottery always obtains at least an nth of v(1); therefore, its worst-case
approximation factor is exactly n. It is fairly easy to observe, though we
will not discuss the details here, that this approximation factor is the
best possible by any mechanism without payments.

Theorem 1.1.1. The surplus of the lottery mechanism is an n approx-
imation to the highest agent value.

If instead it is possible to charge payments, such payments, if made
proportionally to the agents’ bids, could discourage low-valued agents
from making high bids. This sort of dynamic allocation and pricing
mechanism is referred to as an auction.

Definition 1.1.3. A Single-item auction is a solution to the single-
item allocation problem that solicits bids, picks a winner, and determines
payments.

A natural allocation and pricing rule that is used, e.g., in government
procurement auctions, is the first-price auction.

Definition 1.1.4. The first-price auction is:

(i) ask the agents to report their values (⇒ agent i reports bi),

(ii) select the agent i! with highest report (⇒ i! = argmaxi bi),

(iii) allocate the item to agent i!, and

(iv) charge this winning agent her bid, bi! .

To get some appreciation for the strategic elements of the first price
auction, note that an agent who wins wants to pay as little as possible,
thus bidding a low amount is desirable. Of course, if the agent bids too
low, then she probably will not win. Strategically, this agent must figure
out how to balance this tradeoff. Of course, since agents may not report
their true values, the agent with the highest bid may not be the agent
with the highest-valued message. See Figure 1.1.
We will be able to analyze the first-price auction and we will do so in

Chapter 2 and Chapter 6. Auctions like the first-price are hard to analyze
because they can potentially have complex equilibria. Conequentally,
most of the focus of the text will be on mechanisms that are strategically
simpler.
The ascending-price auction is a stylized version of the auction pop-

ularized by Hollywood movies; art, antiques, and estate-sale auction
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Figure 1.1. An in-class experiment: 21 student were endowed with values
uniformly drawn from the interval [0, 4] (denoted as vi ∼ U [0, 4]), they were
told their own values and that the distribution of values was U [0, 4], they
were asked to submit bids for a two-agent one-item first-price auction. The
bids of the students were collected and randomly paired for each auction;
the winner was paid the difference between his value and his bid in dollars
(real money). Winning bids are shown as “•” and losing bids are shown as
“!”. The grey area denotes strategies that are not dominated. The black line
b = v/2 denotes the equilibrium strategy in theory. In economic experiments,
just like our in class experiment, bidders tend to overbid the equilibrium
strategy. A few students knew the equilibrium strategy in advance of the
in-class experiment.

houses such as Sotheby’s and Christie’s; and Internet auction houses
such as eBay.

Definition 1.1.5. The ascending-price auction is:1

(i) gradually raise an offered price up from zero,

(ii) allow agents to drop out when they no longer wish to win at the offered
price,

(iii) stop at the price where the second-to-last agent drops out, and

(iv) allocate the item to the remaining agent and charges her the stopping
price.

Strategically this auction is much simpler than the first-price auction.
What should an agent with value v do? A good strategy would be “drop
when the price exceeds v.” Indeed, regardless of the actions of the other

1 The ascending-price auction is also referred to as the English auction and it
contrasts to the Dutch (descending-price) auction.
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agents, this is a good strategy for the agent to follow, i.e., it is a domi-
nant strategy. It is reasonable to assume that an agent with an obvious
dominant strategy will follow it.
Now, since we know how agents are behaving, we can now make con-

clusions as to what happens in the auction. The second-highest-valued
agent will drop out when the ascending prices reaches her value, v(2).
The highest-valued agent will win the item at this price. We can conclude
that this auction maximizes the surplus, i.e., the sum of the utilities of
all parties. Notice that the utility of losers are zero, the utility of the
winner is v(1) − v(2), and the utility of the seller (e.g., the router in the
congestion control application) is v(2), the payment received from the
winner. The total is simply v(1), as the payment occurs once positively
(for the seller) and once negatively (for the winner) and these terms
cancel. Of course v(1) is the optimal surplus possible; we could not give
the item to anyone else and get more value out of it.

Theorem 1.1.2. The ascending-price auction maximizes the surplus in
dominant strategy equilibrium.

