
BNE and Auction Theory Homework

1. For two agents with values U [0, 1] and U [0, 2], respectively:

(a) show that the first-price auction is not socially optimal in BNE.

(b) give an auction with “pay your bid if you win” semantics that is.

2. What is the virtual value function for an agent with value U [0, 2]?

3. What is revenue optimal single-item auction for:

(a) two agents with values U [0, 2]? n agents?

(b) two agents with values U [a, b]?

(c) two values U [0, 1] and U [0, 2], respectively?

4. For n agents with values U [0, 1] and a public good, i.e., where
either all or none of the agents can be served,

(a) What is the revenue optimal auction?

(b) What is the expected revenue of the optimal auction?
(use big-oh notation)

http://jasonhartline.com/MDnA/
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Goals for Mechanism Design Theory

Mechanism Design: how can a social planner / optimizer achieve
objective when participant preferences are private.

Goals for Mechanism Design Theory:

• Descriptive: predict/affirm mechanisms arising in practice.

• Prescriptive: suggest how good mechanisms can be designed.

• Conclusive: pinpoint salient characteristics of good mechanisms.

• Tractable: mechanism outcomes can be computed quickly.
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Goals for Mechanism Design Theory

Mechanism Design: how can a social planner / optimizer achieve
objective when participant preferences are private.

Goals for Mechanism Design Theory:

• Descriptive: predict/affirm mechanisms arising in practice.

• Prescriptive: suggest how good mechanisms can be designed.

• Conclusive: pinpoint salient characteristics of good mechanisms.

• Tractable: mechanism outcomes can be computed quickly.

Informal Thesis: approximately optimality is often descriptive, prescrip-
tive, conclusive, and tractable.
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Example 1: Gambler’s Stopping Game

A Gambler’s Stopping Game:

• sequence of n games,

• prize of game i is distributed from Fi,

• prior-knowledge of distributions.

On day i, gambler plays game i:

• realizes prize vi ∼ Fi,

• chooses to keep prize and stop, or

• discard prize and continue.
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Example 1: Gambler’s Stopping Game

A Gambler’s Stopping Game:

• sequence of n games,

• prize of game i is distributed from Fi,

• prior-knowledge of distributions.

On day i, gambler plays game i:

• realizes prize vi ∼ Fi,

• chooses to keep prize and stop, or

• discard prize and continue.

Question: How should our gambler play?
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Optimal Strategy

Optimal Strategy:

• threshold ti for stopping with ith prize.

• solve with “backwards induction”.
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Optimal Strategy

Optimal Strategy:

• threshold ti for stopping with ith prize.

• solve with “backwards induction”.

Discussion:

• Complicated: n different, unrelated thresholds.

• Inconclusive: what are properties of good strategies?

• Non-robust: what if order changes? what if distribution changes?

• Non-general: what do we learn about variants of Stopping Game?
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Threshold Strategies and Prophet Inequality

Threshold Strategy : “fix t, gambler takes first prize vi ≥ t”.

(clearly suboptimal, may not accept prize on last day!)
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Threshold Strategies and Prophet Inequality

Threshold Strategy : “fix t, gambler takes first prize vi ≥ t”.

(clearly suboptimal, may not accept prize on last day!)

Theorem: (Prophet Inequality) For t such that Pr[“no prize”] = 1/2,

E[prize for strategy t] ≥ E[maxi vi] /2.
[Samuel-Cahn ’84]
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Threshold Strategies and Prophet Inequality

Threshold Strategy : “fix t, gambler takes first prize vi ≥ t”.

(clearly suboptimal, may not accept prize on last day!)

Theorem: (Prophet Inequality) For t such that Pr[“no prize”] = 1/2,

E[prize for strategy t] ≥ E[maxi vi] /2.
[Samuel-Cahn ’84]

Discussion:

• Simple: one number t.

• Conclusive: trade-off “stopping early” with “never stopping”.

