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Mechanism Design

Basic Mechanism Design Question: How should an economic
system be designed so that selfish agent behavior leads to good
outcomes?
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Mechanism Design

Basic Mechanism Design Question: How should an economic
system be designed so that selfish agent behavior leads to good
outcomes?

Internet Applications: file sharing, reputation systems, web search,
web advertising, email, Internet auctions, congestion control, etc.

General Theme: resource allocation.
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Overview

Part I: Optimal Mechanism Design

• single-item auction.

• objectives: social welfare vs. seller profit.

• characterization of Bayes-Nash equilibrium.

• consequences: solving and optimizing over BNE.

• inferring values from bids.

Part II: Approximation in Mechanism Design

• single-item auctions.

• multi-dimensional auctions.

• prior-independent auctions.

• computationally tractable mechanisms.
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Overview

Part I: Optimal Mechanism Design (Chapters 2 & 3)

• single-item auction.

• objectives: social welfare vs. seller profit.

• characterization of Bayes-Nash equilibrium.

• consequences: solving and optimizing over BNE.

• inferring values from bids.

Part II: Approximation in Mechanism Design

• single-item auctions. (Chapter 4)

• multi-dimensional auctions. (Chapter 7)

• prior-independent auctions. (Chapter 5)

• computationally tractable mechanisms. (Chapter 8)

BAYESIAN. MECH. DESIGN – JULY 28, 2014
2



Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:

• one item for sale.

• n bidders (with unknown private values for item, v1, . . . , vn)

• Bidders’ objective: maximize utility = value − price paid.

Design:

• Auction to solicit bids and choose winner and payments.
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Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:

• one item for sale.

• n bidders (with unknown private values for item, v1, . . . , vn)

• Bidders’ objective: maximize utility = value − price paid.

Design:

• Auction to solicit bids and choose winner and payments.

Possible Auction Objectives:

• Maximize social surplus, i.e., the value of the winner.

• Maximize seller profit, i.e., the payment of the winner.

BAYESIAN. MECH. DESIGN – JULY 28, 2014
3



Objective 1: maximize social surplus



Example Auctions

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.
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Example Auctions

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

Example Input: b = (2, 6, 4, 1).
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Example Auctions

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

Second-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner the
second-highest bid.

Example Input: b = (2, 6, 4, 1).
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Example Auctions

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

Second-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner the
second-highest bid.

Example Input: b = (2, 6, 4, 1).

Questions:

• what are equilibrium strategies?

• what is equilibrium outcome?

• which has higher surplus in equilibrium?

• which has higher profit in equilibrium?
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til

ity

Bid Value

0

vi−ti

ti
vi

U
til

ity

Bid Value

0

vi−ti

ti
vi
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til

ity

Bid Value

0

vi−ti

ti
vi

U
til

ity

Bid Value

0

vi−ti

ti
vi

Result: Bidder i’s dominant strategy is to bid bi = vi!
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj . ⇐ “critical value”

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til

ity

Bid Value

0

vi−ti

ti
vi

U
til

ity

Bid Value

0

vi−ti

ti
vi

Result: Bidder i’s dominant strategy is to bid bi = vi!
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

• bids = values (from Lemma).

• winner is highest bidder (by definition).

⇒ winner is bidder with highest valuation (optimal social surplus).
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

• bids = values (from Lemma).

• winner is highest bidder (by definition).

⇒ winner is bidder with highest valuation (optimal social surplus).

What about first-price auction?
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Recall First-price Auction

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

How would you bid?
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Recall First-price Auction

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

How would you bid?

Note: first-price auction has no DSE.
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.

Order Statistics: in expectation, uniform random variables evenly
divide interval.
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.

Order Statistics: in expectation, uniform random variables evenly
divide interval.

0 1
E[v2] E[v1]

✻ ✻
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2

• to maximize, take derivative d
db

and set to zero, solve
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2

• to maximize, take derivative d
db

and set to zero, solve

• optimal to bid b = v/2 (bid half your value!)
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2

• to maximize, take derivative d
db

and set to zero, solve

• optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding “half of value” is equilibrium
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2

• to maximize, take derivative d
db

and set to zero, solve

• optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding “half of value” is equilibrium
Conclusion 2: bidder with highest value wins
Conclusion 3: first-price auction maximizes social surplus!
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Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., bi = si(vi).
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Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., bi = si(vi).