What is striking about this result is that it shows that there is es-
sentially no loss in surplus imposed by the assumption that the agents’
values are privately known only to themselves. Of course, we also saw
that the same was not true of routing mechanisms that cannot require
the winner to make a payment in the form of a monetary transfer from
the winner to the seller. Recall, the lottery mechanism could be as bad
as an n approximation. A conclusion we should take from this exercise is
that transfers are very important for surplus maximization when agents
have private values.
Unfortunately, despite the good properties of the ascending-price auc-

tion there are two drawbacks that will prevent our using it for rout-
ing and congestion control in computer networks. First, mechanisms for
sending messages in computer networks must be very fast. Ascending
auctions are slow and, thus, impractical. Second, the ascending-price
auction does not generalize to give a routing mechanisms in networks
beyond the single-network-link special case. Challenges arise because as-
cending prices would not generally find the surplus maximizing set of
messages to route. A solution to these problems comes from Nobel laure-
ateWilliam Vickrey who observed that if we simulate the ascending-price
auction with sealed bids we arrive at the same outcome in equilibrium
without the need to bother with an ascending price.
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Figure 1.2. Utility as a function of bid in the second-price auction.

Definition 1.1.6. The second-price auction is:2

(i) accept sealed bids,
(ii) allocate the item to the agent with the highest bid, and
(iii) charge this winning agent the second-highest bid.

In order to predict agent behavior in the second-price auction, notice
that its outcome can be viewed as a simulation of the ascending-price
auction. Via this viewpoint, there is a one-to-one correspondence be-
tween bidding b in the second-price auction and dropping out at price
b is the ascending-price auction. Since the dominant strategy in the
ascending-price auction is for an agent to drop out at when the price
exceeds her value; it is similarly a dominant strategy for the agent to
bid her true value in the second-price auction. While this intuitive ar-
gument can be made formal, instead we will argue directly that truthful
bidding is a dominant strategy in the second-price auction.

Theorem 1.1.3. Truthful bidding is a dominant strategy in the second-
price auction.

Proof. We show that truthful bidding is a dominant strategy for agent
i. Fix the bids of all other agents and let v̂i = maxj !=i vj . Notice that
given this v̂i there are only two possible outcomes for agent i. If she bids
bi > v̂i then she wins, pays v̂i (which is the second-highest bid), and has
utility ui = vi− v̂i. On the other hand, if she bids bi < v̂i then she loses,
pays nothing, and has utility ui = 0. This analysis allows us to plot the
utility of agent i as a function of her bid in two relevant cases, the case
that vi < v̂i and the case that vi > v̂i. See Figure 1.2.
Agent i would like to maximize her utility. In Case 1, this is achieved

by any bid greater than v̂i. In Case 2, it is achieved by any bid less than

2
The second-price auction is also referred to as the Vickrey auction.
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v̂i. Notice that in either case bidding bi = vi is a good choice. Since
the same bid is a good choice regardless of which case we are in, the
same bid is good for any v̂i. Thus, bidding truthfully, i.e., bi = vi, is a
dominant strategy.

Notice that, in the proof of the theorem, v̂i is the infimum of bids
that the bidder can make and still win, and the price charge to such a
winning bidder is exactly v̂i. We henceforth refer to v̂i as agent i’s critical
value. It should be clear that the proof above can be easily generalized,
in particular, to any auction where each agent faces such a critical value
that is a function only of the other agents’ reports. This observation
will allow the second-price auction to be generalized beyond single-item
environments.

Corollary 1.1.4. The second-price auction maximizes the surplus in
dominant strategy equilibrium.

Proof. By the definition of the second-price auction, the agent with the
highest bid wins. By Theorem 1.1.3 is a dominant strategy equilibrium
for agents to bid their true values. Thus, in equilibrium the agent with
the highest bid is identically the agent with the highest value. The sur-
plus is maximized.

In the remainder of this section we explore a number of orthogonal
issues related to practical implementations of routing and congestion
control. Each of these vignettes will conclude with motivating questions
that will be addressed in the subsequent chapters. First, we address the
issue of payments. The routing protocol in today’s Internet, for instance,
does not allow the possibility of monetary payments. How does the rout-
ing problem change if we also disallow monetary payments? The second
issue we address is speed. While the second-price auction is faster than
the ascending-price auction, still the process of soliciting bids, tallying
results, and assigning payments may be too cumbersome for a routing
mechanism. A simpler posted-pricing mechanism would be faster, but
how can we guarantee good performance with a posted pricing? Finally,
the single-link case is far from providing a solution to the question of
routing and congestion control in general networks. How can we extend
the second-price auction to more general environments?
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1.1.1 Non-monetary payments

Most Internet mechanisms, including its congestion control mechanisms,
do not currently permit monetary transfers. There are historical, social,
and infrastructural reasons for this. The Internet was initially developed
as a research platform and its users were largely altruistic. Since its
development, the social norm is for Internet resources and services to
be free and unbiased. Indeed, the “net neutrality” debates of the early
2000’s were largely on whether to allow differentiated service in routers
based on the identity of the source or destination of messages (and based
on contracts that presumably would involve payments). Finally, micro-
payments in the Internet would require financial infrastructure which is
currently unavailable at reasonable monetary and computational over-
head.