• Robust: change order? change distribution above or below t?

• General: same solution works for similar games: invariant of
“tie-breaking rule”
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Prophet Inequality Proof

0. Notation:

• qi = Pr[vi < t].

• x = Pr[never stops] =
∏

i qi.

1. Upper Bound on E[max]:

2. Lower Bound on E[prize]:

3. Choose x = 1/2 to prove theorem.
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E[max] ≤ t + E
[
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]
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Prophet Inequality Proof

0. Notation:

• qi = Pr[vi < t].

• x = Pr[never stops] =
∏

i qi.

1. Upper Bound on E[max]:

E[max] ≤ t + E
[
maxi(vi − t)+

]

≤ t +
∑

i
E
[
(vi − t)+

]
.

2. Lower Bound on E[prize]:

E[prize] ≥ (1 − x)t +
∑

i
E
[
(vi − t)+ | other vj < t

]
Pr[other vj < t]

3. Choose x = 1/2 to prove theorem.
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Prophet Inequality Proof

0. Notation:

• qi = Pr[vi < t].

• x = Pr[never stops] =
∏

i qi.

1. Upper Bound on E[max]:

E[max] ≤ t + E
[
maxi(vi − t)+

]

≤ t +
∑

i
E
[
(vi − t)+

]
.

2. Lower Bound on E[prize]:

E[prize] ≥ (1 − x)t +
∑

i
E
[
(vi − t)+ | other vj < t

]

Q

j 6=i
qj

︷ ︸︸ ︷

Pr[other vj < t]

3. Choose x = 1/2 to prove theorem.
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]
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Philosophy of Approximation

What is the point of a 2-approximation?
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Philosophy of Approximation

What is the point of a 2-approximation?

• Constant approximations identify details of model. [cf. Wilson ’87]
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Philosophy of Approximation

What is the point of a 2-approximation?

• Constant approximations identify details of model. [cf. Wilson ’87]
Example: is X a detail?

– yes, if constant approx without X

– no, otherwise.
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Philosophy of Approximation

What is the point of a 2-approximation?

• Constant approximations identify details of model. [cf. Wilson ’87]
Example: is X a detail? competition?

– yes, if constant approx without X

– no, otherwise.
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Philosophy of Approximation

What is the point of a 2-approximation?

• Constant approximations identify details of model. [cf. Wilson ’87]
Example: is X a detail? competition? transfers?

– yes, if constant approx without X

– no, otherwise.
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What is the point of a 2-approximation?

• Constant approximations identify details of model. [cf. Wilson ’87]
Example: is X a detail? competition? transfers?

– yes, if constant approx without X
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• gives relevant intuition for practice
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What is the point of a 2-approximation?
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– yes, if constant approx without X

– no, otherwise.

• gives relevant intuition for practice

• gives simple, robust solutions.
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Philosophy of Approximation

What is the point of a 2-approximation?

• Constant approximations identify details of model. [cf. Wilson ’87]
Example: is X a detail? competition? transfers?

– yes, if constant approx without X

– no, otherwise.

• gives relevant intuition for practice

• gives simple, robust solutions.

• Exact optimization is often impossible.
(information theoretically, computationally, analytically)
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Picasso

[Picasso’s Bull 1945–1946 (one month)]
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Questions?



Overview

Part I: Optimal Mechanism Design

• single-item auction.

• objectives: social welfare vs. seller profit.

• characterization of Bayes-Nash equilibrium.

• consequences: solving, uniqueness, and optimizing over BNE.

• inferring values from bids.

Part II: Approximation in Mechanism Design

• single-item auctions.

• multi-dimensional auctions.

• prior-independent auctions.

• computationally tractable mechanisms.
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Overview

Part I: Optimal Mechanism Design (Chapters 2 & 3)

• single-item auction.

• objectives: social welfare vs. seller profit.