Defn: the common prior assumption: bidders’ values are drawn from a
known distribution, i.e., vi ∼ Fi.

BAYESIAN. MECH. DESIGN – JULY 28, 2014
11



Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., bi = si(vi).

Defn: the common prior assumption: bidders’ values are drawn from a
known distribution, i.e., vi ∼ Fi.

Definition: a strategy profile is in Bayes-Nash Equilibrium (BNE) if for
all i, si(vi) is best response when others play sj(vj) and vj ∼ Fj .
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Surplus Maximization Conclusions

Conclusions:

• second-price auction maximizes surplus in DSE regardless of
distribution.

• first-price auction maximize surplus in BNE for i.i.d. distributions.
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Surplus Maximization Conclusions

Conclusions:

• second-price auction maximizes surplus in DSE regardless of
distribution.

• first-price auction maximize surplus in BNE for i.i.d. distributions.

Surprising Result: a single auction is optimal for any distribution.
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Surplus Maximization Conclusions

Conclusions:

• second-price auction maximizes surplus in DSE regardless of
distribution.

• first-price auction maximize surplus in BNE for i.i.d. distributions.

Surprising Result: a single auction is optimal for any distribution.

Questions?
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Objective 2: maximize seller profit

(other objectives are similar)



An example

Example Scenario: two bidders, uniform values
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1• Sort values.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
✻ ✻• Sort values.

• In expectation, values evenly divide unit interval.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
✻ ✻• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2]

BAYESIAN. MECH. DESIGN – JULY 28, 2014
14



An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
✻ ✻• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
✻ ✻• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.

What is profit of first-price auction?
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
✻ ✻• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.

What is profit of first-price auction?

• E[Profit] = E[v1] /2 = 1/3.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
✻ ✻• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.

What is profit of first-price auction?

• E[Profit] = E[v1] /2 = 1/3.

Surprising Result: second-price and first-price auctions have same
expected profit.

Can we get more profit?
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2

Case 2: v1 ≥ v2 ≥ 1
2

Case 3: v1 ≥ 1
2 > v2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2 1/4

Case 2: v1 ≥ v2 ≥ 1
2 1/4

Case 3: v1 ≥ 1
2 > v2 1/2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2 1/4 0

Case 2: v1 ≥ v2 ≥ 1
2 1/4 E[v2 | Case 2]

Case 3: v1 ≥ 1
2 > v2 1/2 1

2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.
0 1v2 v1

✻ ✻
• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2 1/4 0

Case 2: v1 ≥ v2 ≥ 1
2 1/4 E[v2 | Case 2] = 2

3

Case 3: v1 ≥ 1
2 > v2 1/2 1

2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.
0 1v2 v1

✻ ✻
• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2 1/4 0

Case 2: v1 ≥ v2 ≥ 1
2 1/4 E[v2 | Case 2] = 2

3

Case 3: v1 ≥ 1
2 > v2 1/2 1

2

E[profit of 2nd-price with reserve] = 1
4 · 0 + 1

4 · 2
3 + 1

2 · 1
2 = 5

12
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.
0 1v2 v1

✻ ✻
• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2 1/4 0

Case 2: v1 ≥ v2 ≥ 1
2 1/4 E[v2 | Case 2] = 2

3

Case 3: v1 ≥ 1
2 > v2 1/2 1

2

E[profit of 2nd-price with reserve] = 1
4 · 0 + 1

4 · 2
3 + 1

2 · 1
2 = 5

12
≥ E[profit of 2nd-price] = 1

3 .
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Profit Maximization Observations

Observations:

• pretending to value the good increases seller profit.

• which mechanism has better profit depends on distribution.
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Bayes-Nash Equilibrium Characterization and Consequences

0. characterization.

1. solving for BNE.

2. optimizing over BNE.