One solution that has been considered, and implemented (but not
widely adopted) for similar resource allocation tasks (e.g., filtering un-
solicited electronic mail, a.k.a., spam) is computational payments such
as “proofs of work.” With such a system an agent could “prove” that
her message was high-valued by having her computer perform a large,
verifiable, but otherwise, worthless computational task. Importantly, un-
like monetary payments, computational payments would not represent
utility transferred from the winner to the router. Instead, computational
payments are utility lost to society.

The consumer surplus of a mechanism with computational payments
is the total value generated less any payments made. The consumer
surplus for a single-item auction is thus the value of the winner less her
payment. For the second-price auction, the consumer surplus is v(1)−v(2).
For the lottery, the consumer surplus is 1/n

∑

i vi, which is the same as
the surplus as there are no payments.

While the second-price auction maximizes surplus (among all mech-
anisms) regardless of the values of the agents, for the objective of con-
sumer surplus it is clear that neither the second-price auction nor the
lottery mechanism is best regardless of agent values. Consider the bad
input for the lottery, where v1 = 1 and vi = ε (for i "= 1). If we let ε go to
zero, the second-price auction has consumer surplus v(1) = 1 (which is
certainly optimal) and the lottery has expected surplus 1/n (which is far
from optimal). On the other hand, if we consider the all-ones input, i.e.,
vi = 1 for all i, then the consumer surplus of the second-price auction
is v(1) − v(2) = 0 (which is far from optimal), whereas the lottery sur-
plus is v(1) = 1 (which is clearly optimal). Of course, on the input with
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v1 = v2 = 1 and vi = ε (for i ≥ 3) both the lottery and the second-price
auction have consumer surplus far from what we could achieve if the
values were publicly known or monetary transfers were allowed.
The underlying fact in the above discussion that separates the objec-

tives of surplus and consumer surplus is that for surplus maximization
there is a single mechanism that is optimal for any profile of agent values,
namely the second-price auction; whereas there is no such mechanism for
consumer surplus. Since there is no absolute optimal mechanism we must
trade-off performance across possible profiles of agent values. There are
two ways to do this. The first approach is to assume a distribution over
value profiles and then optimize consumer surplus in expectation over
this distribution. Thus, we might trade off low consumer surplus on a
rare input for high consumer surplus on a likely input. This approach re-
sults in a different “optimal mechanism” for different distributions. The
second approach begins with the solution to the first approach and asks
for a single mechanism that bests approximates the optimal mechanism
in worst-case over distributions. This second approach may be especially
useful for applications of mechanism design to computer networks be-
cause it is not possible to change the routing protocol to accommodate
changing traffic workloads.

Question 1.1. In what settings does the second-price auction maximize
consumer surplus? In what settings does the lottery maximize consumer
surplus?

Question 1.2. For any given distribution over agent values, what mech-
anism optimizes consumer surplus for the distribution?

Question 1.3. If the optimal mechanism for a distribution is compli-
cated or unnatural, is there a simple or natural mechanism that approx-
imates it?

Question 1.4. In worst-case over distributions of agent values, what
single mechanism best approximates the optimal mechanism for the dis-
tribution?

1.1.2 Posted Pricing

Consider again the original single-item allocation problem to maximize
surplus (with monetary payments). Unfortunately, even a single-round,
sealed-bid auction such as the second-price auction may be too com-
plicated and slow for congestion control and routing applications. An
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even simpler approach would be to just post a take-it-or-leave-it price.
Consider the following mechanism.

Definition 1.1.7. For a given price v̂, the uniform-pricing mechanism
serves the first agent willing to pay v̂ (breaking ties in arrival order
randomly).

For instance, if we assumed all agents arrive at once and v̂ = 0 this
uniform pricing mechanism is identical to the aforementioned lottery.
Recall that the lottery mechanism is very bad when there are many low-
valued agents and a few high-valued agents. The bad example had one
agent with value one, and the remaining n− 1 agents with value ε. This
uniform-pricing mechanism, however, is more flexible. For instance, for
this example we could set v̂ = 2ε, only the high-valued agent will want to
buy, and the surplus would be one. Such a posted-pricing mechanism is
very practical and, therefore, especially appropriate for our application
to Internet routing.