• characterization of Bayes-Nash equilibrium.

• consequences: solving, uniqueness, and optimizing over BNE.

• inferring values from bids.

Part II: Approximation in Mechanism Design

• single-item auctions. (Chapter 4)

• multi-dimensional auctions. (Chapter 7)

• prior-independent auctions. (Chapter 5)

• computationally tractable mechanisms. (Chapter 8)
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Part IIa: Approximation for single-dimensional Bayesian mechanism
design

(where agent preferences are given by a private value for service, zero
for no service; preferences are drawn from a distribution)



Example 2: Single-item auction

Problem: Bayesian Single-item Auction Problem

• a single item for sale,

• n buyers, and

• a dist. F = F1 × · · · × Fn from which the
consumers’ values for the item are drawn.

Goal: seller opt. auction for F.
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Example 2: Single-item auction

Problem: Bayesian Single-item Auction Problem

• a single item for sale,

• n buyers, and

• a dist. F = F1 × · · · × Fn from which the
consumers’ values for the item are drawn.

Goal: seller opt. auction for F.

Question: What is optimal auction?
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Optimal Auction Design [Myerson ’81]

1. Thm: BNE ⇔ allocation rule is monotone.
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Optimal Auction Design [Myerson ’81]

1. Thm: BNE ⇔ allocation rule is monotone.

2. Def: revenue curve: Ri(q) = q · F−1
i (1 − q).

0 1

0
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i (1 − q).

0 1

0

3. Def: virtual value: ϕi(vi) = vi −
1−Fi(v)
fi(vi)

= marginal revenue.
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3. Def: virtual value: ϕi(vi) = vi −
1−Fi(v)
fi(vi)

= marginal revenue.

4. Def: virtual surplus: virtual value of winner(s).

5. Thm: E[revenue] = E[virtual surplus]. (via “revenue equivalence”)
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Optimal Auction Design [Myerson ’81]

1. Thm: BNE ⇔ allocation rule is monotone.

2. Def: revenue curve: Ri(q) = q · F−1
i (1 − q).

0 1

0

3. Def: virtual value: ϕi(vi) = vi −
1−Fi(v)
fi(vi)

= marginal revenue.

4. Def: virtual surplus: virtual value of winner(s).

5. Thm: E[revenue] = E[virtual surplus]. (via “revenue equivalence”)

6. Def: Fi is regular iff revenue curve concave iff virtual values

monotone.
0 1
0
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1. Thm: BNE ⇔ allocation rule is monotone.
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4. Def: virtual surplus: virtual value of winner(s).

5. Thm: E[revenue] = E[virtual surplus]. (via “revenue equivalence”)

6. Def: Fi is regular iff revenue curve concave iff virtual values

monotone.
0 1
0

7. Thm: for regular dists, optimal auction sells to bidder with highest
positive virtual value.
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Optimal Auction Design [Myerson ’81]

1. Thm: BNE ⇔ allocation rule is monotone.

2. Def: revenue curve: Ri(q) = q · F−1
i (1 − q).

0 1

0

3. Def: virtual value: ϕi(vi) = vi −
1−Fi(v)
fi(vi)

= marginal revenue.

4. Def: virtual surplus: virtual value of winner(s).

5. Thm: E[revenue] = E[virtual surplus]. (via “revenue equivalence”)

6. Def: Fi is regular iff revenue curve concave iff virtual values

monotone.
0 1
0

7. Thm: for regular dists, optimal auction sells to bidder with highest
positive virtual value.

8. Cor: for iid, regular dists, optimal auction is second-price with
reserve price ϕ−1(0).
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Optimal Auctions

Optimal Auctions:

• iid, regular distributions: second-price with monopoly reserve price.

• general: sell to bidder with highest positive virtual value.
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Optimal Auctions

Optimal Auctions:

• iid, regular distributions: second-price with monopoly reserve price.

• general: sell to bidder with highest positive virtual value.