Notation

Notation:

• x is an allocation, xi the allocation for i.

• x(v) is BNE allocation of mech. on valuations v.

• v i = (v1, . . . , vi−1, ?, vi+1, . . . , vn).
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• x(v) is BNE allocation of mech. on valuations v.

• v i = (v1, . . . , vi−1, ?, vi+1, . . . , vn).

• xi(vi) = Ev−i
[xi(vi,v−i)] .

(Agent i’s interim prob. of allocation with v−i from F−i)

BAYESIAN. MECH. DESIGN – JULY 28, 2014
18



Notation

Notation:

• x is an allocation, xi the allocation for i.

• x(v) is BNE allocation of mech. on valuations v.

• v i = (v1, . . . , vi−1, ?, vi+1, . . . , vn).

• xi(vi) = Ev−i
[xi(vi,v−i)] .

(Agent i’s interim prob. of allocation with v−i from F−i)

Analogously, define p, p(v), and pi(vi) for payments.
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Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.
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Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.

Payment

vi

xi(vi)

vi

xi(vi)

Surplus Utility

vi

xi(vi)

Consequence: (revenue equivalence) in BNE, auctions with same
outcome have same revenue (e.g., first and second-price auctions)
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Questions?



Solving for BNE

Solving for equilbrium:

1. What happens in first-price auction equilibrium?
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⇒ same expected payments as second-price auction.

2. What are equilibrium strategies?

• p(v) = Pr[v wins] × b(v) (because first-price)

• p(v) = E[expected second-price payment | v] (by rev. equiv.)

p(v) = Pr[v wins] × E[second highest value | v wins]

⇒ b(v) = E[second highest value | v wins]
(e.g., for two uniform bidders: b(v) = v/2.)
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Solving for BNE

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more

⇒ agents ranked by value

⇒ same outcome as second-price auction.

⇒ same expected payments as second-price auction.

2. What are equilibrium strategies?

• p(v) = Pr[v wins] × b(v) (because first-price)

• p(v) = E[expected second-price payment | v] (by rev. equiv.)

p(v) = Pr[v wins] × E[second highest value | v wins]

⇒ b(v) = E[second highest value | v wins]
(e.g., for two uniform bidders: b(v) = v/2.)

3. Verify guess and BNE: b(v) continuous, strictly increasing,
symmetric.
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Questions?



Optimizing BNE

Defn: virtual value for i is φi(vi) = vi −
1−Fi(vi)

fi(vi)
.
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• check to see if incentive constraints are satisfied.

⇒ if φi(·) is monotone then mechanism is monotone.
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Optimizing BNE

Defn: virtual value for i is φi(vi) = vi −
1−Fi(vi)

fi(vi)
.

Lemma: [Myerson 81] In BNE, E[pi(vi)] = E[φi(vi)xi(vi)]
General Approach:

• optimize revenue without incentive constraints (i.e., monotonicity).

⇒ winner is agent with highest positive virtual value.

• check to see if incentive constraints are satisfied.

⇒ if φi(·) is monotone then mechanism is monotone.

Defn: distribution Fi is regular if φi(·) is monotone.

Thm: [Myerson 81] If F is regular, optimal auction is to sell item to
bidder with highest positive virtual valuation.

Proof: expected virtual valuation of winner = expected payment.
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Proof of Lemma

Recall Lemma: In BNE, E[pi(vi)] = E
[(

vi −
1−Fi(vi)

fi(vi)

)

xi(vi)
]

.

Proof Sketch:

• Use characterization: pi(vi) = vixi(vi) −
∫ vi

0
xi(v)dv.

• Use definition of expectation (integrate payment × density).

• Swap order of integration.

• Simplify.
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Interpretation

Recall Thm: If F is regular, optimal auction is to sell item to bidder with
highest positive virtual valuation.

What does this mean in i.i.d. case?
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Interpretation

Recall Thm: If F is regular, optimal auction is to sell item to bidder with
highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner i satisfies φi(vi) ≥ max(φj(vj), 0)

• I.i.d. implies φi = φj = φ.