Of course, the price v̂ needs to be chosen well. Fortunately in the
routing example where billions of messages are sent every day, it is rea-
sonable to assume that there is some distributional knowledge of the
demand. Imagine that the value of each agent i is drawn independently
and identically from distribution F . The cumulative distribution function
for random variable v drawn from distribution F specifies the probability
that it is at most z, denoted F (z) = Prv∼F [v < z]. For example the uni-
form distribution on interval [0, 1] is denoted U [0, 1] and its cumulative
distribution function is F (z) = z.

There is a very natural way to choose v̂: mimic the outcome of the
second-price auction as much as possible. Notice that with n identically
distributed agents, the ex ante (meaning: before the values are drawn)
probability that any particular agent wins is 1/n. To mimic the outcome
of the second-price auction on any particular agent we could set a price
v̂ so that the probability that the agent’s value is above v̂ is exactly 1/n,
this price can be found by inverting the cumulative distribution function
as v̂ = F−1(1 − 1/n). For the uniform distribution, the solution to this
inverse is v̂ = 1− 1/n. Unlike the second-price auction, posting a uniform
price of v̂ may result in no winners (if all agent values are below v̂) or
an agent other than that with the highest value may win (if there are
more than one agents with value above v̂).

Theorem 1.1.5. For values drawn independently and identically from
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any distribution F , the uniform pricing of v̂ = F−1(1−1/n) is an e/e−1 ≈
1.582 approximation to the optimal surplus.

Proof. The main idea of this proof is to compare three mechanisms.
Let REF denote the second-price auction and its surplus (our reference
mechanism). Let APX denote the uniform pricing and its surplus (our
approximation mechanism). The second-price auction, REF, optimizes
surplus, subject to the ex post (meaning: after the mechanism is run)
supply constraint that at most one agent wins, and chooses to sell to
each agent with ex ante probability 1/n. Consider for comparison a third
mechanism UB that maximizes surplus subject to the constraint that
each agent is served with ex ante probability at most 1/n, but has no
supply constraint, i.e., UB can serve multiple agents if it so chooses.
The first step in the proof is the simple observation that UB upper

bounds REF, i.e., UB ≥ REF. This is clear as both mechanisms serve
each agent with ex ante probability 1/n, but REF has an ex post supply
constraint whereas UB does not. UB could simulate REF and get the
exact same surplus, or it could do something even better. Conclude,

UB ≥ REF . (1.1.1)

In fact, UB will do something better than REF. First, observe that
UB’s optimization is independent between agents. Second, observe that
the socially optimal way to serve an agent with ex ante probability 1/n
is to offer her price v̂ = F−1(1 − 1/n). We now wish to calculate UB’s
expected surplus. Let E[v | v ≥ v̂] denote the expected value of an agent
given that her value v is above the price v̂. If we sell to an agent and all
we know is that her value is above the price, this quantity is the expected
surplus generated. By the choice of price v̂, the probability that an agent
has a value v that exceeds the price v̂ is Pr[v ≥ v̂] = 1/n, and when an
agent’s value is below the price her surplus is zero. Thus, her (total)
expected surplus in UB is exactly E[v | v ≥ v̂] · Pr[v ≥ v̂]. By linearity
of expectation, UB’s (total) expected surplus is just the sum over the n
agents of the surplus of each agent’s surplus. Therefore,

UB = n ·E[v | v ≥ v̂] ·Pr[v ≥ v̂]

= E[v | v ≥ v̂] . (1.1.2)

Finally, we get a lower bound on APX’s surplus that we can relate to
REF via its upper bound UB. Recall that the price in the uniform-pricing
mechanism is selected so that the probability that any given agent has
value exceeding the price is exactly 1/n. The probability that there are no



14 Mechanism Design and Approximation

agents who are above the price is equal to the probability that all agents
are below the price, which is equal to the product of the probabilities
that each agent is below the threshold, i.e., (1− 1/n)n ≤ 1/e.3 Therefore,
the probability that the item is sold by uniform pricing is at least 1−1/e.
If the item is sold, it is sold to an arbitrary agent with value conditioned
to be at least v̂, and the expected value of any such agent is E[v | v ≥ v̂].
Therefore, the expected surplus of uniform pricing is,

APX ≥ (1 − 1/e)E[v | v ≥ v̂] . (1.1.3)

Combining equations (1.1.1), (1.1.2), and (1.1.3) it is apparent that
APX ≥ (1− 1/e)REF.