Discussion:

• iid, regular case: seems very special.

• general case: optimal auction rarely used. (too complicated?)
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: second-price with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan ’10]
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: second-price with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan ’10]
Proof: apply prophet inequality (tie-breaking by “vi”) to virtual values.
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: second-price with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan ’10]
Proof: apply prophet inequality (tie-breaking by “vi”) to virtual values.

prophet inequality second-price with reserves

prizes virtual values

threshold t virtual price

E[max prize] E[optimal revenue]

E[prize for t] E[second-price revenue]
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: second-price with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan ’10]
Proof: apply prophet inequality (tie-breaking by “vi”) to virtual values.

prophet inequality second-price with reserves

prizes virtual values

threshold t virtual price

E[max prize] E[optimal revenue]

E[prize for t] E[second-price revenue]

Discussion:

• constant virtual price ⇒ bidder-specific reserves.

• simple: reserve prices natural, practical, and easy to find.

• robust: posted pricing with arbitrary tie-breaking works fine,
collusion fine, etc.
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Anonymous Reserves

Question: for non-identical distributions, is anonymous reserve
approximately optimal?

(e.g., eBay)
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Anonymous Reserves

Question: for non-identical distributions, is anonymous reserve
approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, second-price with anonymous
reserve price is 4-approximation. [Hartline, Roughgarden ’09]
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Question: for non-identical distributions, is anonymous reserve
approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, second-price with anonymous
reserve price is 4-approximation. [Hartline, Roughgarden ’09]

Proof: more complicated extension of prophet inequalities.
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Anonymous Reserves

Question: for non-identical distributions, is anonymous reserve
approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, second-price with anonymous
reserve price is 4-approximation. [Hartline, Roughgarden ’09]

Proof: more complicated extension of prophet inequalities.

Discussion:

• theorem is not tight, actual bound is in [2, 4].

• justifies wide prevalence.
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Extensions

Beyond single-item auctions: general feasibility constraints.
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Extensions

Beyond single-item auctions: general feasibility constraints.

Thm: non-identical (possibly irregular) distributions, posted pricing
mechanisms are often constant approximations.

[Chawla, Hartline, Malec, Sivan ’10; Yan ’11]
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Extensions

Beyond single-item auctions: general feasibility constraints.

Thm: non-identical (possibly irregular) distributions, posted pricing
mechanisms are often constant approximations.

[Chawla, Hartline, Malec, Sivan ’10; Yan ’11]

Proof technique:

• optimal mechanism is a virtual surplus maximizer.

• reserve-price mechanisms are virtual surplus approximators.
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Extensions

Beyond single-item auctions: general feasibility constraints.

Thm: non-identical (possibly irregular) distributions, posted pricing
mechanisms are often constant approximations.

[Chawla, Hartline, Malec, Sivan ’10; Yan ’11]

Proof technique:

• optimal mechanism is a virtual surplus maximizer.

• reserve-price mechanisms are virtual surplus approximators.

Basic Open Question: to what extent do simple mechanisms approxi-
mate (well understood but complex) optimal ones?

Challenges: non-downward-closed settings, negative virtual values.

BAYESIAN. MECH. DESIGN – JULY 28, 2014
17



Questions?



Part IIb: Approximation for multi-dimensional Bayesian mechanism
design

(where agent preferences are given by values for each available
service, zero for no service; preferences drawn from distribution)



Example 3: unit-demand pricing

Problem: Bayesian Unit-Demand Pricing

• a single, unit-demand consumer.

• n items for sale.

• a dist. F = F1 × · · · × Fn from which the con-
sumer’s values for each item are drawn.

Goal: seller optimal item-pricing for F.
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Example 3: unit-demand pricing

Problem: Bayesian Unit-Demand Pricing

• a single, unit-demand consumer.

• n items for sale.