• So, vi ≥ max(vj , φ
−1(0)).

• So, “critical value” = payment = max(vj , φ
−1(0))

• What is this auction? second-price auction with reserve φ−1(0)!

What is optimal single-item auction for U [0, 1]?
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Optimal Auction for U [0, 1]

Optimal auction for U [0, 1]:

• F (vi) = vi.

• f(vi) = 1.

• So, φ(vi) = vi −
1−F (vi)

f(vi)
= 2vi − 1.

• So, φ−1(0) = 1/2.
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Optimal Auction for U [0, 1]

Optimal auction for U [0, 1]:

• F (vi) = vi.

• f(vi) = 1.

• So, φ(vi) = vi −
1−F (vi)

f(vi)
= 2vi − 1.

• So, φ−1(0) = 1/2.

• So, optimal auction is Second-price Auction with reserve 1/2!
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Optimal Mechanisms Conclusions

Conclusions:

• expected virtual value = expected revenue

• optimal mechanism maximizes virtual surplus.

• optimal auction depends on distribution.

• i.i.d., regular distributions: second-price with reserve is optimal.

• theory is “descriptive”.

Questions?
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Inferring Values from Bids.



Auction Design Challenge

Auction: Two-bidder one-item highest-bid-wins first-price auction.

Data: bids and revenues (for 200 auctions)
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Auction Design Challenge

Auction: Two-bidder one-item highest-bid-wins first-price auction.

Data: bids and revenues (for 200 auctions)∗

Question: How to adapt auction to get more revenue?

Auction Theory: revenue optimal auction is “first-price with reserve.”
[Myerson ’81]

Question: Determine good reserve price from data?

∗ all data is synthetic; counter-factuals known.
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The Data

Auction Bid 1 Bid 2 Revenue

1 0.74 0.34 0.74

2 0.11 0.42 0.42

3 0.08 0.86 0.86

4 0.50 0.48 0.50

5 0.69 0.83 0.83

6 0.46 0.58 0.58

7 0.53 0.03 0.53

8 0.77 0.60 0.77

9 0.91 0.49 0.91

10 0.54 0.50 0.54

11 0.44 0.35 0.44
...

...
...

...

200 0.44 0.54 0.54

Average 0.68
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1 0.74 0.34 0.74

2 0.11 0.42 0.42

3 0.08 0.86 0.86
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10 0.54 0.50 0.54
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200 0.44 0.54 0.54

Average 0.68

Failed Approach: simulate re-
serve prices with old bid data.

BAYESIAN. MECH. DESIGN – JULY 28, 2014
30



The Data

Auction Bid 1 Bid 2 Revenue

1 0.74 0.34 0.74

2 0.11 0.42 0.42

3 0.08 0.86 0.86

4 0.50 0.48 0.50

5 0.69 0.83 0.83

6 0.46 0.58 0.58

7 0.53 0.03 0.53

8 0.77 0.60 0.77

9 0.91 0.49 0.91

10 0.54 0.50 0.54

11 0.44 0.35 0.44
...

...
...

...

200 0.44 0.54 0.54

Average 0.68

Failed Approach: simulate re-
serve prices with old bid data.

Discussion:

1. loss in revenue when bids
below reserve.
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The Data

Auction Bid 1 Bid 2 Revenue

1 0.74 0.34 0.74

2 0.11 0.42 0.42

3 0.08 0.86 0.86

4 0.50 0.48 0.50

5 0.69 0.83 0.83

6 0.46 0.58 0.58

7 0.53 0.03 0.53

8 0.77 0.60 0.77

9 0.91 0.49 0.91

10 0.54 0.50 0.54

11 0.44 0.35 0.44
...

...
...

...

200 0.44 0.54 0.54

Average 0.68

Failed Approach: simulate re-
serve prices with old bid data.

Discussion:

1. loss in revenue when bids
below reserve.

2. with reserve price, bidders
should raise their bids.