Question 1.5. When are simple, practical mechanisms like posted pric-
ing a good approximation to the optimal mechanism?

1.1.3 General Routing Mechanisms

Finally we are ready to propose a mechanism for congestion control and
routing in general networks. The main idea in the construction is the
notion of critical values that was central to showing that the second-
price auction has truthtelling as a dominant strategy (Theorem 1.1.3).
In fact, that proof generalizes to any auction wherein each agent faces
a critical value (that is not a function of her bid), the agent wins and
pays the critical value if her bid exceeds it, and otherwise she loses.

Definition 1.1.8. The second-price routing mechanism is:

(i) solicit sealed bids,

(ii) find the set of messages that can be routed simultaneously with the
largest cumulative bid, and

(iii) charge the agents of each routed message their critical values.

Theorem 1.1.6. The second-price routing mechanism has truthful bid-
ding as a dominant strategy.

Corollary 1.1.7. The second-price routing mechanism maximizes the
surplus.

3
The natural number is e ≈ 2.178. That limn→∞(1− 1/n)

n
= 1/e can be verified

by taking the natural logarithm and applying L’Hopital’s rule; the
non-negativity of the derivative of (1 − 1/n)n implies it is is monotone
non-decreasing; therefore, 1/e is an upper bound on (1 − 1/n)

n
for any finite n.
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The proof of the theorem is similar to the analogous result for the
second-price single-item auction, but we will defer its proof to Chapter 3.
The corollary follows because the bids are equal to the agents’ values,
the mechanism is defined to be optimal for the reported bids, and the
payments cancel.
Unfortunately, this is far from the end of the story. Step (ii) of the

mechanism is known as winner determination. To understand exactly
what is happening in this step we must be more clear about our model for
routing in general networks. For instance, in the Internet, the route that
messages take in the network is predetermined by the Border Gateway
Protocol (BGP), which enforces that all messages routed to the same
destination through any given router follow the same path. There are no
opportunities for load-balancing, i.e., for sending messages to the same
destination across different paths so as to keep the loads on any given
path at a minimum. Alternatively, we could be in a novel network where
the routing can determine which messages to route and which path to
route them on.
Once we fix a model, we need to figure out how to solve the opti-

mization problem implied by winner determination. Namely, how do we
find the subset of messages with the highest total value that can be si-
multaneously routed? In principle, we are searching over subsets that
meet some complicated feasibility condition. Purely from the point of
optimization, this is a challenging task. The problem is related to the
infamous disjoint paths problems: given a set of pairs of vertices in a
graph, find a subset of pairs that can be connected via disjoint paths.
This problem is NP hard to solve. Meaning: it is at least as hard as
any problem in the equivalence class of NP-complete problems for which
it is widely believed that finding optimal solutions is computationally
intractable.

Theorem 1.1.8. The disjoint-paths problem is NP hard.

If we believe it is impossible for a designer to implement a mecha-
nism for which winner determination is computationally intractable, we
cannot accept the second-price routing mechanism as a solution to the
general network routing problem.
Algorithmic theory has an answer to intractability: if computing the

optimal solution is intractable, try instead to compute an approximately
optimal solution.

Question 1.6. Can we replace Step (ii) in the mechanism with an ap-
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proximation algorithm and still retain the dominant-strategy incentive
property?

Question 1.7. If not, can we (by some other method) design a compu-
tationally tractable approximation mechanism for routing?

Question 1.8. Is there a general theory for designing approximation
mechanisms from approximation algorithms?

1.2 Mechanism Design

Mechanism design gives a theory for the design of protocols, services,
laws, or other “rules of interaction” in which selfish behavior leads to
good outcomes. “Selfish behavior” means that each participant, hereafter
agent, individually tries to maximize her own utility. Such behavior we
define as rational. “Leads” means in equilibrium. A set of agent strategies
is in equilibrium if no agent prefers to unilaterally change her strategy.
Finally, the “good”-ness of an outcome is assessed with respect to the
criteria or goals of the designer. Natural economic criteria are surplus,
the sum of the utilities of all parties; and profit, the total payments made
to the mechanism less any cost for providing the outcome.
A theory for mechanism design should satisfy the following four desider-

ata:

Informative: It pinpoints salient features of the environment and char-
acteristics of good mechanisms therein.

Prescriptive: It gives concrete suggestions for how a good mechanism
should be designed.