• a dist. F = F1 × · · · × Fn from which the con-
sumer’s values for each item are drawn.

Goal: seller optimal item-pricing for F.

Question: What is optimal pricing?
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Optimal Pricing

Optimal Pricing: consider distribution, feasibility constraints, incentive
constraints, and solve!
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Optimal Pricing

Optimal Pricing: consider distribution, feasibility constraints, incentive
constraints, and solve!

Discussion:

• little conceptual insight and

• not generally tractable.
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Analogy

Challenge: approximate optimal but we do not understand it?

BAYESIAN. MECH. DESIGN – JULY 28, 2014
22



Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand
Pricing (a.k.a., MD-PRICING)

• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.

BAYESIAN. MECH. DESIGN – JULY 28, 2014
22



Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand
Pricing (a.k.a., MD-PRICING)

• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.

Note: Same informational structure.
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• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
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sumers’ values for the item are
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Thm: for any indep. distributions, MD-PRICING ≤ SD-AUCTION.
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sumers’ values for the item are
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Note: Same informational structure.
Thm: for any indep. distributions, MD-PRICING ≤ SD-AUCTION.
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Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand
Pricing (a.k.a., MD-PRICING)

• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.

Note: Same informational structure.
Thm: for any indep. distributions, MD-PRICING ≤ SD-AUCTION.
Thm: a constant virtual price for MD-PRICING is 2-approx.

[Chawla,Hartline,Malec,Sivan’10]Proof: prophet inequality (tie-break by “−pi”).
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan ’10; Alaei ’11]
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Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan ’10; Alaei ’11]
Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan ’10; Alaei ’11]
Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION ≥ MD-PRICING

(competition increases revenue)

3. Reduction: MD-PRICING ≥ SD-PRICING

(pricings don’t use competition)

4. Instantiation: SD-PRICING ≥ 1
β

SD-AUCTION

(virtual surplus approximation)
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Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan ’10; Alaei ’11]
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Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan ’10; Alaei ’11]
Discussion:

• robust to agent ordering, collusion, etc.

• conclusive:

– competition not important for approximation.

– unit-demand incentives similar to single-dimensional incentives.

• practical: posted pricings widely prevalent. (e.g., eBay)
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Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan ’10; Alaei ’11]
Discussion:

• robust to agent ordering, collusion, etc.

• conclusive:

– competition not important for approximation.

– unit-demand incentives similar to single-dimensional incentives.

• practical: posted pricings widely prevalent. (e.g., eBay)

Open Question: identify upper bounds beyond unit-demand settings:

• analytically tractable and

• approximable.
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Questions?



Part IIc: Approximation for prior-independent mechanism design.

(mechanisms should be good for any set of agent preferences, not just
given distributional assumptions)



The trouble with priors

The trouble with priors:
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The trouble with priors

The trouble with priors:

• where does prior come from?

• is prior accurate?

• prior-dependent mechanisms are non-robust.

• what if one mechanism must be used in many scenarios?

Question: can we design good auctions without knowledge of
prior-distribution?
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Optimal Prior-independent Mechs

Optimal Prior-indep. Mech: (a.k.a., non-parametric implementation)

1. agents report value and prior,

2. shoot agents if disagree, otherwise

3. run optimal mechanism for reported prior.

Discussion:

• complex, agents must report high-dimensional object.

• non-robust, e.g., if agents make mistakes.

• inconclusive, begs the question.
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Resource augmentation

First Approach: “resource” augmentation.
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Resource augmentation

First Approach: “resource” augmentation.

Thm: for iid, regular, single-item, the second-price auction on n + 1
bidders has more revenue than the optimal auction on n bidders.

[Bulow, Klemperer ’96]
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First Approach: “resource” augmentation.

Thm: for iid, regular, single-item, the second-price auction on n + 1
bidders has more revenue than the optimal auction on n bidders.