Problem: simulation does not
account for bidders raising
bids!
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Behavior vs. Simulations

Auction Bid 1 Bid 2 Revenue

1 0.74 0.34 0.74

2 0.11 0.42 0.42

3 0.08 0.86 0.86

4 0.50 0.48 0.50

5 0.69 0.83 0.83

6 0.46 0.58 0.58

7 0.53 0.03 0.53

8 0.77 0.60 0.77

9 0.91 0.49 0.91

10 0.54 0.50 0.54

11 0.44 0.35 0.44
...

...
...

...

200 0.44 0.54 0.54

Average 0.68
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Behavior vs. Simulations

Auction Bid 1 Bid 2 Revenue Sim 0.5

1 0.74 0.34 0.74 0.74

2 0.11 0.42 0.42 0.00

3 0.08 0.86 0.86 0.86

4 0.50 0.48 0.50 0.00

5 0.69 0.83 0.83 0.83

6 0.46 0.58 0.58 0.58

7 0.53 0.03 0.53 0.53

8 0.77 0.60 0.77 0.77

9 0.91 0.49 0.91 0.91

10 0.54 0.50 0.54 0.54

11 0.44 0.35 0.44 0.00
...

...
...

...
...

200 0.44 0.54 0.54 0.54

Average 0.68 0.60
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Behavior vs. Simulations

Auction Bid 1 Bid 2 Revenue Sim 0.5 Real 0.5

1 0.74 0.34 0.74 0.74 0.83

2 0.11 0.42 0.42 0.00 0.57

3 0.08 0.86 0.86 0.86 0.93

4 0.50 0.48 0.50 0.00 0.62

5 0.69 0.83 0.83 0.83 0.91

6 0.46 0.58 0.58 0.58 0.69

7 0.53 0.03 0.53 0.53 0.65

8 0.77 0.60 0.77 0.77 0.85

9 0.91 0.49 0.91 0.91 0.98

10 0.54 0.50 0.54 0.54 0.65

11 0.44 0.35 0.44 0.00 0.58
...

...
...

...
...

...

200 0.44 0.54 0.54 0.54 0.66

Average 0.68 0.60 0.76

BAYESIAN. MECH. DESIGN – JULY 28, 2014
31



Behavior vs. Simulations

Auction Bid 1 Bid 2 Revenue Sim 0.5 Real 0.5 Sim 0.75 Real 0.75

1 0.74 0.34 0.74 0.74 0.83 0.00 0.93

2 0.11 0.42 0.42 0.00 0.57 0.00 0.76

3 0.08 0.86 0.86 0.86 0.93 0.86 1.02

4 0.50 0.48 0.50 0.00 0.62 0.00 0.78

5 0.69 0.83 0.83 0.83 0.91 0.83 1.00

6 0.46 0.58 0.58 0.58 0.69 0.00 0.82

7 0.53 0.03 0.53 0.53 0.65 0.00 0.80

8 0.77 0.60 0.77 0.77 0.85 0.77 0.95

9 0.91 0.49 0.91 0.91 0.98 0.91 1.06

10 0.54 0.50 0.54 0.54 0.65 0.00 0.80

11 0.44 0.35 0.44 0.00 0.58 0.00 0.76
...

...
...

...
...

...
...

...

200 0.44 0.54 0.54 0.54 0.66 0.00 0.80

Average 0.68 0.60 0.76 0.38 0.85
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Behavior vs. Simulations (cont.)
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Behavior vs. Simulations (cont.)
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Behavior vs. Simulations (cont.)
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Behavior vs. Simulations (cont.)
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Behavior vs. Simulations (cont.)
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Equilibrium and Inference

Assumption: bidders are happy
with their bids.
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Equilibrium and Inference

Assumption: bidders are happy
with their bids.

Equilibrium: bidder’s bid must be
best response to competing bid dis-
tribution.
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Equilibrium and Inference

Assumption: bidders are happy
with their bids.

Equilibrium: bidder’s bid must be
best response to competing bid dis-
tribution.

Observation: competing bids distri-
bution is observed in data.
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Equilibrium and Inference

Assumption: bidders are happy
with their bids.

Equilibrium: bidder’s bid must be
best response to competing bid dis-
tribution.