Predictive: The mechanisms that the theory predicts should be the
same as the ones observed in practice.

Tractable: The theory should not assume super-natural ability for the
agents or designer to optimize.

Notice that optimality is not one of the desiderata, nor is suggesting a
specific mechanism to a practitioner. Instead, intuition from the theory
of mechanism design should help guide the design of good mechanisms
in practice. Such guidance is possible through informative observations
about what good mechanisms do. Observations that are robust to vari-
ations in modeling details are especially important.
Sometimes the theory of optimal mechanism design meets the above

desiderata. The question of designing an optimal mechanism can be
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viewed as a standard optimization problem: given incentive constraints,
imposed by game theoretic strategizing; feasibility constraints, imposed
by the environment; and the distribution of agent preferences, opti-
mize the designer’s given objective. In ideal environments the given
constraints may simplify and, for instance, allow the mechanism design
problem to be reduced to a natural optimization problem without in-
centive constraints or distribution. We saw an example of this for single-
item environments: in order to invoke the second-price auctions we need
only be able to solicit bids, identify the maximum bidder, and charge
payments. Unfortunately, there are many environments and objectives
where the optimal mechanism design problem not simplify as nicely.

1.3 Approximation

In environments where optimal mechanisms do not meet the desiderata
above, approximation can provide a remedy. In the formal definition of
an approximation, below, a good mechanism is one with a small approx-
imation factor.

Definition 1.3.1. For an environment given implicitly, denote an ap-
proximation mechanism and its performance by APX, and a reference
mechanism and its performance by REF.

(i) For any environment, APX is a β approximation to REF if APX ≥
1/βREF.

(ii) For any class of environments, a class of mechanisms is a β ap-
proximation to REF if for any environment in the class there is a
mechanism APX in the class that is a β approximation to REF.

(iii) For any class of environments, a mechanism APX is a β approx-
imation to REF if for any environment in the class APX is a β
approximation to REF.

In the preceding section we saw each of these types of approximation.
For i.i.d. U [0, 1], n-agent, single-item environments, posting a uniform
price of v̂ = 1− 1/n is a e/e−1 approximation to the second-price auction.
More generally, for any i.i.d. single-item environment, uniform pricing
is a e/e−1 approximation to the second-price auction. Finally, for any
single-item environment the lottery gives an n approximation to the
surplus of the second-price auction.
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Usually we will employ the approximation framework with REF rep-
resenting the optimal mechanism. For instance, in the preceding section
we compared a posted-pricing mechanism to the surplus-optimal second-
price auction for i.i.d., single-item environments. For such a comparison,
clearly REF ≥ APX, and therefore the approximation factor is at least
one. It is often instructive to compare the approximation ability of one
class of mechanisms to another. For instance, in the preceding section
we compared the surplus of a lottery, as the optimal mechanism with-
out payments, to the surplus of the second-price auction, the optimal
mechanism (in general). This kind of apples-to-oranges comparison is
useful for understanding the relative importance of various features of a
mechanism or environment.

1.3.1 Philosophy of Approximation

This section discusses economic conclusions that can be derived from
approximation.
While it is, no doubt, a compelling success of the theory of mechanism

design that its mechanisms are so prevalent in practice, optimal mecha-
nism design cannot claim the entirety of the credit. These mechanisms
are employed by practitioners well beyond the environments for which
they are optimal. Approximation can explain why: the mechanisms that
are optimal in ideal environments may continue to be approximately
optimal much more broadly. It is important for the theory to describe
how broadly these mechanisms are approximately optimal and how close
to optimal they are. Thus, the theory of approximation can complement
the theory of optimality and justify the wide prevalence of certain mech-
anisms. For instance, in Chapter 4 and Chapter 8 we describe how the
widely prevalent reserve-price-based mechanisms and posted pricings are
corroborated by their approximate optimality.
There are natural environments for mechanism design wherein ev-

ery “undominated” mechanism is optimal. If we consider only optimal
mechanisms we are stuck with the full class from which we can make no
observations about what makes a mechanism good; on the other hand, if
we relax optimality, we may be able to identify a small subclass of mech-
anisms that are approximately optimal, i.e., for any environment there
is a mechanism in the subclass that approximates the optimal mecha-
nism. This subclass is important in theory as we can potentially observe
salient characteristics of it. It is important in practice because, while it
is unlikely for a real mechanism designer to be able to optimize over all
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Figure 1.3. Picasso’s December, 1945 to January, 1946 abstractionist study
of a bull highlights one of the main points of approximation: identifying
the salient features of the object of study. Picasso drew these in order from
left to right, top to bottom.

mechanisms, optimizing over a small class of, hopefully, natural mech-
anisms may be possible. For instance, a conclusion that we will make
precise in Chapter 4 and Chapter 8 is that reserve-price-based mecha-
nisms and posted pricings are approximately optimal in a wide range of
environments including those with multi-dimensional agent preferences.