[Bulow, Klemperer ’96]

Discussion: [Dhangwatnotai, Roughgarden, Yan ’10]

• “recruit one more bidder” is prior-independent strategy.

• “bicriteria” approximation result.

• conclusive: competition more important than optimization.
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Resource augmentation

First Approach: “resource” augmentation.

Thm: for iid, regular, single-item, the second-price auction on n + 1
bidders has more revenue than the optimal auction on n bidders.

[Bulow, Klemperer ’96]

Discussion: [Dhangwatnotai, Roughgarden, Yan ’10]

• “recruit one more bidder” is prior-independent strategy.

• “bicriteria” approximation result.

• conclusive: competition more important than optimization.

• non-general: e.g., for k-unit auctions, need k additional bidders.
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Special Case: n = 1

Special Case: for regular distribution, the second-price revenue from
two bidders is at least the optimal revenue from one bidder.
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Special Case: for regular distribution, the second-price revenue from
two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

• each bidder in second-price views other bid as “random reserve”.

• second-price revenue = 2× random reserve revenue.

• random reserve revenue ≥ 1
2× optimal reserve revenue:

Recall: revenue curve

R(q) = q · F−1(1 − q)

R(q)

0 1
0
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Special Case: n = 1

Special Case: for regular distribution, the second-price revenue from
two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

• each bidder in second-price views other bid as “random reserve”.

• second-price revenue = 2× random reserve revenue.

• random reserve revenue ≥ 1
2× optimal reserve revenue:

Recall: revenue curve

R(q) = q · F−1(1 − q)

q∗

R(q)

0 1
0

• So second-price on two bidders ≥ optimal revenue on one bidder.
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Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n
bidder, n copies of item)?
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Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n
bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution,
post the monopoly price ϕ−1(0). [Myerson ’81]
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Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n
bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution,
post the monopoly price ϕ−1(0). [Myerson ’81]

Discussion:

• optimal,

• simple, but

• not prior-independent
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Approximation via Single Sample

Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price vi.

3. reject i.
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Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price vi.

3. reject i.

Thm: for iid, regular distributions, single sample auction on
(n + 1)-agents is 2-approx to optimal on n agents.

[Dhangwatnotai, Roughgarden, Yan ’10]
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Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price vi.

3. reject i.

Thm: for iid, regular distributions, single sample auction on
(n + 1)-agents is 2-approx to optimal on n agents.

[Dhangwatnotai, Roughgarden, Yan ’10]
Proof: from geometric argument.
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Approximation via Single Sample

Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price vi.

3. reject i.

Thm: for iid, regular distributions, single sample auction on
(n + 1)-agents is 2-approx to optimal on n agents.

[Dhangwatnotai, Roughgarden, Yan ’10]
Proof: from geometric argument.

Discussion:

• prior-independent.

• conclusive,
– learn distribution from reports, not cross-reporting.

– don’t need precise distribution, only need single sample for
approximation. (more samples can improve approximation/robustness.)

• generic, applies to general settings.
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Extensions

Recent Extensions:

• non-identical distributions. [Dhangwatnotai, Roughgarden, Yan ’10]

• position auctions, matroids, downward-closed environments.
[Hartline, Yan ’11; Ha, Hartline ’11]

• multi-item auctions (multi-dimensional preferences).
[Devanur, Hartline, Karlin, Nguyen ’11; Roughgarden, Talgam-Cohen, Yan ’12]
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[Hartline, Yan ’11; Ha, Hartline ’11]

• multi-item auctions (multi-dimensional preferences).
[Devanur, Hartline, Karlin, Nguyen ’11; Roughgarden, Talgam-Cohen, Yan ’12]

Open Question: non-downward-closed environments?
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Part IId: Computational Tractability in Bayesian mechanism design

(where the optimal mechanism may be computationally intractable)



Example 5: single-minded combinatorial auction

Problem: Single-minded combinatorial auction

• n agents,

• m items for sale.