Observation: competing bids distri-
bution is observed in data.

Approach:

1. given bid distribution, solve for
bid strategy

2. invert bid strategy to get bidder’s
value for item from bid.
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Bidder’s Bid Optimization

Example: two bidders, first-price auction.
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Bidder’s Bid Optimization

Example: two bidders, first-price auction.
1

00 1

• Competing bid is uniform on [0, 1]
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Bidder’s Bid Optimization

Example: two bidders, first-price auction.
1

00 1

• Competing bid is uniform on [0, 1]

• How should you bid?
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Bidder’s Bid Optimization

Example: two bidders, first-price auction.
1

00 1

• Competing bid is uniform on [0, 1]

• How should you bid?

• What’s your expected utility with value v and bid b?
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Bidder’s Bid Optimization

Example: two bidders, first-price auction.

b

v

v
−

b

Pr[win]

utility1

00 1

• Competing bid is uniform on [0, 1]

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win with bid b]
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Bidder’s Bid Optimization

Example: two bidders, first-price auction.

b
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Pr[win]

utility1

00 1

• Competing bid is uniform on [0, 1]

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win with bid b]

= (v − b) × b = vb − b2
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Bidder’s Bid Optimization

Example: two bidders, first-price auction.

b

v

v
−

b

Pr[win]

utility1

00 1

• Competing bid is uniform on [0, 1]

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win with bid b]

= (v − b) × b = vb − b2

• to maximize, take derivative d
db

and set to zero, solve
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Bidder’s Bid Optimization

Example: two bidders, first-price auction.

b

v

v
−

b

Pr[win]

utility1

00 1

• Competing bid is uniform on [0, 1]

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win with bid b]

= (v − b) × b = vb − b2

• to maximize, take derivative d
db

and set to zero, solve

• optimal to bid b = v/2 (bid half your value!)
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Bidder’s Bid Optimization

Example: two bidders, first-price auction.

b

v

v
−

b

Pr[win]

utility1

00 1

• Competing bid is uniform on [0, 1]

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win with bid b]

= (v − b) × b = vb − b2

• to maximize, take derivative d
db

and set to zero, solve

• optimal to bid b = v/2 (bid half your value!)

Conclusion 1: Infer that bidder with bid b has value v = 2b.
Conclusion 2: So values are uniform on [0, 2].
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Bidder’s Bid Optimization

Example: two bidders, first-price auction.

b

v

v
−

b

Pr[win]

utility1

00 1

• Competing bid is uniform on [0, 1]

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win with bid b]

= (v − b) × b = vb − b2

• to maximize, take derivative d
db

and set to zero, solve

• optimal to bid b = v/2 (bid half your value!)

Conclusion 1: Infer that bidder with bid b has value v = 2b.
Conclusion 2: So values are uniform on [0, 2].
Conclusion 3: From value distribution can solve for equilibrium
behavior in any auction!
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Inference for First-price Auction

Inference Equation: for first price auction

v(q) = b(q) + x(q)b′(q)
x′(q)
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Inference for First-price Auction

Inference Equation: for first price auction

v(q) = b(q) + x(q)b′(q)
x′(q)

Notes:

• allocation rule x(·) and derivative x′(·) are known.
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Inference for First-price Auction

Inference Equation: for first price auction

v(q) = b(q) + x(q)b′(q)
x′(q)

Notes:

• allocation rule x(·) and derivative x′(·) are known.

• bid function b(·), b′(·) must be inferred.
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Inference for First-price Auction

Inference Equation: for first price auction

v(q) = b(q) + x(q)b′(q)
x′(q)

Notes:

• allocation rule x(·) and derivative x′(·) are known.

• bid function b(·), b′(·) must be inferred.

• value function v(·) can be inferred from v̂(q) = b̂(q) + x(q)b̂′(q)
x′(q)

.
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Inference for First-price Auction

Inference Equation: for first price auction

v(q) = b(q) + x(q)b′(q)
x′(q)

Notes:

• allocation rule x(·) and derivative x′(·) are known.

• bid function b(·), b′(·) must be inferred.