Approximation provides a lens with which to explore the salient fea-
tures of an environment or mechanism. Suppose we wish to determine
whether a particular feature of a mechanism is important. If there exists
a subclass of mechanisms without that feature that gives a good approx-
imation to the optimal mechanism, then the feature is perhaps not that
important. If, on the other hand, there is no such subclass then the fea-
ture is quite important. For instance, previously in this chapter we saw
that mechanisms without transfers cannot obtain better than a linear
approximation to the optimal surplus in single-item environments. This
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result suggests that transfers are very important for mechanism design.
On the other hand, we also saw that posted-pricing mechanism could ob-
tain an e/e−1 approximation to the surplus-optimal mechanism. Posted
pricings do not make use of competition between agents, therefore, we
can conclude that competition between agents is not that important.
Essentially, approximation provides a means to determine which aspect
of an environment are details and which are not details. The approxima-
tion factor quantifies the relative importance on the spectrum between
unimportant details to salient characteristics. Approximation, then al-
lows for design of mechanisms that are not so dependent on details of
the setting and therefore more robust. See Figure 1.3 for an illustration
of this principle. In particular, in Chapter 4 we will formally observe
that revenue-optimal auctions when agent values are drawn from a dis-
tribution can be approximated by a mechanism in which the only dis-
tributional dependence is a single number; moreover, in Chapter 5 we
will observe that some environments permit a single (prior-independent)
mechanism to approximate the revenue-optimal mechanism under any
distributional assumption.
Suppose the seller of an item is worried about collusion, risk attitudes,

after-market effects, or other economic phenomena that are usually not
included in standard ideal models for mechanism design. One option
would be to explicitly model these effects and study optimal mechanisms
in the augmented model. These complicated models are difficult to ana-
lyze and optimal mechanisms may be overly influenced by insignificant-
seeming modeling choices. Optimal mechanisms are precisely tuned to
details in the model and these details may drive the form of the optimal
mechanism. On the other hand, we can consider approximations that
are robust to various out-of-model phenomena. In such an environment
the comparison between the approximation and the optimal mechanism
is unfair because the optimal mechanism may suffer from out-of-model
phenomena that the approximation is robust to. In fact, this “optimal
mechanism” may perform much worse than our approximation when the
phenomena are explicitly modeled. For example, Chapter 4 and Chap-
ter 8 describe posted pricing mechanisms that are approximately optimal
and robust to timing effects; for this reason an online auction house, such
as eBay, may prefer its sellers to use “buy it now” posted pricings instead
of auctions.
Finally, there is an issue of non-robustness that is inherent in any op-

timization over a complex set of objects, such as mechanisms. Suppose
the designer does not know the distribution of agent preferences exactly
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but can learn about it through, e.g., market analysis. Such a market
analysis is certainly going to be noisy; exactly optimizing a mechanism
to the market analysis may “over fit” to this noise. Both statistics and
machine learning theory have techniques for addressing this sort of over-
fitting. Approximation mechanisms also provide such a robustness. Since
the class of approximation mechanisms is restricted from the full set, for
these mechanisms to be good, they must pay less attention to details and
therefore are robust to sampling noise. Importantly, approximation al-
lows for design and analysis mechanisms for small (a.k.a., thin) markets
where statistical and machine learning methods are less applicable.

1.3.2 Approximation Factors

Depending on the problem and the approximation mechanism, approx-
imation factors can range from (1+ ε), i.e., arbitrarily close approxima-
tions, to linear factor approximations (or sometimes even worse). Notice
a linear factor approximation is one where, as some parameter in the
environment grows, i.e., more agents or more resources, the approxima-
tion factor gets worse. As examples, we saw earlier an environment in
which uniform pricing is a constant approximation and the lottery is a
linear approximation.4