• Agent i wants only bundle Si ⊂ {1, . . . ,m}.

• Agent i’s value vi drawn from Fi.

Goal: auction to maximize social surplus (a.k.a., welfare).
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Example 5: single-minded combinatorial auction

Problem: Single-minded combinatorial auction

• n agents,

• m items for sale.

• Agent i wants only bundle Si ⊂ {1, . . . ,m}.

• Agent i’s value vi drawn from Fi.

Goal: auction to maximize social surplus (a.k.a., welfare).

Question: What is optimal mechanism?
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Optimal Combinatorial Auction

Optimal Combinatorial Auction: Vickrey-Clarke-Groves (VCG):

1. allocate to maximize reported surplus,

2. charge each agent their “critical value”.
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Optimal Combinatorial Auction

Optimal Combinatorial Auction: Vickrey-Clarke-Groves (VCG):

1. allocate to maximize reported surplus,

2. charge each agent their “critical value”.

Discussion:

• distribution is irrelevant (for welfare maximization).

• Step 1 is NP-hard weighted set packing problem.

• Cannot replace Step 1 with approximation algorithm.
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BNE reduction

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?
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Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?

Recall: BNE ⇔ allocation rule xi(vi) is monotone in vi.
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Recall: BNE ⇔ allocation rule xi(vi) is monotone in vi.

Challenge: xi(vi) for alg A with v i ∼ F i may not be monotone.
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Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?

Recall: BNE ⇔ allocation rule xi(vi) is monotone in vi.

Challenge: xi(vi) for alg A with v i ∼ F i may not be monotone.

Approach:

• Run A(σ1(v1), . . . , σn(vn)).
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Challenge: xi(vi) for alg A with v i ∼ F i may not be monotone.

Approach:

• Run A(σ1(v1), . . . , σn(vn)).
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BNE reduction

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?

Recall: BNE ⇔ allocation rule xi(vi) is monotone in vi.

Challenge: xi(vi) for alg A with v i ∼ F i may not be monotone.

Approach:

• Run A(σ1(v1), . . . , σn(vn)).

• σi calculated from max weight matching on i’s type space.

– stationary with respect to Fi.

– xi(σi(vi)) monotone.

– welfare preserved.
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Example: σi

Example:

Fi(vi) vi xi(vi)

.25 1 0.1

.25 4 0.5

.25 5 0.4

.25 10 1.0
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Example: σi

Example:

Fi(vi) vi xi(vi)
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Example:
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Example: σi

Example:

Fi(vi) vi xi(vi)

.25 1 0.1

.25 4 0.5

.25 5 0.4

.25 10 1.0

σi(vi)

1

5

4

10

xi(σi(vi))

0.1

0.4

0.5

1.0

Note:

• σi is from max weight matching between vi and xi(vi).

• σi is stationary.

• σi (weakly) improves welfare.
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BNE reduction discussion

Thm: Any algorithm can be converted into a mechanism with no loss in
expected welfare. Runtime is polynomial in size of agent’s type space.

[Hartline, Lucier ’10; Hartline, Kleinberg, Malekian ’11; Bei, Huang ’11]

Discussion:

• applies to all algorithms not just worst-case approximations.

• BNE incentive constraints are solved independently.

• works with multi-dimensional preferences too.
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Extensions

Extension:

• impossibility for dominant strategy reduction.
[Chawla, Immorlica, Lucier ’12]
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Extension:
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[Chawla, Immorlica, Lucier ’12]

Open Questions:

• non-brute-force in type-space? e.g., for product distributions?

• other objectives, e.g., makespan? [Chawla, Immorlica, Lucier ’12]
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Part II Conclusions

Conclusions:

• approximation pinpoints salient characteristics of good
mechanisms.

• reserve-price-based auctions are approximately optimal.

• posted-pricings are approximately optimal.

• good mechanisms can be designed without prior information.

• good algorithms can be converted into good mechanisms.
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