• value function v(·) can be inferred from v̂(q) = b̂(q) + x(q)b̂′(q)
x′(q)

.

Estimators: for N samples from b(·):

• standard b̂(·) estimators have rate
√

N .
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Inference for First-price Auction

Inference Equation: for first price auction

v(q) = b(q) + x(q)b′(q)
x′(q)

Notes:

• allocation rule x(·) and derivative x′(·) are known.

• bid function b(·), b′(·) must be inferred.

• value function v(·) can be inferred from v̂(q) = b̂(q) + x(q)b̂′(q)
x′(q)

.

Estimators: for N samples from b(·):

• standard b̂(·) estimators have rate
√

N .

• standard b̂′(·) estimators have rate worse than
√

N
(under assumptions on b(·), e.g., continuity)
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Inference for First-price Auction

Inference Equation: for first price auction

v(q) = b(q) + x(q)b′(q)
x′(q)

Notes:

• allocation rule x(·) and derivative x′(·) are known.

• bid function b(·), b′(·) must be inferred.

• value function v(·) can be inferred from v̂(q) = b̂(q) + x(q)b̂′(q)
x′(q)

.

Estimators: for N samples from b(·):

• standard b̂(·) estimators have rate
√

N .

• standard b̂′(·) estimators have rate worse than
√

N
(under assumptions on b(·), e.g., continuity)

• “Mechanism Design for Data Science” [Chawla, Hartline, Nekipelov ’14]
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Inference for First-price Auction

Inference Equation: for first price auction

v(q) = b(q) + x(q)b′(q)
x′(q)

Notes:

• allocation rule x(·) and derivative x′(·) are known.

• bid function b(·), b′(·) must be inferred.

• value function v(·) can be inferred from v̂(q) = b̂(q) + x(q)b̂′(q)
x′(q)

.

Estimators: for N samples from b(·):

• standard b̂(·) estimators have rate
√

N .

• standard b̂′(·) estimators have rate worse than
√

N
(under assumptions on b(·), e.g., continuity)

• “Mechanism Design for Data Science” [Chawla, Hartline, Nekipelov ’14]

Note: require x′(q) > ǫ for estimation at q.
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Inference for First-price Auction

Inference Equation: for first price auction

v(q) = b(q) + x(q)b′(q)
x′(q)

Notes:

• allocation rule x(·) and derivative x′(·) are known.

• bid function b(·), b′(·) must be inferred.

• value function v(·) can be inferred from v̂(q) = b̂(q) + x(q)b̂′(q)
x′(q)

.

Estimators: for N samples from b(·):

• standard b̂(·) estimators have rate
√

N .

• standard b̂′(·) estimators have rate worse than
√

N
(under assumptions on b(·), e.g., continuity)

• “Mechanism Design for Data Science” [Chawla, Hartline, Nekipelov ’14]

Note: require x′(q) > ǫ for estimation at q.

Questions?
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Research Directions

Research Directions:

• are there simple mechanisms that are approximately optimal?
(e.g., price of anarchy or price of stability)

• is the optimal mechanism tractible to compute (even if it is
complex)?

• what are optimal auctions for multi-dimensional agent preferences?

• what are the optimal auctions for non-linear agent preferences,
e.g., from budgets or risk-aversion?

• are there good mechanisms that are less dependent on
distributional assumptions?
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BNE and Auction Theory Homework

1. For two agents with values U [0, 1] and U [0, 2], respectively:

(a) show that the first-price auction is not socially optimal in BNE.

(b) give an auction with “pay your bid if you win” semantics that is.

2. What is the virtual value function for an agent with value U [0, 2]?

3. What is revenue optimal single-item auction for:

(a) two agents with values U [0, 2]? n agents?

(b) two agents with values U [a, b]?

(c) two values U [0, 1] and U [0, 2], respectively?

4. For n agents with values U [0, 1] and a public good, i.e., where
either all or none of the agents can be served,

(a) What is the revenue optimal auction?

(b) What is the expected revenue of the optimal auction?
(use big-oh notation)

http://jasonhartline.com/MDnA/
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