In this text we take constant versus super-constant approximation
as the separation between good and bad. We will view a proof that a
mechanism is a constant approximation as a positive result and a proof
that no mechanism (in a certain class) is a constant approximation as
a negative result. Constant approximations tend to represent a tradeoff
between simplicity and optimality. Properties of constant approximation
mechanisms can, thus, be quite informative. Of course, there are many
non-mechanism-design environments where super-constant approxima-
tions are both useful and informative; however, for mechanism design
super-constant approximations tend to be indicative of (a) a bad mech-
anism, (b) failure to appropriately characterize optimal mechanisms, or
(c) an imposition of incompatible modeling assumptions or constraints.
If you were approached by a seller (henceforth: principal) to design a

mechanism and you returned to triumphantly reveal an elegant mech-
anism that gives her a two approximation to the optimal profit, you

4
Recall that the approximation factor for uniform pricing bounded by e/e−1, an
absolute constant that does not increase with various parameters of the auction
such as the number of agents. In contrast the approximation factor of the lottery
could be as bad as n, the number of agents. As the number of agents increases,
so does the approximation bound guaranteed by the lottery.
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would probably find her a bit discouraged. After all, your mechanism
leaves half of her profit on the table. In the context of this critique we
outline the main points of constant, e.g., two, approximations for the
practitioner. First, a two approximation provides informative conclu-
sions that can guide the design of even better mechanisms for specific
environments. Second, the approximation factor of two is a theoretical
result that holds in a large range of environments, in specific environ-
ments the mechanism may perform better. It is easy, via simulation,
to evaluate the mechanism performance on specific settings to see how
close to optimal it actually is. Third, in many environments the optimal
mechanism is not understood at all, meaning the principal’s alternative
to your two approximation is an ad hoc mechanism with no performance
guarantee. This principal is of course free to simulate your mechanism
and her mechanism in her given environment and decide to use the bet-
ter of the two. In this fashion the principal’s ad hoc mechanism, if used,
is provably a two approximation as well. Fourth, mechanisms that are
two approximations in theory arise in practice. In fact, that it is a two
approximation explains why the mechanism arises. Even though it is
not optimal, it is close enough. If it was far from being optimal the prin-
cipal (hopefully) would have figured this out and adopted a different
approach.
Sometimes it is possible do obtain schemas for approximating the op-

timal mechanism to within a (1+ε) factor for any ε. These schemas tend
to be computational approaches that are useful for addressing potential
computational intractability of the optimal mechanism design problem.
While they do not tend to yield simple mechanisms, they are relevant in
complex environments. Often these approximation schemes are based on
(a) identifying a restricted class of mechanisms wherein a near-optimal
mechanism can be found and (b) conducting a brute-force search over
this restricted class. While very little is learned from such a brute-force
search, properties of the restricted class of mechanisms can be informa-
tive. Many of the optimal mechanisms we describe can in practice only
be implemented as approximation schemes.

Chapter Notes

Routing and congestion control are a central problems in computer sys-
tems such as the Internet; see Leiner et al. (1997) for a discussion of
design criteria. Demers et al. (1989) analyze “fair queuing” which is a
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lottery-based mechanism for congestion control. Griffin et al. (2002) dis-
cuss the Border Gateway Protocol (BGP) which determines the routes
messages take in the Internet. The NP-completeness of the disjoint paths
problem (and the related problem of integral multi-commodity flow) was
established by Even et al. (1976).
William Vickrey’s 1961 analysis of the second-price auction is one of

the pillars of mechanism design theory. The second-price routing mecha-
nism is a special case of the more general Vickrey-Clarke-Groves (VCG)
mechanism which is attributed additionally to Edward Clarke (1971)
and Theodore Groves (1973).
Computational payments were proposed as means for fighting unso-

licited electronic mail by Dwork and Naor (1992). Hartline and Rough-
garden (2008) consider mechanism design with the objective of consumer
surplus and describe distributional assumptions under which the lottery
is optimal, the second-price auction is optimal, and when neither are op-
timal. They also give a single mechanism that approximates the optimal
mechanism for any distribution of agent values.
Vincent and Manelli (2007) showed that there are environments for

mechanism design wherein every “undominated” mechanism is optimal
for some distribution of agent preferences. This result implies that opti-
mality cannot be used to identify properties of good mechanisms. Robert
Wilson (1987) suggested that mechanisms that are less dependent on the
details of the environment are likely to be more relevant. This suggestion
is known as the “Wilson doctrine.”
The e/e−1 approximation via a uniform pricing (Theorem 1.1.5) is a

consequence of Chawla et al. (2010b). Wang et al. (2008) and Reynolds
and Wooders (2009) discuss why the “buy it now” (i.e., posted-pricing)
mechanism is replacing the second-price auction format in eBay.


